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Abstract. The paper suggests an effective procedure for summing all Feynman
diagrams for the two-particle Green function in a one-dimensional model with a
Gaussian random field whose correlator is Lorentzian (in the momentum space)
with its maximum at Q = 2pp, with pp the Fermi momentum. This model can be
considered a Gaussian model of the Peierls transition (charge density and spin density
waves) in a fluctuation region with a well-developed short-range order. The authors
formulate a recurrence procedure for calculating the vertex part, which describes the
response of the system to an external electromagnetic field, and obtain a general
picture of the evolution of the frequency dependence of conductivity as a function
of the short-range order correlation length, which describes absorption through a
pseudogap and localization.

1. Introduction

There is only a limited number of models of the electronic properties of one-
dimensional disordered systems that allow an exact solution [1, 2]. The interest in such
models is due to the general problem of studying the electronic states in disordered
systems and to specific problems of the physics of quasi-one-dimensional systems.
Attention has especially focused on the manifestation of Anderson localization in the
one-dimensional case for arbitrarily weak disorder {3-5]. Resolving this problem has
proved extremely difficult since localization is determined by the properties of the
two-particle Green function, about which very few exact statements are known.

The majority of exact results in the theory of one-dimensional disordered systems
have been obtained by employing sophisticated mathematical techniques specially
designed to describe one-dimensional problems and unsuitable for generalization to
the multidimensional case. Only in a few cases have exact solutions been obtained via
standard methods of the quantum theory of multiparticle systems [6]. Such models
are of special interest primarily from the stand-point of checking the effectiveness of
standard approximation methods. They could also lead to instructive results easily
generalized to the multidimensional case.

A model of this kind was suggested some time ago by one of the present
authors [7-9). Within its framework it was established that the scattering of an
electron on short-range order Gaussian fluctuations with a characteristic period
determined by the wavevector Q « 2pp (pp is the Fermi momentum) leads to the
formation of a ‘pseudogap’ in the neighbourhood of the Fermi level that evolves
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with variations in the short-range order correlation radius [9]. In the approximation
of large correlation radii there has also been obtained an exact analytical solution
for the two-particle Green function describing, among other things, the absorption
of electromagnetic radiation through the pseudogap [7, 8]. For the particular
case of commensurate fluctuations a similar model was considered in .Wonneberger
and Lautenschlager [10]. The results obtained in these papers have been used to
interpret the optical properties of quasi-one-dimensional systems undergoing a Peierls
transition (8, 11] and in some other problems (e.g., see [12]). Lately a model of the same
kind has been suggested for interpreting a number of properties of high-temperature
superconductors [13-15]. The authors of [15) suggest a general recurrence procedure
for calculating the two-particle Green function that is valid for arbitrary short-range
correlation radii and allows for all the respective perturbation-theory diagrams.

The present paper is devoted to a thorough study of the solution used in [15],
an analysis of its special features from the viewpoint of the theory of one-dimensional
disordered systems, and a comparison of the ‘exact’ results with those obtained within
the framework of standard approximation methods.

2. The model

We consider an electron placed in a Gaussian random field A(z) with a correlation
function

(A(z)A(z")) = A?exp{— |z ~ 2’| €'} cos [2pg(z — =)] (1)

where A2 is the mean square of a field fluctuation, and ¢ the short-range order
correlation radius. Such a correlator appears, for instance, in fluctuations of the
order parameter in the Ginzburg-Landau model for a Peierls transition [16]. In what
follows A and £ are considered parameters of the theory. The Fourier transform of (1)
is

(AgA_g) = A?S(Q)

—9A2 x r
=24 ((Q—2pp)2+~2 * (Q+2pp)2+~2) @)

with k = £~!. The simplest self-energy part of the one-electron Green function has
the form (figure 1)

_ a2 [9Q 5(Q)
X(ep) =4 2r e—¢,_g—ibsgné, o
T e+¢&, +ivpnsgné,
= AGy(e;—€, —ivpsgné,) (p o pp) 3)

where €, = vp(|p| — pp), vp is the Fermi velocity, and we have allowed for the fact
that fp_zpp ==£,.

We also consider the case of commensurate fluctuations [10], when {, =
—W cos(pa), with a the lattice constant, and 2pp = 7/a (half-filled bands, period
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Figure 1. The simplest contribution to the self-energy part.

doubling). The diagram in figure 1 and the result of the (3) type were basic to
the analysis conducted in [16]. In [7, 8] all Feynman diagrams for the one- and
two-particle Green functions were summed for the asymptotic limit x — 0. An
effective summation of all the diagrams for the one-particle Green function was
carried out in [9] for arbitrary values of k. In the nth order of the perturbation
expansions in A2 there are n! diagrams in the case of incommensurate fluctuations
and ((2n — 1)!! = (2n - 1)!1/2"~}(n — 1)! in the case of commensurate fluctuations
(period doubling) [9]. Figure 2 shows all the important diagrams of the third order
in A2 for the one-electron Green function in the incommensurate case. The rules for
calculating the contributions of arbitrary diagrams have been thoroughly discussed
in [9]. Generally, the contribution of any diagram is determined by the position of
the ‘initial’ and ‘final’ vertexes for the interaction lines. Here to each one-electron line
following the ‘initial’ vertex there is assigned (see equation (3)) an expression of the
free-particle propagator type in which ivpx sgn ¢, is added to the denominator, while in
a similar line following the ‘final’ vertex this term is subtracted from the denominator.
The integers in figure 2 stand for the number of such contributions in each of the
corresponding denominators. The reader can easily see that the contribution of any
diagram with crossed interaction lines can be uniquely represented by a respective
diagram without crossed interaction lines, since their contributions are equal (e.g., in
figure 2 diagram (d) provides the same contribution as diagram (e)). The general
procedure for such assigning is given in [9], in accordance with the method first
suggested by Elyutin [17]. Each vertex is assigned an integer equal to the number
of terms ivpx in the denominator of the electron line following the given vertex. The
initial vertex is assigned the integer N, = N,,_,+1, where N, _ is the integer assigned
to the closest vertex on the left. The final vertex is assigned the integer N,_, — 1,
where N; = 0 and n is the ordinal number of the vertex.
We introduce

_Jk+1)/2 fk=2m+1
v(k) = { k/2 if k = 2m “)

for the case of incommensurate fluctuations and
v(k)=k %)

for the case of commensurate fluctuations. It can easily be verified that the number
of irreducible diagrams for the self-energy part that are equal to the given diagram
without crossed interaction lines is given by the product of the factors v(N,) for all
the initial vertexes of a given diagram. Hence, further analysis can be carried out in
terms of diagrams without crossings, assigning to all initial vertexes the additional
factors v(N,) [9, 17].
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Figure 2. A%-order diagrams for the Green function (the incommensurate case).
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Figure 3. The diagrammatic structure of the recurrence procedure for the self-
energy part.
Applying Elyutin’s method makes it possible to build an exact representation for

the one-electron Green function in the form of a continued fraction [9]. The structure
of this solution is based on the ordinary Dyson equation

G 1(e,6,) = G (6,€,) = By(6:€,) (6)



The two-particle Green function 395

where for the self-energy part we have (figure 3(a))

- 1
ZI(C,EP) = AZZI(E:EP) (e + €P +le’I-‘)~ sgnsp)z
= A’w(1)Gi(e, ~€, — ivp 9gn&, )E, (6, ;) ™

and for Z,(¢,&,) we have the expansion depicted in figure 3(b), where there are no
diagrams w1t.h crossed mt.eract.lon llnes but where the kth vertex (counting from

which allows taking into account the contributions of all the diagrams with crossed
interaction lines. Respectively, Z,(¢,£,) can be written as

1
GO_l(ei -fp - iv[-"c sgn fp) - 22(6’ €p)

El(er fp) = G;Z(e, _fp - ivlf-"c sgn fp) (8)

where £,(¢,§,) is expressed by the sum of irreducible diagrams shown in figure 3(c):

Ty(,6) = A?(2)Gi(e, &, + 2ivprsgné,)E,(e, &) 9
= -2 . 1
O] = GG B R T, ) - T ) )
etc. The final result is
Zale,&,) = A’GE (6, (—1)* (6, +ikvprsgng,)) vin) E (&.3) (11)
Zu(e,€,) = G2 (6, (—1)*(§, + ikvpa sgnéy))
x 1 - ! (12)
Gy' (e, (=1)k(¢, + ikvpxsgn Ep)) - Zin(6 )
Bu(e6,) = A%o(k)—; _—
? GE ( ( l)k(fp + lkaK sgnfp)) - 2k+l(€v fp)
= A%(k)Gy(e.€, ) L (13)
B
Gi(e,§p) = [e - (—l)k(fp +ikvpxsgng,) — Au(k + I)Gk+l(€’€p)] (14)

with Gi.(¢,&,) = G(e,&,). These recurrence relations yield an exact representation
of the one-electron Green function in the form of a continued fraction. The results
of numerical calculations of the corresponding electronic state density for different
values of the short-range order correlation radius £ = x~! are given in [9]. The results
exhibit, among other things, the formation of a pseudogap approximately 2A wide in
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the vicinity of the Fermi level [7-11, 16] that gradually fills up (degrades) as § gets
smaller.

Figures 4 and 5 illustrate the results of numerical calculations of the spectral
density '

A,6) = %Im GR(e,£,) (15)

of the respective Green function (14) for different values of the parameter W = vgx/A
(i.e., virtually the reciprocal correlation length). The energy scale is given in units
of A (i.e, E=¢/A and z=§,/A).

In the case of well-defined quasiparticles the spectral density is simply 6(¢ — &,).
The results depicted in figures 4 and 5 suggest that at small values of the parameter W
(large correlation lengths § > vp/A) our solution contains no contributions of
the quasiparticle type. This fact was noted in [7, 8], where it was demonstrated
explicitly that there are no pole contributions to G(e,fp) in the approximation of
large correlation lengths. At the same time, figures 4 and 5 show that at fairly large
values of W (small correlation lengths) the spectral density is represented by a fairly
sharp peak at € o« §, corresponding to weakly damped one-electron excitations. The
physical meaning of this result is simple. In the limit of £ = x~! — 0 the random
field correlator (1) becomes short-ranged but is not reduced to the common 3, 5]
‘white noise’ limit. Although in this case all momenta in the integral with respect
to Q become important, the scattering amplitude

2
(AgA_g) x AT (16)

so that the effective scattering rate

1 D A?  A?

S x?2 2. -2

_— 7 Ny(ep) p —
-4 —0 = (17)
= as K o0

with Ny(e) = 1/2wv, the one-electron density of states of free electrons. Correspond-
ingly, in the limit of £ — oo the freedom of the electrons becomes ever greater. This
fact is important for the interpretation of the results that are given below. Similar
behaviour (as figure 4 shows) appears as , grows, that is, as one moves away from
the Fermi surface.

3. The two-particlé Green function and the electromagnetic response

Let us now analyse the two-particle Green function (the vertex part), which determines
the frequency dependence of conductivity and the dielectric constant of the system.
We begin by studying the response to a variation of the external scalar potential,
00, o"
w

6G(e,&,) = G(e,€,)T (6,6p16 +w,6,4)G(E +w, 6,54, )00, 0 (18)
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Figure 4. The surfaces of constant spectral density A(E,z): E = ¢/A, z = &p/A,
and W = vps/A. (a) W =0.1, (b) W = 0.5, (c) W = 1.0, and (d) W = 5.0.
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Figure 5. Characteristic cross sections of the surfaces of constant spectral density
A(E,z): (a)z=0at W =0.1(), W =0.5(2), W = 1.0(3), and W = 5.0(4);
(b)z=05at W =0.1(1), W =0.5(2), and W = 5.0(3).

where the vertex part

-1
J(e,fp;e+w,£p+q)=—wﬁ)- (19)

604w

for free particles (the free-particle Green function) is determined solely by the charge e.
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Equation (6) yields

621(616;))
8Pqw
e+ J1(6. 66 +w,6ppy)- (20)

J(e,fp; € + w!€p+q) =

The problem reduces to calculating the variational derivatives of diagrams of the
type depicted in figure 3; the graphs with crossed lines may be ignored because they
are taken into account by the respective combinatorial factors at the ‘initial’ vertexes.

Combining (13) and (14), we introduce the following hierarchy of vertex parts:

6GTe\E)
(e &pie+w,6pp) = -—-‘6—;—-&
qw
+ 622(6’6}))
60q

= e+ Jo(e, 656 +w,épyy)

8GEZ1(6.6)
Tior(€€pie+w,6py,) = ..__56;__!’_
q.w

=e+ 6Ek(5’€p)
6¢pq,w
e+ Jil6,€pie+w,bpypy)--- (21)

with Jy_o = J (e,fp;e +w,§, +q). An important assumption is present here, namely,
that the variational derivatives of the free-particle Green functions (with contributions
ivpk in the denominators) are still determined by the ‘bare’ charge e.

In what follows we will be mainly interested in the vertex of the RA type, with
the incoming line of the A (advanced) type and the outgoing of the R (retarded) type.
We can try to calculate the corresponding contributiens to the variational derivatives
X, (e, 6,,)/650“, explicitly. Let us consider the simplest diagram for the first-order
correction in A? to the vertex part (figure 6(a.)) For the corresponding contribution
we easily find that

A

1)RA
( ) (&:&p e+ w, §ptq)

YN / S(@)G3(e.6p- Q)G“(e+w€p Q+e)

= A? [GA(e, €p+1vpn) GR(€+w, €p+q “’!‘ x))]

W+ vpq
= A2GA(e, -c +1an)GR(E+w —£,4q — ivpK) (1+ Zivpk ) (22)

w+ vpq

where we have used the identity

GA (660G (e +w,Ep,) = [GR(E.6,) ~ GR(e +w,6py)]

w—vpq



400 M V Sadovskii and A A Timofeev

e+ o, qu-q: q
o+
(a) . q
(b)
IR
v()
©
V(K)

Figure 6. The simplest diagrams for the vertex part.

‘Dressing’ all the internal electron lines and employing the identity

GA(e,§)GMe +w,Gp4g) = [GA(6:6) = GR(e +wibpy,)]

1
X . :
w—vpg— 2?(6 + u’€p+q) + Ef(e’fp)

(23)

we obtain the contribution of the diagram in figure 6(b) in the following form:

Jlm(el fp;e +w1€p+q) = AQG]_A(E) fp)Gil(e + u)£p+q)

2ivix
x |14+ =) Y
w+vpg— I3 +w,§p4,) + E2(e,6,)
X J?A(e'){p;e +u)€p+q) (24)
where we have assumed that an extra interaction line simply transforms the respective

self-energy parts E?‘A into 2?‘A in the spirit of the procedure discussed in section 2.
A straightforward generalization for the contribution of the diagram depicted in
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figure 6(c), with the lines dressed according to the rules suggested above, has the
form

JhnA(ea §pict+ wl£p+q) = sz(k)Gt(elgp)GE’(e + “’vf{p+q)

<14 2ivpk k
w—(=1)* vpq-— z:k+1(€ +w,bppg) + Ek+1(5’fp)

x JiA(e, 656 +w, 6,y ). (25)
rThe main feature here is the absence of terms of the ivpx type in the denominator
,in the second term w1th1n the braces, which in the summation procedure discussed
{in section 1 were 'shifted"from the proper self-energy parts to the corresponding free-
particle Green functions.

In addition to the above assumptions concerning the properties of variational
derivatives of the free-particle Green functions, this procedure forms the basis of
the suggested method. This procedure does indeed take into account all the
Feynman diagrams emerging in the problem, but it is based on important assumptions
concerning the structure of separate terms in the series. Below we suggest additional
arguments in favour of the validity of these assumptions.

V(1) 6,
>
G,
V(K)
Gy
Gy

Figure 7. Diagrammatic representation of the equations for the vertex hierarchy.

As a result we arrive at the following fundamental recurrence relations for the
vertex part:

Jm(ey Ep; [ + ws £p+q)

= e+ A%W(k)G(€,6,)GE (€ +w, &, JITA(E Eps e+ w,6p)

" {1 + 2ivgxk
W~ '(—l)kaq + v(k + I)Az' [G?_H(E,f ) Gk+1 (E + U;§p+q)] )
(26)
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Diagrammatically these relations are depicted in figure 7

Further analysis can easily be done numerically: we truncate the continuous
fraction for the G-function at a distant ‘storey’ assuming that the corresponding X,
is zero and that J, = e and then ‘raise’ to the physical limit of £ = 0. One can easily
verify that on the limit of k — 0 the suggested procedure leads to the series that was
summed analytically in {7, 8].

To find the frequency dependence of the conductivity we can use the general
relations discussed in [18, 19]. The conductivity is expressed in terms of the density—
density retarded response function (the polarization operator) x®(g,w) as follows:

o) = lim (- ) aw). @0
The dielectric constant can also be easily found:
Ree(w)-1= —% Imo(w) Ime(w) = t_w Rea(w).
The general expressioﬁ for Xn(q,w) ﬁu the following form (18, 19]:
(o) = [ de {Uf(e+0) - FO1™(e,0.0)

+ / de [f(e)® R (e, q,w) — f( + w)® (e, q, )] (28)

where f(¢) is the Fermi distribution function, and the two-particle Green functions
ORA ORR and $AA are represented by loop diagrams of the type depicted in figure 8.

et+ow,pt+q

RA _._1_ b

e'p

Figure 8. Diagrammatic representation of %4 (¢, q,w).

For T =0 and w < ¢ we have [19]
Xn(qxw) = w[QRA(Or q,U) - QRA(Os O,Ld)]. : (29)

We note the existence of an important relation of the Ward identity type [18, 19]
that reflects the law of conservation of the number of particles (and is valid for w < €):

®™A(0,0,w) = -5(:—*‘) (30)
with N(ep) the exact (renormalized) density of states at the Fermi level. This equation

was employed in deriving (29) and can be used to directly monitor the suggested
recurrence procedure of calculating the two-particle Green function.
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4. Results and discussion

As noted in [9], the recurrence procedure for finding the one-particle Green function
(the density of states) converges very rapidly; a typical calculation time for the density
of states at a given energy (with a high accuracy) amounts to less than one minute
when a standard IBM PC/AT is used (if one starts from the ‘storey’ with k = 50-100).
The situation is more complicated when conductivity and the dielectric constant are
calculated and the procedure is more sensitive to the choice of parameters of interest to
us. In the main section of the frequency interval, 0.5A < w < 3A, and for intermediate
values of £ = k™1 (0.2A < vpr < 2A), satisfactory convergence is achieved for
k < (2-5) % 102 and the calculation time for conductivity at a fixed frequency amounts
to several minutes. Qutside the specified intervals the convergence grows markedly
worse and becomes especially poor in the limit of very low frequencies and in the case
of extremely large correlation lengths (note that in the latter case the exact analytical
solution can be used [7, 8}).

The reliability of the suggested recurrence procedure can be verified by directly
checking the validity of the exact formula (30). In doing so, one finds that calculating
N(ep) in terms of the two-particle Green function 4 (0,w) yields (at least forw < A)
a result agreeing perfectly with that of N(ep) calculated in terms of the one-electron
Green function for various values of parameter k. This can, apparently, serve as a
strong indication that the employed method is correct, which makes it possible to
speak of an ‘exact’ solution.

0.80

SN EEEENE RN R AN NN NN RN |

0.00 LU SN [ Y N B A BN A RO SN SR R S S B S SRR S B S 4

0.00 2.00 4.0C
w/A
Figure 9. The frequency dependence of the real part of conductivity in the

case of incommensurate fluctuations: W = 0.1(1), W = 0.5(2), W = 1.0(3),
and W = 2.0(4); the = stand for the exact solution at W = 0 [7, 8].

In figure 9 we give the results of calculating the frequency dependence of
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conductivity for the case of incommensurate short-range order fluctuations. The
conductivity is given everywhere in units of w2/4wA (there is an error in [15)
concerning this scale—the presence of an extra factor of 2 in the denominator), with
wy, the plasma frequency, and the correlation length is determined by parameter W =
vpk/A. For the sake of comparison we also give the results of an exact analytical
solution in the limit of W — 0 [7, 8]. One can clearly see the successive degradation
of the intensity of absorption through the pseudogap as £ decreases (or W grows).
For small W (or large £), the localized behaviour of Reg(w) in the low-frequency
region, Reo(w — 0) — 0, manifests itself in a way that is qualitatively similar to the
behaviour discovered in another model [5]. There appears a characteristic additional
maximum in the conductivity similar to the maximum obtained in the problem of
conductivity in a system of é-correlated impurities (‘white noise’) [5]. As W grows,
the apparent localized behaviour disappears, changing to the Drude-like behaviour
characteristic of free electrons. Thus, our model demonstrates an ‘effective’ Anderson
transition, notwithstanding its one-dimensional nature.

Though this may seem to be paradoxical behaviour, it has a simple qualitative
explanation based on the decrease of the effective scattering amplitude in the limit
of large &, a property discussed in section 2. Naturally, the frequency region where
localization effects manifest themselves is drastically narrowed in the process and for
all practical purposes disappears as the electrons’ freedom increases. It is in this sense
that we can speak of an effective Anderson transition.

1.20

o.oo|rill‘rli|xl;l_rrrr_rl.|lllll

0.00 2.00 4.00

Figure 10. The frequency dependence of the real part of conductivity in the case of
commensurate fluctuations: W = 0.5(1), W = 2.0(2), W = 4.0(3), and W = 8.0(4).

Figure 10 demonstrates the results of calculating Re o(w) for the case of commen-
surable short-range order fluctuations. Qualitatively, the picture noticeably differs
from the incommensurate case: there is no additional maximum in the low-frequency
region for small W. At the same time, the effective Anderson transition from the
localized behaviour to the Drude-like becomes even more evident.
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The suggested method can also be used to establish the frequency behaviour of
the dielectric constant Re&(w). The corresponding results are given in [15].

0.80 2.00 3
(a) i b)
0.60 1.50
1
~~ o
3 3
p — p—
Qo.40 7 0 1.00
) ()
[0 (e J
! 1
0.20 0.50 J
i 2
]
0.00 J+rrrrr T —r—— 0.00 Frrrrrrrrrrrrrr T
0.00 2.00 4.00 0.00 2.00 4.00
w/A w/A

Figure 11. Comparison of the results of an ‘exact’ analysis with those obtained
in the ‘ladder’ approximation: (a) W = 0.1(1) the ‘exact’ solution and (2) the
‘ladder’ approximation; (b) W = 1.0(1) the ‘exact’ solution and (2) the ‘ladder’
approximation.

It is interesting to compare the results of an ‘exact’ analysis with those of calcu-
lations carried out in the standard ‘ladder’ approximation, that is, an approximation
that does not allow for diagrams with crossed interaction lines. In our method
the transition to the ‘ladder’ approximation is very simple: one needs only to set
all combinatorial factors v(k) equal to unity (in both the incommensurate and the
commensurate case). Figure 11 depicts the most characteristic curves for Re o plotted
against w for the incommensurate case. The reader can clearly see that for small W
(figure 11(a)) the ‘ladder’ approximation gives a behaviour that drastically differs
from ‘exact’. Localized behaviour is distinctly absent from the low-frequency region,
which is natural since localization is determined by diagrams with crossed interaction
lines [18]. At the same time, for fairly large W (figure 11(b)) in the main frequency
region the ‘ladder’ approximation yields results that are close to ‘exact’. However, for
low frequencies here, too, distinct discrepancies emerge: all tendency to localization
vanishes. The same behaviour is observed in the commensurate case.

Note that the suggested method can also be easily used to analyse the one-
dimensional model with a Gaussian random field correlator in the form of a simple
Lorentzian centred at zero momentum transfer, @ = 0. Naturally, this model generates
a density of states with a characteristic ‘tail’ at the band’s edge. However, calculating
the two-particle Green function yields trivial free behaviour in this model. For
instance, it can easily be verified that Ree(w) = 1 — w? /w?. This result is an obvious
corollary of the absence (in the one-dimensional case) of dissipation in scattering with
low momentum transfer, Q < 2pp. The electrons simply re-scatter near +pg, the
endpoints of the ‘Fermi line’. Current dissipation requires scattering by Q ~ 2pg,
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which makes the electrons hop from one endpoint of the Fermi line to the other.

5. Conclusion

We have proposed an effective recurrence procedure for calculating the two-particle
Green function in a one-dimensional model with a Gaussian random field of a special
type that can describe short-range order fluctuations in systems of the Peierls type [8,
9] and, possibly, in high-T, systems [15]. The procedure allows for all the Feynman
diagrams that appear in the given problem and in this sense is ‘exact’, although it is
based on certain assumptions concerning the structure of the terms in the perturbation
series. The reliability of these assumptions is verified by the meaningfulness of the
limiting cases of x — 0 and x — oo and by the fact that the exact ‘Ward’ identity
holds for all values of .

The general pattern of the evolution of the frequency dependence of conductivity
for various values of the short-range order correlation length describes absorption
through a pseudogap and localized behaviour in the region of low w and W. As W
grows (or the correlation length decreases) an ‘effective’ Anderson transition occurs in
the system, and this would seem to explain the drop in the scattering amplitude and
the gradual transition to ‘free’ particles as W grows. From the practical viewpoint the
frequency range where localization manifests itself narrows drastically and disappears.
Such behaviour may lead to interesting consequences in real quasi-one-dimensional
systems. .
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