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1 INTRODUCTION

The concept of electron localization [1} is basic for the understanding of electron-proper-
ties of disordered systems [2,3]. In recent years a number of review papers had appeared,
extensively discussing this problem [4,5,6,7]. According to this concept introduction of
sufficiently strong disorder into a metallic system leads to spatial localization of elec-
tronic states near the Fermi level and thus to a transition to dielectric state (Anderson
transition). After this transition dc conductivity (at zero temperature, T = 0) van-
ishes, despite the finite value of electronic density of states at the Fermi level (at least
in one-electron approximation).

At the same time it is well-known that even the smallest attraction of electrons
close to the Fermi level leads to formation of Cooper pairs and the system becomes
superconducting at sufficiently low temperatures [8,9). It is known that the introduction
of disorder which does not break the time—reversal invariance (normal, nonmagnetic
impurities etc.) does not seriously influence superconding transition temperature T
and superconductivity in general (Anderson theorem) [10,11,12,13]).

Thus a problem appears of the mutual interplay of these two possible electronic
transitions in a disordered system which leads to quite different {even opposite) ground
states (insulator or superconductor). This problem is very important both from theoret-
ical and experimental points of view. Actually superconducting properties of many com-
pounds depend strongly on structural disorder. In this respect we can mention amor-
phous systems (metallic glasses) and superconductors disordered by different forms of
irradiation by high-energy particles (fast neutrons, electrons, heavy-ions etc.). It ap-
pears that in many of these systems superconductivity is realized when the system
in normal state is quite close to the metal-—insulator transition induced by disor-
der. In this case many anomalies of superconducting properties appear which can-
not be satisfactorily explained within the standard theory of “dirty” superconductors

- [9,10,11,12,13).

The disco‘]rery of high-temperature superconductivity in metallic oxides [14,15] has
lead to the entirely new opportunities in the studies of strong disorder effects in su-
perconductors. Very soon it had been established that high—7. superconductors are
quite sensitive to structural disordering which leads to rather fast destruction of su-
perconductivity and metal—insulator transition. However, the high values of initial T,
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as well as a small size of Cooper pairs and quasi-two dimensional nature of electronic
states in these systems are very appropriate for the studies of the mutual interplay of
localization and superconductivity [16). It may be stated with some confidence that
in these systems superconductivity can be observed even in the region of localization
(Anderson insulator).

This review is mainly concerned with theoretical aspects of localization and super-
conductivity close to Anderson transition. However, we shall pay some attention to
experiments demonstrating the importance of localization phenomena for the correct
analysis of superconductivity in strongly disordered systems. Special emphasis will be
on the experiments with high—7, superconductors. We shall limit ourselves with dis-
cussing only three-dimensional and quasi-two-dimensional (in case of HTSC) systems,
excluding any discussion of purely two-dimensional systems. which are quite special
both in respect to localization and superconductivity. In this case we refer a reader to
recent review [17] which is specifically concerned with two-dimensional case.

The usual theory of “dirty superconductors™ [9.10,11.12.13] is a cornerstone of our
understanding of superconducting properties of disordered metals. It is based on the
following main statements:

1. As impurity concentration (disorder) grows a transition ‘takes place from the
“pure” limit, when the electron mean-free path / is much larger than the super-
conducting coherence length &: I » & = hvp/7Aq to a “dirty” superconductor
with & 3 ! 3> h/pr (Here vp,pr—are Fermi velocity and momentum, Ag—is
the zero—temperature energy gap). Transition from the free electron motion to
diffusive one does not change T at all (Anderson’s theorem).

2. Superconducting coherence length £ (at T = 0) determining the spatial scale of
superconducting order-parameter (the size of a Cooper pair) diminishes with [ so
that ¢ & /&l in the limit of &/pr € | < o.

Theory of “dirty” superconductors is the basis of our understanding of superconducting
properties of many disordered alloys. However. the main results of this theory must be
modified|18,19.20.21,22] for the mean-free path values [ of the order of inverse Fermi
momentum /i/pp (i.e. of the order of interatomic distance). In three—dimensional
systems the growth of disorder leads to destruction of diffusive motion of electrons
and transition from extended to localized states at critical disorder determined by
l. = k/pr, i.e. to transition to Anderson insulator. This metal—insulator transition is
reflected in a continuous drop to zero of the static metallic conductivity (at T = 0)
as | — [.. Transition from diffusion to localization is realized at the conductivity scale
of the order of the so-called “minimal metallic conductivity” o. & (e’pr/7°h%) =
{2—5)10°0Okm~2em~1 . The usual theory of “dirty” superconductors does not consider
localization effects and is valid for conductivities in the interval o » o..

In our review we shall present an extensive discussion of theoretical problems of
the interplay of superconductivity and localization. First of all we shall briefly de-
sctibe the main principles of modern theorv of electron localization and physics of
metal—insulator transition in disordered systems, which will be necessary for clear
understanding of the main problem under discussion. After that we shall give rather
detailed description superconductivity close to the Anderson transition. Finally, we
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shall describe the present experimental situation. We shall briefly describe some of
the experiments with traditional superconductors, but our main emphasis will be on
high—T7, oxides. We shall concentrate on the experiments with high—temperature—
superconductors disordered by fast neutron irradiation which we consider one of the
best methods to introduce disorder in a controlled fashion.

2 ANDERSON LOCALIZATION AND METAL-
INSULATOR TRANSITION IN DISORDERED
SYSTEMS

2.1 Basic Concepts of Localization

A number of detailed review papers exist dealing with basic theoretical aspects of
Anderson localization [4,5,6,7,24,25.26). Here we shall remind the main points of this
theory and introduce the accepted terminology.

In 1958 Anderson [1] has shown for the first time that the wave function of a quan-
tum particle in a random potential can qualitatively change its nature if randomness
becomes large enough. Usually, when disorder is small, the particle (e.g. electron) is
scattered randomly and the wave function changes at the scale of the order of mean

" free path |. However, the wave function remains extended plane—wave—like (Bloch

wave—like) through the system. In case of strong enough disorder, the wave function
becomes localized, s0 that its amplitude (envelope) drops exponentially with distance
from the center of localization re:

l(r)| ~ exp(jr — rol/Rixc) (1)

where Ry, is localization length. The physical meaning of Anderson localization is
relatively simple: coherent tunneling of electrons is possible only between energy levels
with the same energy (e.g. between equivalent sites in crystalline lattice). However, in
case of strong randomness the states with the same enpergy are too far apart in space
for tunneling to be effective.

At small disorder dc conductivity ‘of a metal at T = 0 is determined by Drude
expression:

2 2
n ne
Oo = o = 25 : )
m PF.

where 1 — is the mean free time (due to elastic disorder scattering), n — is electron
density and e — its charge. Usual kinetic theorv can be applied if
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which is a condition of weak scattering (disorder). From Eq. (2) and Eq. (3), taking
into account n = g}/ (3127:3), we can estimate the lower limit of conductivity for which
Drude approximation is still valid:
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The conductivity value:

o, (5)
3x34?

is usually called the “minimal metallic conductivity” [2.3]. As disorder grows the mean
free path diminishes and becomes of the order of lattice spacing a. so that we reach
pri/h ~ 1, and the usual kinetic theory based upon Boltzmann equation becomes inap-
plicable. This was first noted by Ioffe and Regel [27], who observed that at such disorder
the qualitative form of wave function must change, transforming from extended to local-
ized accompanied by metal—insulator transition. From Eq.(5) it is clear that this tran-
sition takes place at the conductivity scale of the order of o, ~ (2 ~ 5)1020hm™~'cm™!
for typical i/pr ~ a ~ (2 - 3)10~%cm.

As Fermi energy moves towards the band—edge (or with the growth of disorder)
the critical energy E. (mobility edge) separating extended and localized states crosses
the Fermi level. If Er belongs to the region of localized states the system becomes
insulating, conductivity is possible only for T > 0 or by exciting the carriers by al-
ternating electric field. The appearance of these hopping mechanisms of conductivity
signals Anderson transition[2,3].

One of the main problems is the qualitative behavior of conductivity when the
Fermi level Er crosses the mobility edge E. (at T = 0). While Mott assumed the dis-
continuous drop of conductivity from o, to zero [2,3] modern approachf4,5,6.26] based
mainly on the scaling theory to localization [28] demonstrates continuous transition.
Experiments at low temperatures clearly confirm this type of behavior [6}, and o, acts
as a characteristic conductivity scale close to transition. Static conductivity of a metal
at T = 0 close to Anderson transition within this- approach is written as:

0. %

2 _ (d=2)»v
oc ¢

where A — is a numerical constant, d — is space dimension, and o. & Ae?/(ha?"?).
‘Here we introduced the correlation length of scaling theory diverging at the transition:

PF e
Critical exponent v determines this divergence. In one—electron approximation and in
the absence of magnetic scattering v ~ 1 [6.7.26,29). In the region of localized states
(i.e. for Ef < E.) £ coincides with localization length of electrons Rj... In metallic
region {1, determines the effective size of 2 sample at which “Ohmic” behavior ap-
pears. i.e. conductivity becomes independent of a sample size [6,30]. “Minimal metallic
conductivity” o, determines, as we noted, the conductivity scale close to a transition.
In the vicinity of Anderson transition conductivity acquires an important frequency
dependence{31]. For Er = E, i.e. at the transition we have:

o(w) = o (iwr) T (8)

which is valid also close to the transition (from either side) for frequencies w » w. ~
[N(EF)€ie]™- For d = 3 this reduces to the famous [32] Gotze's law w'/3.
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The spatial dimension d = 2 is the o called “lower critical dimensionality” {4,5.6,7]
For d = 2 all electronic states are localized for infinitesimal disorder[28], and there is
no Anderson transition. .

Quasi—two—dimensional systems are especially interesting, mainly because most of
high—T, oxides demonstrate strongly anisotropic electronic properties. Here we shall
make the simplest estimates for such systems on the line of Ioffe—Regel approach.
Consider a system made of highly—conducting “planes” where the current carriers
are “nearly—free”, while the interplane tunneling is possible only due to some small
transfer integral w € Er (Ep — is the Fermi energy of two—dimensional gas within
the plane). Conductivity within the plane is determined for small disorder as:

oy = €Dy N(EF) (9)

where Dy = vir/2, N(Er) = m/(xa,h?), ay — is interplane spacing, which is no-
ticeably larger than interatomic distance within the plane. Interplane conductivity is
given by: '

o, = ¢*D, N(Er) (10)
where D, = (way)?r /A®. The appropriate mean free paths are | = vrr, I1 = wa, 7/A.
Ioffe-Regel criterion for a quasi—two—dimensional system can be written as:

V L=war/fh~a (11)

which is equivalent to wr/k ~ 1 — the condition of breaking of coherent tunneling
between the planes. Elementary estimate shows that this corresponds to:

2

VBIFL ~ T ~ o (12)

where a — is interatomic distance within the planes. In isotropic case this reduces to
Eq.(5). For strongly anisotropic system when oy » 0, it is clear that Eq.(12) can
be satisfied even for o) > o., because of small values of o,. Formally, for o, — 0,
critical value of oy diverges, that reflects on this elementary level the tendency towards
complete localization for purely two—dimensional case.

The important property of energy spectrum in the region of localized states is its
local discretness. As we noted above, the physical meaning of localization itself leads to
a picture of close energy levels being far apart in space, despite the continuous nature
of average density of states. Due to exponential decay of the localized wave functions
it leads to the absence of tunneling [1). The energy spacing between levels of electrons
localized within the sphere of the radius of the order of Ri,.(E) can be estimated [2,3]
as:

8g, % [N(EF)RL]™ (13)

As the metallic system moves toward Anderson transition, i.e. as the mean free path
drops to interatomic distarice and conductivity becomes Jess than ~ 10°0hm™'em™
there appear the well known anomalies like the negative temperature coefficient of
resistivity [27,33]. These anomalies are apparently closely connected with localization
Phenomena {6].
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Up to now we discussed Anderson trapsition. neglecting electron interactions. Its
importance for the problem of metal—insulator transition in disordered systems was
known for a long time [2]. In recent years there was a serious progress in the general
approach to a theory of “dirty™ metals, based on the analysis of interference of impurity
scattering and Coulomb interactions [34,35.36]. Later we shall review its implications
for the general picture of Anderson transition. Apparently the continuous nature of
metal—insulator transition is not changed though interaction lead to a number of
specific effects. e.g. in the behavior of the density of states at the Fermi level, as
well as to the growth of magnetic (spin) fluctuations. Here we shall briefly describe the
concept of “soft™ Coulomb gap appearing below the transition in the region of localized
states [37.38,39.40]. Coulomb interaction between localized electrons can be estimated
as ¢*/eRy,., and it is obviously important if this energy is comparable with the local
level spacing [N(EFr)R} )™ (for three—dimensional system). As a result a Coulomb
pseudogap appears at the Fermi level with the width:

A, = (/87N (Ep)V? (14)

whe}-e ¢is the dielectric constant. We shall see later that close to the Anderson transition
ex4xe’N(Er)R?, and accordingly:

A = [N(EF)RL)™ = ég, (15)

30 that in case Coulomb effects are comparable with the effects of disc

of energv spectrum in localized phase. At the moment there is no complete theory
connecting the localization region with metallic phase within the general approaches
of interaction theory.

2.2 Elementary Scaling Theory of Localization

The behavior of electronic system close to the Anderson transition can be described by
a scaling theory similar to that used in the theory of critical phenomena [41.42,43). The
mein physical idea of this approach is based upon a series of scale transformations from
smaller to larger “cells” in coordinate space with appropriate description of a system
by transformed parameters of initial Hamiltonian. These transformations are usually
called renormalization group. In the theory of critical phenomena this approach is
usually motivated by the growth of correlation length of order—parameter fluctuations
near the critical point [41]. This is analogous to the growth of localization length on
the approach of mobility edge from Andersan insulator.

The accepted scaling approach to localization problem was proposed by Abrahams,
f‘\nderson, Licciardello and Ramakrishnan [28]. In this theory localization is described
in terms of conductance g as a function of a sample size L. For a small disorder (pri/h 3
b the system is in a metallic state and conductivity o is determined by Eq. (2) and is
independent of a sample size if this size is much larger than the mean free path, L > I.
Conductance is determined in this case just by Ohm law and for a d—dimensional
hypercube we have:

g(L) =ol*? (16)

If electronic states near the Fermi level are localized, conductivity of an infinite system
at T = 0 is zero and matrix elements for transitions between different electronic states
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drop exponentially on distances of the order of Ry,.. Then it can be expected that for
L >» R,,.. the effective conductance becomes exponentially small:

9(L) ~ exp(—L{ Rioc) (17)

Elementary scaling theory of localization assumes that in general case the conductance
of a hypercube of a size L satisfies the simplest differential equation of a renormalization
group: ding(L)

ng

22 = pulalL) (18)
Most important assumption here is the dependence fo Si(g) only on one variable g
(one—parameter scaling). Then the qualitative behavior of 8, can be analyzed in a
simplest possible way interpolating between limiting forms given by Eq. (16) and Eq.
(17)[28]. From this analysis the following behavior of conductivity of an infinite system
follows for metallic phase (g0 > ¢.):

e g [, 9o\ _ & g (90—g\“T”
~ AL I go ~ AS S c . 19
on Al S (Ingc e (19)

where go is microscopic conductance determining the acyual state of the system and
g is its critical value given by the zero of S—function in Eq. (18) which defines the
metal—ipsulator transition[28].Here 4 = const and we have explicitly introduced the
conductivity scale of the order of o.. (Cf. Eq. (5)).

Let us define now correlation length of localization transition as:

29:.!:' (20)
ge

§ic ~a

For go < g. this length coincides with localization length Ry,.. It is easy to see that Eq.
(19) can be written as: [47) \
[ Agcié_—, (21)

It follows that for ¢ > g, correlation length &, determines behavior of conductivity
close to the mobility edge, when this length becomes much larger than interatomic
distance and mean free path.

Let us consider three—dimensional case in more details. Integrating Eq. (18) with
Ba(g) = 1— g /g [28] gives g(L) = (k/e*)or L = (#/e?)o + g. so that for a finite sample
close to the mobility edge ({1, > ) we obtain:

2

= L 22
or=0+ AL (22)
where in correspondence with Eq. (21)
€2
~ Ager— (23
7 e )
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It follows that for L 3 £, » I conductivity oz — o while for | € L & &0 con-
ductivity oz and the appropriate diffusion coefficient. determined by Einstein relation
o = e?DN(EF) are equal to:

2

-5 a1 % (24)

g 1
9 1 25
D~ B (25)

where N(EF) is the electron density of states at the Fermi level. Thus in this latest case
conductivity is not Ohmic, diffusion of electrons is “non—classical” [18,6]. From this
discussion it is clear that the characteristic length £, in metallic region determines the
scale on which conductivity becomes independent of sample size. Close to the mobility
edge when £, — oo only the samples with growing sizes L 3 £, can be considered
as macroscopic. These considerations allow to understand the physical meaning of
diverging length &, of scaling theory in metallic region [30]. Close to the mobility &
is considered as the only relevant length in the problem (with an exception of a sample
size L) and the scaling hypothesis is equivalent to the assumption of:

o0 =1 () (26)
floc
where f(z)—is some universal (for a given dimensionality d) function. In metallic region
for L % £i,c > 1 it is obvious that f(z) ~ 29-2 which reproduces Eq. (21).
For finite frequencies w of an external electric field a new length appears in the
system (31]:

ATV3
L= [D_g-’] (27)

where D(w)—is the frequency dependent diffusion coefficient. L, is a length of electron
diffusion during one cycle of an external field. Close to the mobility edge £, is large
and for L, < £joc, L and L, becomes the relevant length scale. In general, for finite w
localization transition is smeared, a sharp transition is realized only for L™ = LJ! = 0.
Thus for the finite frequency case the scaling hypothesis of Eq. (26) can be generalized
as: [31] ) )
L L
Lw)=f|—,=22 28

9(L.w) f(&“ &u) (28)
where ¢ denates a real part of conductance. In metallic phase for L > &, we have
g ~ L% o that:

o) = T4 () = e (o0 2)

Elx’ floc floc
= pfbe
=hc;’;’F(L.) (29)

For small frequencies, when L, 33 €ioc, the universal function F (z) =~ Ag. + Bz??
which reproduces Eq. (21) and the small frequency corrections found earlier in {45].

11Q

R |
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For L, & §ioc i-e. for high frequencies or close to mobility edge the relevant length is
L, and frequency dependent part of conductivity is dominating. In particular at the
mobility edge itself the length ¢, drops out and must cancel in Eq. (28) which leads
to:

w ]‘?‘

o(w,Er=E)~ L%~ | —— (30)

D(w)
On the other hand, according to Einstein relation we must have o(w) ~ D(w). Accord-
ingly, from jw/D(w)]#-?/2 ~ D(w) we get at the mobility edge:

o(w, Er = E.) ~ D(w) ~ w*# (31)

For d = 3 this leads [47,32] to o(w) ~ D(w) ~ w'/3. The crossover between different
types of frequency dependence occurs for L, ~ &, which determines characteristic
frequéncy: [31]

1
" RELN(Er)

The w'4-2/-—behavior is realized for w 3 w,. while for w € w. we get small corrections
of the order of ~ wu:{9-2)/2 to Eq. (21). ~

Finally we must stress that for finite.temperatures there appear inelastic scattering
processes which destroy the phase correlations of wave functions at distances greater
than a characteristic length of the order of L, = ,/ Dr, , where D is the diffusion co-
efficient due to elastic scattering processes considered above and 7,, is the “dephasing”
time due to inelastic processes [35]. For T > 0 this length L, effectively replaces the
sample size L in all expressions of scaling theory when L 33 L, because on distances
larger than L, all information on the nature of wave functions (e.g. whether they are
localized or extended) is smeared out. Taking into account the usnal low—temperature
dependence like 7, ~ T=7 (where p is some integer, depending on the mechanism of
inelastic scattering) this can lead to a non—trivial temperature dependence of conduc-
tivity, in particular to a possibility of a negative temperature coefficient of resistivity of
“dirty” metals [30] which are close to localization transition. It is important to stress
that similar expressions determine the temperature dependence of conductivity also
for the localized phase until L, < Rio. Only for L, > Rj, the localized nature of
wave functions starts to signal itself in temperature dependence of conductivity and
the transition to exponentially activated hopping behavior takes place, which becomes
complete for T < [N(Er)RE,.]-).

(32)

We

2.3 Self—Consistent Theory of Localization

2.3.1 Isotropic Systems

It is obvious that qualitative scaling picture of Anderson transition described in .the
Previous section requires microscopic justification. At the same time we need a practical
method of explicit calculations for any physical characteristic of electronic system close
to the mobility edge. Here we shall briefly describe the main principles of so ca._lled self—
consistent theory of localization which while leaving aside some points of p_nncnp{e, leu_is
to an effective scheme for analysis of the relevant physical characteristics which will
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Flgure 1: Graphical representation of: (a) — two—electron Green’s function

l=l:,,(Eq‘..') (b)— equatlon for full vertex part I'S,,(qw); (c) — typical diagrams for ir-
reducible vertex [7E ppr(Qw) (d) — Bethe—Salpeter equation. Dashed line denotes “inter-
action” Up(p — p ) = p|V(p — p')|?, where p — is density of scatterers, V(p — p’')—is
Fourier transform of a single scatterer potential.

be important for us. This approach. first formulated by Gotze [48,32] was later further
developed by Vollbardt and Wolfle and other authors [49,50,29,51,52,7).

For the complete description of Anderson transition it is sufficient to know the
two—particle Green's function [49]:

1 , ’
O (qw) = =33 < GR(P+PLE +w)G*(PLp-E) > (33)
N

where p,_ = p(1/2)q. in most cases below E just coincides with the Fermi energy
Ef. Angular brackets denote averaging over disorder.

" Using Bethe—Salpeter equation shown diagrammatically in Fig. 1 and exact Ward
identities we can obtain the approximate equation for $24(qu) [49.29,7]. For small w
and q the solution of this equation has a typical diffusion—pole form:

ORA(qw) = —N(E)——r

« + iDg(quw)q? (34)
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where N(E)—is electron density of states at energy E and the generalized diffusion

coefficient Dp{qw) is expressed through the so called relaxation kernel Mg(qw) :
2B 1 _},— i

“am Mg(qw) ~ d Mg(qw)

where vr is Fermi velocity of an electron. The retarded density—density response
function at small w and q is given by:

(35)

De(quw) =

x®(qw) = wdFA(qw) + N(E) + O(w.¢%) (36)
or froQ/Eq. (34): De{q)e?
R _ tLUpiqw

For relaxation kernel Mg(qw) (or for generalized diffusion coefficient) a self—
consistency equation can be derived, which is actually the main equation of the theory
[49,26.29]. If we take for the irreducible kernel in Bethe—Salpeter equation the so
called approximation of “maximally crossed diagrams” (Cooperon), the equation for
M(q = 0w) takes the following form:

1 i
Mg(w) = 2iv {1 + } (38)
xN(E) ,,Eb w+ Egs
or for generalized diffusion coefficient itself:
Dy 1 1
= 39
Dg(w) + *N(E) &5, —w + Dg(w)k? (39)
where
E 1, ‘
= e—— 4
Do mdy dvF T (40)

is the classical (bare) diffusion coefficient determining Drude conductivity Eq. (2). For
point scatterers randomly distributed with spatial density p (V is scattering amplitude)
we have: 1

1=5= xpV2N(EF) (41)

Cut—off in momentum space in Eq. (38) and Eq. (39) is determined by the limit of
applicability of diffusion—pole approximation of Eq. (34) or [7]:

ko = Min{pg,I™"} (42)

Close to the mobility edge pr ~ I~!. Note, that from here on we are generally using
natural units with Planck constant % = 1, however in some of the final expressions we
shall write A explicitly.

Conductivity can be expressed as:[49,29]

ne? i

m w+ Mg(w) — €2Dg(w)N(E) forw — 0 (43)

o(w) =
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where we have used n/N(E) = 2E/d. It is clear that for metallic phase Mg(w — 0) =
i/7g, where 7g is generalized mean free time. Far from Anderson transition (for weak
disorder) 7g =  from Eq. (41) and Eq. (43) reduces to standard Drude expression.
If the frequency behavior of relaxation kernel leads to the existence of a limit
lim,_qwMg(qw) a singular contribution appears in Eq. (34) for w — 0 :{7]

N(E) 1 NE) 1
of4(qu) ~ ~ (44)
w 1- %m w 1+ R:g?
where we have defined:
2E . 1
R (E)= = d.’.m,,_..,w Maio) (45)

According to the general criterion of localization [55.7] this behavior corresponds to
the region of localized states.

Convenient formalism to consider general properties of disordered system is based
upon exact eigenstate representation for an electron in a random field created by dis-
-order. These eigenstates ¢,(r) are formally defined by the Schroedinger equation:

Hé(r) = sd(r) (46)

where H is one—particle Hamiltonian of disordered systern under consideration, ¢, are
exact eigenvalues of electron energy in a random potential. Obviously ¢, (r) and ¢, are
dependent on locations of scatterers Ry, for a given realization of random field.

The general criterion for localization is conveniently expressed via the following
two—particle spectral density [55):

<€ pE(r)pE+(r) DT = -N(_E) < Zé,(r)é.u(r)é (r)éu(r)6(E —£,)8(E +w —€,) >
(47)

Localization leads leads to the appearance of §(w)—contribution to this spectral-den-

sity:
€ pE(T)PE+AT) 3T = Ap(r — r')8(w) + pE(r — r'w) (48)

or in momentum representation:
€ pEPE+ Ph= AE(Q)5(w) + pE(qw) (49)
where the second terms are regular in w. It is easy to show that
Ag(r—r) = TV(I_E) < 2.:5(5 =& )lou(r)Plon(x') > (50)
Ag = Ag(r — F)lear ~ B2
AF(r —r') represents the so called inverse participation ratio [24]. Roughly speaking

its value at r = 1’ is inversely proportional to the number of atomic orbitals which
effectively form quantum state ».
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It is easily shown that the small w and q behavior of Gorkov—Berezinskii spectral
density can be obtained from(7]:

< PEPEN P3= iy E)Imc”“(qw) (1)
Now we immediately obtain from Eq. (44) the singular contribution to Gorkov—

Berezinskii spectral density as(7]:

1
N MOTTEREEE T

Then Ry (E) as defined in Eq. (45) is actually the localization length[55,7). It is useful
to define a characteristic frequency{49]:

1-R.(E)g* for g — 0 (52)

wg(E) = —lim,owMg(w) >0 (53)
so that
2F 1
Rie(E) = ‘/%m (54)

Thus, the localization transition is signalled by the divergence of relaxation kernel for
w — 0 [49], so that two characteristic types of it behavior for q = 0 and w — 0 appear:

i for E>E,

5EforE’<E’ (85)

MEg(0w) = {

The frequency wo(E) is in some crude sense analogous to the order parameter in the
usual theory of phase transitions. It appears in the localized phase signalling about
Anderson transition.

In general case we can get the following explicit expression for Berezinskii—Gorkov
spectral density which is valid for small w and q [56,7):

b (Metal)
€ PEPEY >§= { As(.:)é(w) + ’mm‘iﬂv,,ﬁ —=p (Insulator) (56)

where we have introduced renomu.lmed diffusion coefficient, determined by relaxation
time rg:

2F 1,
DE = TTE = Et'FTE (57)

Substituting Eq. (55) into self—consistency equation Eq. (38) we can obtain equations
for 7z and wy(E) [50,51,7] and thus determine all the relevant characteristics of the
system. For d > 2 Eq (38) and Eq. (39) do really describe metal—insulator transition
[50,51,7,26]. For d = 2 all electronic states are localized [49).

Below we present some of the results of this analysis which will be important for

the following. For 2 < d < 4 a correlation length similar to that of Eq. (7) and Eq.
(20) appears: B

for E~ E, (58)

1|E
el E) ~ - |
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where v = 1/(d — 2) . The position of the mobility edge is determined by a condition:

E N (59)
Vigeg., *d=2)

which follows if we assume the cut—off ko = pr in Eq. (33) and Eq. (39). Static
conductivity in metallic phase (E > E,) is given by (Cf. Eq. (21):

oo
7= Prée B (60)

where 0o = (ne?/m)r is usual Drude conductivity. In particular, for d =3 :
E

z = pFllgep. = = (61)
7 le=k. Prlies. =
in complete accordance with Iofle—Regel criterion . and
' = (62)
7= PrEicl E)
Critical exponent v = 1. Mean free path which follows from Eq. (61) corresponds to -
Drude conductivity :
ne? _ € (prl ) _¢or (63)
O, = '-'n_r ek, = 372&2 B Ea, hz

which is equivalent to elementary estimate of Eq. (5).
Eq. (62) can also be rewritten as [20] :

6=do{l—¢-;§}=do—¢7g (64)

where Drude conductivity oo is now the measure of disorder. It is obvious that for small
disorder (large mean free path) oo > o and Eq. (64) reduces to o & 0o. As disorder
grows (mean free path drops) conductivity ¢ — 0 for o9 — o..

In dielectric pbase (E < E.) we have £ioc(E) = Rio(E) and finite w3(E) from Eq.
(53) which tends to zero as E — E. from below. This frequency determines dielectric
function of insulating phase [7] : :

E-E ™

E.

(65)

e(w-+0)=1+:é('%)=1+xiaﬁfx(15)~

where w? = 4xne?/m is the square of plasma frequency, x} = 4xe?N(E) is the square
of inverse screening length of a metal.

Thus the main results of self—consistent theory of localization coincide with the
main predictions of elementary scaling theory of localization. Vollhardt and Wol.ﬂe
had shown [50.29] that equations of this theory and especially the main differential
equation of renormalization group Eq. (18) for conductance may be explicitly derived
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from self—consistency equations Eq. (38) and Eq. (39) reformulated for a finite system
by introduction of low—momentum cut—off at k£ ~ 1/L, where L is the system size.

The results considered up to now are valid for w — 0. Self—consistent theory
of localization allows to study the frequency dependence of conductivity (generalized
diffusion coefficient) [29]. At finite frequency the main Eq. (39) for the generalized
diffusion coefficient for d = 3 can be rewritten as [29):

Dg(w) . (EN\"* = (E\"*{ iw Dy '*
Do -1-(%) +3(3) {’Epg(w)} (66)

which\Jcan be solved explicitly. With sufficient for our aims accuracy this solution may
be written as:
Dg w<w. E2E,(Metal)
. \1/3
Dg(w)=x~{ Do (—-;f)l/ w 3P w (Metal and Insulator) (67)

et "

Dsm’_wﬁi)' «w €w. E < E. (Insulator)

where (Cf. Eq. (32)):

1
Here the renormalized diffusion coefficient:
Dy
Dg = ————— 69
EZ PFéel E) (69)

At the mobility edge itself £io(E = E.) = o0. so that w, = 0 and we get the w!/°*—
behavior (Cf. Eq. (31)): ,
7o \UB

Ds(w) = Do (—;"i) (10)
Note that w, is in fact determined by Dg(w.) ~ Dg ~ Do(w./27)'/>. The meaning of
the limit w — 0 used above (Cf. e.g. Eq. (55)) is just that w < w.. In particular, the
expression Eq. (56) for Gorkov—Berezinskii spectral density is valid only for w € w;.
For w. € w £ 27, using Eq. (70) in Eq. (34) we get from Eq. (51):

F__ J3_ a’liw‘/aq’ _
CPEPE PQ= 5 4 aWBARG + APPPG (W

where a = Dovp/2y = Dol ~ [N(E))~?, where the last estimate is for [ ~ pr. Eq. (71)
is valid also at the mobility edge itself where w, = 0. Obviously the correct estimate
can be obtained from Eq. (56) by a simple replacement Dg — Do(w/7)"/.
In the following analysis we will also need a correlator of local densities of states
defined as:
1

€ PE(T)PE+(r) D= = < 3 [8u(r) I (KW E(E - )E(E +w—ev) > (T2)
N(E) &
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Figure 2: Two equivalent forms of diagram for the correlator of local density of states.
Wavy lines denote diffusion propagator, i.e. the sum of ladder diagrams.

This correlator again can be expressed via two—particle Green's function(7]. Far from
the Anderson transition (weak disorder) we can estimate the most important contri-
bution to that correlator from the diagram shown in Fig. 2.[38] The same contribution
comes from the diagram which differs from that in Fig. 2 by direction of electron lines
in one of the loops. Direct calculation gives:

N(E) 1 1

H,_ 2\3

€ pEPEs Fq T PV Re / T D@ T Dol QT AP
1 1 1

- N(E)Re D3/? (—iw + Dog?)?-4/ ()
For the first time similar result for this correlator was found for some special model by
Oppermann and Wegner [59). For d = 3 from Eq. (73) we find:
1 { Dog?

N(E)DY? |« + (Dog?)?
It is obvious that for the estimates close to the mobility edge we can in the spirit of
self—consistent theory of localization replace Do in Eq. (73) and Eq. (74) by the
generalized diffusion coefficient D(w). In particular, for system at the mobility edge
{we = 0) Do — Do(w/4)"/? in Eq. (T4).

Surely. the self—consistent theory-of localization is not free of some difficulties.
Apparently the main is an uncontrollable nature of self—consistency procedure itself.
In more details these are discussed in Refs.[7.26]. Here we shall concentrate only on
some problems relevant for the future discussion. From the definition of generalized
diffusion coefficient in Eq. (35) it is clear that it may be a function of both w and q,
i.e. it can also possess spatial dispersion. Self—consistent theory of localization deals
only with the limit of Dg(q — Ow). At present. it is not clear whether we can in any
way introduce spatial dispersion into equations of self—consistent theory. Using scaling
considerations the g—dependence of Dg(qw — 0) can be estimated as follows. [6,78] We
have seen above that for the system of finite size of L < £, elementary scaling theory of
localization predicts the L—dependent diffusion coefficient Dg = (gc/N(E))/L*>* (Cf.
Eq. (25) for d = 3). From simple dimensional considerations we can try the replacement
L — ¢! and get:

1/2
< pEpEr. D~ N R

for gfiuc
Dg(w — 0q) { e < (75)

146

PR

s e

where a ~ g./N(E) ~ Dol and E ~ E,, 1" ~ pr. Obviously an attempt to incorporate
such ¢—dependence into equations of self-—consistent theory of localization (like Eq.
(38) and Eq. (39)) will radically change its structure. At the same time the LI—
dependence like Dg ~ aL®? (for L <€ £ioc) can be directly derived from Eq. (39)
as equations of elementary scaling theory are derived from it [50,29,26]. Thus the
foundations for the simple replacement L — ¢~ like in Eq. (75) are not completely
clear.

Finally we should like to stress that self—consistent theory of localization can not
be applied “deep” inside localization region. Its derivation is based on a kind of extrap-
olation of “metallic” expressions and it does not take into account local discreteness of
energy spectrum in the region of localized states as discussed in previous section. This
is reflected in the form of one—particle Green’s function used in self-~consistent the-
ory [49,29,26,7]. It does not describe the effects of local level repulsion, though it does
not contradict it.[61] Thus self—consistent theory of localization can be applied within
localized region only until local energy spacing given by Eq. (13)-is much smaller than
other relevant energies of the problem under consideration. In fact this always leads
to a condition of sufficiently large localization length Ry, i.e. the system must be in
some sense close to the mobility edge.

2.3.2 Quasi-Two-Dimensional Systems

Self—consistent theory of localization for quasi—two—dimensional systems was first
analyzed by Prigodin and Firsov [62]. The electronic spectrum of a quasi—two—
dimensional system can be inodelled by nearly——free electrons within highty conducting
planes and tight—binding approximation for interplane electron transfer:

E(p) — Er = vr(lpy| — pr) — wo(pL) (76)

Here w is the interplane transfer integral and ¢(py) = cospia,, where —x/al <
PL <xfay. Then the equations of self—consistent theory of localization for anisotropic
generalized diffusion coefficient take the following form [62]:

o 1 &q Dj{w)
Dite) = 0 - o5y | Gy e Dyoig + D@ =gy )

Where j = ||, L, and Dﬁ = vir/2, D} = (way)?r are inplane and interplane bare
Drude diffusion coefficients, T is the mean free time due to elastic scattering (disorder).
It can be seen that the initial anisotropy of diffusion coefficient does not change as
disorder grows up to the Anderson transition and in fact we have only to find one
unknown ratio:

_ Dj(w) _ agjw)
alw) = D? = o (78)
which is determined by algebraic equation following from Eq. (77):
1 2
Q(w) =]~

2xEpt n [Fiwr/a(@)] + (wr)? + [(—iwr /alw))(—w/a(w) + 210""’)]‘(/7’9)
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l?ue to a quasi—two—dimensional nature of the system there is no complete iocaliza-
tion for any degree of disorder which is typical for purely two—dimensional system.
.Howe\'er the tendency for a system to become localized at lower disorder than in
1sotropic case is clearly seen. All states at the Fermi level become localized only for
w < w,, where

we = V21~ lexp(—n EpT) (80)

Thus the condition of localization is actually more stringent than given by the simplest
loffe—Regel type estimate as in Eq. (11). For fixed w the mobility edge appears at:

Br=E=tn(2) (81)
xT wT

Thus .in case of strong anisotropy when wr < 1 localization can in principle take place
even in case of EF » 771, i.e. at relatively weak disorder. These estimates are in
}ua.htatwe accordance with Eq.(11), which is valid in case of relatively strong disorder
FT ~ 1.
In the metallic phase close to the Anderson transition:

o;=07 Er E-'— £
For w — 0 we have E. — oo which reflects complete localization in two dimensions. We

can also define inplane Drude conductivity at Er = E, as a kind of a “minimal metallic
conductivity” in this case as a characteristic conductivity scale at the transition:

(82)

Uﬁ = ezN(EF)Dﬁ(EF =E,)= lc_zln (@) ~ liln (_E.'ﬁ) . (83)

x? ha, wT x2ha; w

where we have used N(Er) = m/(xa h?), m is inplane effective mass, and the last
equality is valid for Err/h ~ 1, i.e. for a case of sufficiently strong disorder. For
the' time being we again use / explicitly. From these estimates it is clear that inplane
“minimal conductivity” is logarithmically enhanced in comparison with usual estimates
(Cf. .Eq. (5)). This logarithmic enbancement grows as the interplane overlap of elec-
tronic wave functions diminishes. Accordingly in case of small overlap (wr/h < 1)
this conductivity scale may be significantly larger than (3—5)1020hm=)em=! which is
. characteristic for isotropic systems. Thus in quasi—two—dimensional case Anderson
tra.nsition may take place at relatively high values of inplane conductivity. For a typical
estimate in a high—T, system we can take something like Er/w > 10 so that the value
of off may exceed 1030hm™=1cm~1. Obviously these estimates are in qualitative accor-
dance with elementary estimates based upon Ioffe—Regel criterion of Eq. (11) and Eq.
(12). Similar conclusions can be deduced from the analysis presented in Ref.[63] where
1t was shown by a different method that in case of anisotropic Anderson model the
growth of disorder leads to a significant drop of a critical disorder necessary to localize
all states in a conduction band.

) Now let us quote some results for the frequency dependence of generalized diffu-
sion coeflicient in quasi—two—dimensional case which follow from the solution of Eq.
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(79)[62]. We shall limit ourselves only to the results valid close to the mobility edge in
metallic phase:

-E-Ef‘ w K w,
a(w) = { (@xErwr?) ¥ —jur) w € w K vir (84)
1-mmin (L) vreosr?
where 3
d we 27 Epwr’]’l I_Ef_':_l'zs (85)
T E,

From these expressions we can see the crossover from w!/3>—behavior typical for isotropic
three—dimensional systems to logarithmic dependence on frequency which is charac-
teristic for two—dimensional systems.

2.3.3 Self-Consistent Theory of Localization in Magnetic Field

Early version of self-consistent theorv of localization as proposed by Vollhardt and
Wolfle was essentially based upon time-reversal invariance {49,29]. This property is
obviously absent in the presence of an external magnetic field. In this case in addition
to Eq. (33) we have to consider two—particle Green's function in particle—particle
(Cooper) channel:

1 ' 1] 2
V(qw) = —5— Y <G(p4.py.—E +w)G(-p_,~p-,~E > (86)
P+PL

which for small w and q again has diffusion—pole form like that of Eq. (34), but
with different diffusion coeficient. Appropriate generalization of self-consistent theory
of localization was proposed by Yoshioka, Ono and Fukuyama [64]. This theory is
based on the following system of coupled equations for relaxation kernels M;(q,w).
corresponding to diffusion coefficients in particle—hole and particle—particle channels:

1 N 9 VA -imug(a+1/2) dg: 1
M, =2iq {1l = ———
1= {1 *N(E) 2 /o }

& xln 2% w — 23[q? + 4mwn(n +1/2)]
(87)
M,=2i~,{1- : > : } (88)
TN(E) | dze @ — Dog?/(TM)

Here wy = eH/mc is cyclotron frequency, Ly = (c/eH)"/? is magnetic length and
No = g2/4mwy. These equations are the basis of self-consistent theory of localization
in the absence of time-reversal invariance. These equations were extensively studied in
Refs.[64,65.66.67,68]. Alternative formulations of self—consistent theory in magnetic
field were given in Refs. [69,70,71,72,73]. All these approaches lead to qualitatively
similar results. Here we shall concentrate on formulations given in Ref. [68].

Let us introduce the dimensionless parameter A = 7/xE as a measure of disor-
der and generalized diffusion coefficients in diffusion and Cooper channels D; and D,
defined as in Eq. (35) with M replaced by M; and M; respectively. We shall use
dimensionless d; = D;/Do (j = 1,2) in the following.
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We are mainly interested in diffusion coefficient in the Cooper channel, which as we
shall see defines the upper critical field of a superconductor. Self—consistent equation
for it after some algebra can be written as:

2 =+ ey, Wy, s, _3A
mD; =% (VP + (=M mDa) M 4 e (59)
where + corresponds to metallic, and — to insulating phases, while characteristic fre-
quency
(=3
“e= ((3/2)m\ E (%)

can be considered as a measure of disorder and separate regions with different frequency
dependencies of diffusion coefficient. In Eq. (89)

8y = ~(2um EP2 3 S 2w (o1)
p=1
where ()it /E
cos(t —tw 1
f(y)=\/2/7 A —ﬁ: K=m2m—pz (92)
This gives:

(9. 1/2 K
\ ={ W(2wg/E) s «1 (93)

% (i Eyis) ™ 2om/EY el

where W = — 7= (-1)?/p/? ~ 0.603.

Solutions of Eq. (89) for different limiting cases can be found in Ref. [68]. The usual
diffusion coefficient D is given by the same expressions as D, with the replacement of
the coefficient 31/(1 + 3)\) before the field—dependent correction by 1/(1 + 31). Here
we only quote the results for D; in case of w. <€ (wg/E)*/?:

. .

Dz =5~ {t(wc/E)'/"‘ + |55 i’\s ,\] W(:&.-,,/E)‘”} ~ 4%114/(2‘.;,,/15')'/’ w W
(94)

w> Wl (95)

”[ 32 ] 1(2wn/E)’}

1
= — { (—iw /34 2
D 2m{( /EY' *3 1433} 48 (~iw/E)

where w? = (W/2)3(2wg/E)*¥?E. , .

Note that for high frequencies larger than «* the correction term becomes quadratic
in field which differs from usual square root behavior at low frequencies.

It is easy to see that in the absence of the external magnetic field these equations
reduce to the usual self-consistency equation as derived by Vollhardt and Wolfle with
a single relaxation kernel.

2.4 Interaction Effects and Anderson Transition

The ma.ix} unsolved problem of the theory of metal—insulator transition in disordered
systems is the role of electron—electron interactions. The importance of interactions
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for this problem is known for a long time [2]. In recent years the decisive importance
of interaclibns was revealed in the theory of “dirty metals” [34,35,36], as well as in the
concept of Coulomb gap at the Fermi level of strongly localized electrons [37,38,39,
40). We have already briefly discussed Coulomb gap. It appears for strongly localized
states. In case of “dirty metals™ diffusive nature of electronic transport leads to special
interference effects between Coulomb interaction and disorder scattering [34,36]. Most
important is an appearance of some kind of a precursor to Coulomb gap already in
metallic state. It is connected with simple exchange correction to electron self—energy
which leads to the following cusp—like correction to one—particle density of states in
case of the screened Coulomb interaction in three—dimensional system [34]:

|E — Ep[?
2\/§r’Dg/’

where Dy is the usual Drude diffusion coefficient. In two—dimensional case this cor-
rection is logarithmic [36]. General belief is that this cusp somehow transforms into
Coulomb gap 2s system moves from metal to insulator. However, up to now there is
no complete solution for this problem.

Early attempt to describe electron—electron interactions in Anderson insulators in
a Fermi—liquid like scheme was undertaken in Ref. [74]. Simple generalization of the
theory of “dirty metals” [34,35,36] along the lines of self~~consistent theory of localiza-
tion was proposed in Refs.[75,56,7]. However the most general approach to this problem
was introduced by McMillan [76] who proposed to describe the metal—insulator tran-
sition in a disordered system by a scaling scheme similar in spirit to elementary scaling
theory of localization of noninteracting electrons discussed above. He formulated a sim-
ple system of coupled differential equations of renormalization group for two effective
“charges”: dimensionless conductance g and single—particle density of states N (E).
Later it was realized that this simple scheme can not be correct because it assumed for
conductivity the relation like Eq. (43) with density of states while the correct Einstein
relation for interacting system contains electron compressibility dn/dp (p is chemical
potential)[77,78,79], which is not renormalized close to the metal—insulator transition
as opposed to density of states. The most comprehensive approach to a scaling descrip-
tion of metal—insulator transition in disordered systems was formulated by Finkelstein
[79.80.81). Unfortunately more or less explicit solutions were only obtained neglecting
the scattering and interaction processes in Cooper channel which are mainly respon-
sible, as we have seen above, for localization itself. This approach is still under very
active discussion [82,83,84,85,86,87,88,89] and demonstrate fundamental importance of
interactions. However the problem is still unresolved and most of these works consider
only the metallic side of transition.

Below we consider only some qualitative results of this approach, following mainly
Refs.[83,84]. Fermi liquid theory survives the introduction of disorder {92]. although
with some important corrections [34,36), and is actually valid up to metal—insulator
transition [79,80,83,84). .

In the absence of translation invariance there is no momentum conservation and
we have to use some unknown exact eigenstate 4, (r) representation for electrons in
random field to characterize quasiparticles with energies &, (Cf. Ref.[93]). The free
energy energy as a functional of quasi—particle distribution function n,(¢,.r) (s—spin

S§N(E) = (96)
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variable) is written as in usual Fermi liquid theory:
: 1 . . -
F{nn(-‘:v- !‘)} = Z/dmn('svr)(fv -p)+ 5 Z/ddr&)\'n(r)aj\'c’(r)fu‘ (97)
ay < o

where N, = 3, n,(¢,r) is the total density per spin and f,,r = f*+as'f° is the quasi—
particle interaction function. The angular dependence of f—function in dirty case
can be neglected. because n,(<,r) is assumed to describe electrons on distances larger
than mean free path there only s—wave scattering is important and Fermi—liquid
interaction becomes point—like. In an external spin dependent field V, the quasi—
particle distribution function obeys a kinetic equation:

%n. - DV, + (%"—) (=DVH[V, + 3 furNy] =0 (98)

where D is quasi-—particle diffusion coefficient. Eq. (98) is obtained from usual Fermi—
liquid kinetic equation [93] by replacing vs8/8r by —DV? which reflects a crossover
from ballistic to diffusive transport in disordered system. Solving Eq. (98) for density—
density and spin—spin response functions one gets:[79.80,82]

Dn‘l’

dn
No(qw) = D —iw (99)
iy o _XDig?

where dn/du = N(Efr)/(1+ F3), x = N(Er)p}/(1+ F¢) (¢5 is Bohr's magneton) and
D,=D(1+F}) (101)
D, =D(1+F?) (102)

Landau parameters Fy™ are defined by
N(EFf*'=F  NEf)f=F (103)

Here N(EF) is quasi-particle density of states at the Fermi level (for both spin direc-
tions). If we neglect Fermi—liquid renormalization effects Eq. (99) reduces to Eq. (37).
Cenductivity is given now by o = e2D(dn/dp).

As system moves towards metal—insulator transition Hubbard—Iike interaction
of electrons close to a given impurity site becomes more and more important. It is
known for a long time [2,7] that this interaction leads to the appearance of a band of
single—occupied states just below the Fermi level of a system on the dielectric side of
Anderson transition. These states actually simulate paramagnetic centers and lead to
Curie—like contribution (diverging as temperature T — 0)[2,7]. Thus on the metallic
side of tramsition static magnetic susceptibility \ is expected to diverge since it is
infinite (at T = 0) on the insulating side. At the same time dn/du remains finite.
Therefore D,/D, = (dn/du)/\ goes to zero, i.e. spin diffusion is much slower than
charge diffusion close to metal—insulator transition. This fact was first noted in Ref.
[81] where it was assumed that it leads to a possibility of local magnetic appearing in
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metallic phase before a transition. This idea was further elaborated in Refs. [87,88,89),
where extensive discussion of this magnetic transition was given.

The idea of paramagnetic moments appearing already in metallic phase apparently
can much simplify the analysis of metal—insulator transition and allow its description
by equations of elementary scaling theory of localization [90.91,36]. In general case elec-
tron interactions in diffusion channel can be classified by total spin of an electron and
hole j [36]. It can be shown that all interaction corrections with j = 0 do not depend on
electron—electron coupling constant (charge) and are universal [36]. If paramagnetic
scattering is operating in the system it dumps scattering processes in Cooper (localiza-
tion) channel [94] as well as interaction processes in diffusion channel with j = 1 [36].
In this case only interaction processes with j = 0 determine corrections to classical
(Drude) conductivity. Due to universal nature of these corrections (independence of
electronic charge) their structure is actually coincide with that of localization correc-
tions (Cooperon).[90,91] This means that renormalization group has only one effective
“charge” — dimensionless conductance g. In this case differential equation for the con-
ductance of a finite system is again given by Eq. (18) with the same asymptotic forms
of B4(g). This approach is valid for systems with linear size L < Ly = ‘/hD/T . This
length Ly replaces in the theory of interacting electrons characteristic length of phase
coherence L, of noninteracting theory. The appearance of this new length is due to the
fact that characteristic time of interaction processes [36) is ~ &/T.

As in noninteracting case for d = 3 Eq. (18) again possess unstable fixed point
responsible for the existence of mobility edge and absence of minimal metaliic con-
ductivity at the metal—insulator transition. However, in this case there are no special
reasons to believe that the critical exponent v of localization correlation length £i,c will
coincide with its value for noninteracting theory. At finite temperatures as in usual
scaling picture conductivity for d = 3 is given by:[90,91,36)

e? Eloc
—f = 104
7= hflocf (LT) 1oy
As system approaches insulating phase {jc — 0. For §loc € Lt we have f(§ioc/Lt) =
A + B(€.c/L7), where A and B are some numerical constants. Thus in this region
conductivity corrections are proportional to VT [34]. In case of & > Lr. ie. very
close to transition:

£ e 105)
a~ChLT=C-'-rT T/Dk (
where again C ~ 1. Using Einstein relation [77] ¢ = €?D(dn/dp) we immediately
obtain: - 2
Cz 1/3 dﬂ -
= huidd 106
D 5 T P (106)
and 3
2
—cre (pdn 107
o=C N ( dy) (107)

which is valid for Lt < o, where Ly = [C/(Tdn/du))M/>.
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In case of a system in alternating electric field with frequency w 3» T/ fl the relevant
length becomes L, = [D/w]*/? as in Eq. (27): Accordingly for L, < 1. instead of Eq.
(107) we get:

h

which is analogous to Eq. (31) and Eq. (70).

The metal—insulator transition can be viewed as a gradual brea.kdow'n <_>f the
Fermi-—Liquid state [84]. As we approach the transition different Fermi—hf;md pa-
rameters, such as D, N(EF), x etc. change continuously and at a critical point some
of these may either diverge or go to zero. This behavior is related to the d:v.erger'me
of correlation length £1. characterized by a critical exponent v. On the insulating side
of the transition this length can be also interpreted as the scale inside which a Fermi
liquid description of the system stiil holds. ) i

For high—T, superconductors problems of interplay of localization and interactions
become especially important because of unusual nature of normal state of these svstems
In the absence of accepted theory of this normal state we shall limit ourselves onlyto fe?v
remarks on one specific model. The so called “marginal” Fermi—liquid theory [95,96] is
a promising semi—phenomenological description of both normal and superconducting
properties of these systems. We shall see that localization effects are apparently greatly
enhanced in this case [97]. )

Basically the idea of “marginal” Fermi—liquid is expressed by the following form
of one—particle Green’s function [95):

ys
o(w) = ﬁ (w:—:) (108)

G(Ep) = ——Z-g-— + Gincok (109)
e—bp-ip

where {p, is renormalized quasi—particle energy. vp = Maz[s,T] is a.nomal_ou-s (linear)
decay—rate for these quasiparticles which is quite different from quadratic in ¢ or T
decay—rate of the usual Fermi—liquid theory [93]. The concept of “marginality”™ arises
due to peculiar behavior of quasiparticle residue:

=1 o In2e 1 (110)
TNl

where &, is characteristic frequency scale of some kind of electronic excita.;tion.s, which
is the phenomenological parameter of the theory. From Eq. (110) it is clear that

quasiparticle contribution to Green’s function Eq. (109) vanishes precisely at the Fermi _

level, while exists close to it though with logarithmically reduced weight. Note that in
the case of usual Fermi—liquid Z;, = 1[93). ]

For disordered system we can estimate the impurity contribution to the scattering
rate of quasi—particles as {97]:

1=2pV?Z,Im Y A%(p + q.p)G(P + Q<) = 2xpV?Z?A%(q — O)N(EF) = ZA’yp
S : :
(111)

where A is the appropriate vertex—part renormalized by Fermi—liquid effects. p.aga.in
is impurity concentration, V is impurity potential and N(Er) = Z~'No(EF) is the
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renormalized density of states in Fermi—liquid. Here No(EF) is density of states for
noninteracting electrons at the Fermi level, 75 is scattering rate for noninteracting case.
To get the last relation in Eq. (111) a weak dependence of vertices and self—energy
on momentum was assumed. Now we can use the Ward identity for A(gq = 0w = 0)
vertex of disordered Fermi—liquid theory [92.83,84]:

A= 0w =0)=(1+F3)-12" (112)

where FJ is Landau parameter introduced above. As a result we can easily get a simple
relation between the mean free paths of interacting and noninteracting quasiparticles
{97):

L= (pr/m* )17 = (pr/m)15" |A*(q = 0) = lo(1 + F3)*Z? (113)
Here m* = Z=1m s the effective mass of quasiparticle. Assuming F} = const < 1 and
using Eq. (110) we get at T = 0:

- 12
=lof |lni 114
=/ ] (116)
Then from usual Ioffe—Regel criterion for localization prl = 1 we obtain that all
quasiparticle state within the region of the order of

lec) = Geezp(—/prl) (115)

around the Fermi—level in high—T. oxides are localized even for the case of weak
impurity scattering prl 3 1. For realistic estimates of @ = 0.1 — 0.2¢V [95] and
prl < 5 the width of this localized band may easily be of the order of hundreds of
degrees K, while for prl = 10 and &, =~ 1000K we get |ec| =~ 40K. Obviously this
band grows with disorder as the mean free path drops. We can safely neglect this
localization for T 3 |e.|, but for low enough temperatures localization effects become
important and all states are localized in the ground state. Unfortunately these ideas
are still at this elementary level and we may quote only one paper attempting to put
them on more sound basis of scaling theory of metal—insulator transition of interacting
electrons [98].

3 SUPERCONDUCTIVITY AND LOCALIZATION:
STATISTICAL MEAN—FIELD APPROACH

3.1 BCS Model and Anderson Theorem

We shall start our analysis of superconductivity in strongly disordered systems within
the framework of simple BCS—model [8,9] which assumes the existence of some kind
of effective electron—electron attraction within energy region of the order of 2 < w >
around the Fermi level. In usual superconductors < w >~ wp, where wp is Debye
frequency, because pairing is determined by electron—phonon mechanism, however we
shall use some effective < w > as an average frequency of some kind of Bose—like
excitations responsible for pairing, e.g. in high—T. superconductors. At the moment
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we shall not discuss microscopic nature of this attraction which in general case is de-
termined by the balance of attraction due to Boson—exchange and Coulomb repulsion.
Here we just assume (as always is done in simple BCS—approach) that this effective
attraction is described by some interaction constant g, which is considered just as a
parameter. More detailed microscopic approach will be given in later sections.
Nontrivial results concerning superconductivity in disordered systems were obtained
very soon since the discovery of BCS—theory [10,11,12,13]. The concept of “dirty”
superconductor described the experimentally very important case of the mean free
path [ short in comparison with superconducting coherence length & ~ fve/T., i.e.
the case when:
&> 1> h/pr (116)

Already in this case of not so strongly disordered (in the sense of closeness to metal—
insulator transition) system Cooper pairing takes place not between electrons with
opposite momenta and spins as in regular case, but between time—reversed exact
eigenstates of electrons in disordered system [13. 9]

(P1,=P1) = (4(r)1, 65(r)y) (117)

In the following we consider only singlet pairing. The underlying physics is simple: in
disordered systems such as e.g. an alloy the electron momentum becomes badly deter-
mined due to the lack of translational invariance. However, in random potential field
we can always define exact eigenstates ¢,(r), which are just solutions of Schroedinger
equation in this random field (for a given configuration of this field). We don’t need to
know the explicit form of these eigenstates at all, the pairing partner of ¢,(r) is being
given by time—reversed ¢ (r). This leads to a relative stability of 2 superconducting
state with respect to disordering in the absence of scattering mechanisms which break
the time--reversal invariance such as e.g. magnetic impurities.

If we consider temperatures close to superconducting transition temperature T,
when A(r) is small, and the linearized gap equation determining 7. takes the form:

A(r) =T / 'Y K(rr'ea) A(F) (118)
where the kernel:
K(rr'e,) = G(rr'sa )Gl (r'ren) (119)

is formed by exact one—electron Green’s functions of a normal metal. We can use now
an exact eigenstate representation for an electron in a random field of a disordered
system to write: ”
, dut(r)é)
Gi(rr'en) =Z._M_T(__) (120)

al 1Oy

where €, are exact energy levels of an electron in disordered system. Then

K(rre,) = ng ¢v1(r)¢:r(r')¢;1(l")¢y1(l') (121)

“ (len—&)(<iea +¢,)

In the following for brevity we shall drop spin variables always assuming singlet pairing.
In case of a system with time—reversal invariance (i.e. in the absence of an external
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magnetic field. magnetic impurities etc.) Eq. (121) can be rewritten as:

v (r)85(r)4u(r') 45 (r)

K(rt'eq) = G(rr'e,)G(r'r — 25) = z (e — &) (i — €,) (122
Averaging over disorder we get:
<A(r)>=gT / drY < K(rr's)A(") > (123)

Practically in all papers on the superconductivity in disordered systems it is assumed
that we can make simplest decoupling in Eq. (123) to get the following linearized
equation for the average order—parameter:

<A(r) >=gT / dr' S K(r—re,) < A(F) > (124)

where the averaged kernel in case of time—invariance is given b;
K(r—r'e;) = K*(r - r's,) =< K(rre,) >=
Z $,(r)8,(r)du(r') ¢ (r')

(ien — &) (—ieq —€,)

< p5(r)pssu(r’) >F
= ./ dEN(E) d"(:e,. + E)E +w—ic,) (125)
where we have again introduced Gorkov—Bemnsku spectral density [55] defined in
Eq. (47). Here N(E) is an exact electron density of states per one spin direction as
it always appears in superconductivity theory (above, while discussing localization we
always used density of states for both spin directions).

Usually the decoupling procedure used in Eq. (123) to reduce it to Eq. (124) is
justified by the assumption that the averaging of A(r) and of Green's functions in
Eq. (123) forming the kernel can be performed independently because of essentially
different spatial scales [12]: A(r) changes at a scale of the order of coherence length
(Cooper pair size) £, while G(rr'c,,) are oscillating on the scale of interatomic distance
a ~ fi/pr, and we always have £ % a. Actually it is clear that this decoupling is
valid only if the order—parameter is self—averaging (i.e. in fact nonrandom) quantity:
Alr) =< A(r) >, < A%(r) >=< A(r) > Below we shall see that for a system close
to mobility edge the property of self—averageness of A(r) is absent and situation is
actually highly nontrivial. In this case the so called statistical fluctuations [58] leading
to inequality of < A%(r) > and < A(r) >? become quite important. However, we shall
start with what we call statistical mean—field approach which completely neglects these
fluctuations and allows the simple analysis using Eq. (124), as a necessary first step to
understand superconductivity in strongly disordered systems, which will allow to find
most of the important deviations from the usual theory of “dirty” superconductors.
The role of statistical fluctuations will be analyzed later.

If we look for the solution of Eq. (124) A(r) = const (bomogeneous gap), we
immediately obtain the following equation for transition temperature T.:

1=gT. / dr S K(r - vea) = (126)

© ® & pe(r)ppsa(r) >F
=”T°/"’/.wdEN(E)/_@d“'(E+ie,.)(Etw-ie,.)
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Using the general sum—rule [55]:
[ dr < pe(rope(r) > = b(w) (127)

we immediately reduce Eq. (127) to a standard BCS form:

1 <wd> 1 E
1=gT. f_: dENE)Y s =9 /o dEN(E)pth=- (128)

where we introduced the usual cut—off at ¢, ~ 2 < w >. Note that N(E) here is
an exact one-particle density of states (per one spin direction) in a normal state of a
disordered system. From Eq. (128) we get the usual result:

Tc=277<w>e.tp (-%) (129)

where )\, = gN(Er) is dimensionless pairing constant, Iny = C = 0.577... is Eu-
ler constant. This is the notorious Anderson theorem: in the absence of scattering
processes breaking time—reversal invariance disorder influence T. only through the
possible changes of the density of states N(Er) under disordering (which are usually
relatively small).

Due to the sum—rule of Eq. (127) all singularities of Berezinskii—Gorkov spectral
density reflecting possible localization transition do not appear in equation determining
T.: there is no explicit contribution from §(w) term of Eq. (48) and Eq. (128) has the
same form both in metallic and localized phases (Cf. Ref.[100]).

The only limitation here which appears on the physical grounds is connected with
the local discreteness of electronic spectrum in localized phase discussed above. It is
clear that Cooper pairing is possible in localized phase only between electrons with
centers of localization within the distance of the order of ~ Rj,(E), because only in
that case their wave functions overlap [19,20]. However, these states are splitted in
energy by 6 defined in Eq. (13). Obviously, we have to demand that superconducting
gap A (at T =0, A ~ T.) be much larger than this §g:

A~T.>bp~ (130)

1
N(E)R;.(E)
i.e on the energy interval of.the order of A ~ T there must be many discrete levels,
with centers of localization within distance ~ Ry(E) from each other. In this case
the problem of Cooper pairs formation within ~ Ri(E) is qualitatively the same as
in metallic state, e.g. we can replace summation over discrete levels ¢, by integration.
Analogous problem was considered previously in case of Cooper pairing of nucleons
in finite nuclei [93] and also of Cooper pairing of electrons in small metallic parti-
cles (granular metals) [101,102]. For strongly anisotropic high—T. systems we must
similarly have [16):

A~ T= > [N(E)fomufo]-l (131)

where we have introduced the appropriate values of localization lengths along the axes
of an orthorhombic lattice.
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Obviously Eq. (130) is equivalent to a condition of large enough localization length:
Riwe( E) > [N(E)A] ~ (& 0F)F® ~ (&) (132)

i.e. the system must be close enough to mobility edge or just slightly localized. Here we
used the usual estimate of mean free path close to Anderson transition [ ~ pz'. Below
we shall see that Eq. (132) is just a condition that Cooper pairs must be much smaller
than localization length, only in this case Cooper pairing is possible in localized phase
{19,20].

3.2 T. Degradation

In usual BCS model discussed above pairing interaction g is assumed to be a given
constant in the vicinity of the Fermi level. In more realistic approach this interaction
is determined by the balance of interelectron attraction, due e.g. to electron—phonon
coupling (as in traditional superconductors) or some other Boson—exchange mecha-
nism (as is apparently the case.in high—T superconductors), and Coulomb repulsion.
It is clear that in strongly disordered system all these interactions can, in principle, be
strongly renormalized in comparison with “pure” case. The aim of this section is to
discuss these effects on the approach to metal—insulator transition induced by disorder.

Usually the Coulomb repulsion within Cooper pair is strongly reduced in compar-
ison with electron—phonon attraction due to a retarded nature of electron—phonon
coupling [9]. Characteristic time of electron—phonon interaction is of the order of
wp!, while for Coulomb interaction in “pure” metal it is determined by ~ k/Er—the
time during which electrons “pass” each other in the pair. Due to metallic screening
both interactions are more or less point—Ilike. However, in a disordered metal ballistic
transport changes to diffusion and as disorder grows electron motion becomes slower
effectively leading to the growth of Coulomb repulsion within Cooper pair and the
appropriate drop of T. as was first claimed by Anderson, Muttalib and Ramakrish-
nan [18]. Actually electron—phonon interaction can also change under disordering but
a common belief is that these changes are less significant than in case of Coulomb
interaction [103,104]. This problem is still under active discussion and some alterna-
tive points of view were expressed [105,106,107). However, the general agreement is
that some kind of diffusion renormalization of effective interaction of electrons within
Cooper pair provides effective mechanism of 7, degradation under disordering. Below
we shall mainly use the approach of Ref. [20], with the main aim to study a possibility
of superconductivity surviving up to Anderson transition.

Later in this section we shall also consider the possible mechanisms of T, degrada-
tion under disordering due to magnetic fluctuations (or local moments) which appear
close to metal—insulator transition. Possible relation of these mechanisms to enhanced
Coulomb effects will also be discussed.

The general problem of 7. degradation under disordering becomes much more com-
Plicated in case of high—temperature superconductors because of unknown nature of
pairing in these systems. However, we believe that the mechanism based upon the
growth of Coulomb repulsion within Cooper pair is also operational here, while of
course it is difficult to say anything about disorder effects upon attractive interactions
leading to Cooper pair formation in these systems.
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We shall always assume some kind of Boson—exchange (phonons, excitons, spin
fluctuations etc.) model of pairing interaction. so that 7. can be obtained from some
generalized form of Eliashberg equations and thus be given by the famous Allen—Dynes
expression [108):

_hh 1.04(1 + 1)
Te = 1 20“e P\ "X ar(1 7 0.623) (133)
where
2 1/2 - AZ
A=+ Qs fy=14 8> fug = 1]
A2+ A2

2 1/2

A =246(1+384%); A =182(1+ 6.3,4')1%3-— (134)
log

Here wy,, is the mean logarithmic frequency and < w >? is the mean square frequency of
Bosons responsible for pairing (the averaging is over the spectrum of these Bosons), x* is
the Coulomb pseudopotential, ) is the dimensionless pairing constant due to Boson—
ex e. At relatively weak coupling A < 1.5 Allen—Dynes expression effectively
reduces to McMillan formula:

_ Wiy 1.04(1 + A)
T = 190°P { A= (1 +0.62)) (135)

which for the weak coupling limit gives the usual BCS result 7, ~< w > exp(—1/A—p*).
For very strong pairing interaction Eq. (133) gives the asymptotic behavior T, =~
0.18V/X <w? >. In most parts of this review we shall limiit ourselves to weak coupling
approximation. Coulomb pseudopotential #* in the “pure” system is given by:

. _ H
gy o
where 4 is the dimensionless Coulomb constant. The mechanism of T. degradation
under disordering due to the growth of Coulomb repulsion is reflected in the appropriate
growth of u* [18,20].

3.2.1 Coulomb Kernel

Let us use again the exact eigenstate ¢,(r) representation for an electron in random
system, with exact energy levels ,. These functions and energies may correspond either
to extended or to localized states. Consider the one—electron Green’s function in this
representation and take its diagonal element G,.(c). The influence of interaction is
described by the appropriate irreducible self—energy &, () [93,110):

1

e—¢s,— L,(e) (137)

G..(e)=

Here energy zero is at the Fermi level. Let us introduce a “self-—energy” Tg(<) averaged
over some surface of constant energy E = ¢,.and over random field configurations [110]:

Ts(e) = ﬁ < S HE-e)5(e) > (138)
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Censider mode] with short—range static interelectron interaction v(r — r’). Then for
the simplest Fock correction we find:

oF = - / dr / drv(r — ') Y £,65(r)5(r)8,(r)é.(r) (139)

where f, = f(e,) is Fermi distribution function. Accordingly from Eq. (138) we get
6]:

SE=- [ dwf(E+w) [dr [dro(r-r) < pp(psnne) >F  (140)
where we again introduced Berezinskii—Gorkov spectral density as defined in Eq. (47).
Let us define the Coulomb kernel by the following functional derivative:
L5
Sf(E")
which characterize the change of electron energy due to a variation of its distribution
function. It is easy to see that:

K{E-E)= (141)

Kew) = 57755 < = < wololr =)o > 6E - . )JHE +w =€) >=

= /dr/dr’v(r —1') € pe(r)pEsu(r’) 3T (142)

is actually Fock—type matrix element of interaction averaged over two surfaces of
constant energy £ and E' = E +w and over disorder. We can use K.(w) as a kernel
in the linearized gap equation determining 7. which is a reasonable generalization of
a Coulomb kernel used in the theory of ordered superconductors [111]. In momentum
representation:

Keo) = [ (o kota) < papsse > (143)

In the weak coupling approximation over pairing interaction it is the only relevant
Coulomb contribution in the gap equation, in case of strong coupling there are addi-
tional contributions, e.g. connected with diffusional renormalization of the density of
states Eq. (96)[105,106,107,112,113].

In the following we assume point—like interaction: v(q) = vo. During our discus-
sion of localization we have. discovered that for small w < v and ¢ < I~ Gorkov—
Berezinskii spectral density acquires a diffusional contribution:

<€ PEPE+w >€‘i”= tNl(E)IngA(qu) (144)
where
: _ N(E)
) = oD or (143)

and the generalized diffusion coeflicient in metallic phase is given by:

De(w) Dg |w]/< we x 29(of0.)?
w2 \1/3
N Do (-22) ol > w,
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In the absence of disorder this diffusional contribution disappears and the kernel K (w)
for [w| < Ef reduces to usual Coulomb potential 4 = N(E)v,.[9,111] Accordingly we
can use the following approximation [20):

K.(w) = pb(Er — |w|) + K& (w) (147)
where £
K& (w) = / (2—”%00 <« PEPE+w ):'ﬁ” (148)

This form of the Coulomb kernel gives correct interpolation between the strong disor-
der limit and “pure” case. Note, that in case of disordered system besides diffusional
contribution which contains singularities associated with Anderson transition there
also appear “regular” contributions to K,(w) which may be modelled by u. making it
different from its value in “pure” system.

8.2.2 Electron—Phonon Interaction

The case of electron—phonon interaction is different. Diffusion renormalization of
electron—phonon vertex does not appear because the relevant corrections compen-
sate each other if we take into account impurity vibrations [104]. Surely the value of
electron—phonon contribution to pairing interaction do change in a disordered system
in comparison with “pure” case [103]. However, these changes are relatively insigpif-
icant in the sense of absence of drastic changes at the Anderson transition. We shall
demonstrate the absence of diffusion renormalization of electron—phonon vertex using
the lowest order diagrams of perturbation theory following the approach of Ref.[104].

Let us limit our analysis to homogeneous continuous medium. The appearance of
deformation u leads to the variation of density of the medium given by §p = —pdivu.
Accordingly, taking into account the electroneutrality condition we get the variation of
electron density as n = —ndivu. This leads to the following change of the free electron
Green’s function:

66 (Ep) = ~ndivu{E ~ or(lp] = pr)) =

. d 1 .
= —mu-dwu% = —-é-u;-ppdwu (149)
where we have used n = p}/(3x2). Let us define electron—phonon vertex A by:
5G _6G! 5G
o= GAG = —G-E—G. A= “u (150)
For u(r,t) = uerp(igr ~ iwt) we get from Eq. (149):
6G*(Ep) = -iqu"—’;I (181)

so that the “bare” electron—phdﬁon vertex (i is vector index):

AR = ig T (152) §
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Figure 3: Electron—phonon interaction and impurity scattering: (a) S?lf—ezfergy‘ due
to impurity scattering; (b) Diagrams representing changes of (a) due to unprnty va'ra-
tions; (c) Diagrams for “bare” electron—phonon vertex in case of vibrating impurities.

Consider the system with impurities randomly placed at points R, which create the
potential: ~
U(r) =3 V(r-Ra) (153)

Vibrations of the medium lead to vibrations of impurity atoms, so that R, — Ron +
U, (t) with u,(t) = uezp(iqRy, — iwt). Random field of static impurities leads to a
simplest self—energy correction given by Fig. 3 (a) [53,54]. Impurity vibrations can be
accounted for by the additional interaction term:

v (e~ Ra) = ZE T ucap(iaRy — it

so that

Ajyu; = —:ui =

6u,~
=¥ {a_V(.z‘;_é;B.:P.)G(rt, PV (' — Roo)uin+

+V(e— Rw)c(n,et')%i;-i@%} > (154)

where the angular brackets define as usual the averaging over random impfxrity po-
sitions. In momentum representation and for point—like impurities we get in lowest

order over w/Er and g¢/pr:

hatp,a) = pV? [ I-ilp — FIGLER) + s~ PIG(ER)] =

e (-‘%[—i(p.- — A)G(EP)] =

= 2xpVN(E)p; = 27pi (155)
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Figure 4: Electron—phonon vertex renormalization: (a) Impurity “ladder” (diffusion)
renormalization; (b), (c), (d) Simplest corrections due to impurity vibrations.

The relevant diagrams are shown in Fig. 3 (b) [114]. “Bare™ electron—phonon vertex
is thus given by the sum of three diagrams shown in Fig. 3 (b) and reduces to:

AP = A + AQ = ig=FE + 29p, (156)
Diffusion renormalization of electron—phonon vertex can appear due to impurity scat-

tering ladder corrections as shown in Fig. 4 (a). However, let us consider simplest
corrections shown in Fig. 4 (b,c,d). For the contribution of graph of Fig. 4 (b) we have:

Do r2: VFPF
A = pv2iq,2EPE 5| @ )sG(Ep)G(E+wp +q)=
% ig; vaF {1 +iw/2y — Dog*/27] = iql'L;i w,g 0 (157)

and for the sum of graphs of Fig. 4 (c,d):

‘P »
(1) _ 3, P ] y ]
AW = 25V 7/ (2 )3G(Ep )G(E +wp' + q)p| =
~ 20V 7g; / (2 ),p.G(Ep )—G(E +wp') &
 27pV2qipr / ek T G(EP)GH(Ep)) = —ig FE (158)

Thus for «w ~— 0, ¢ — 0 we obtain:
AP +a5 =0 (159)

and we have total cancellation of initial diagrams contributing to diffusion ladder. Ac-
cordingly there is no diffusion renormalization of electron—phonon vertex (for w,q ~
0): this cancellation is valid for any graph obtained from the simplest corrections by
adding further impurity lines to the ladder. Similar cancellation takes place in case
‘of adding to diagrams of Fig. 4 (b,c,d) corrections due to maximally crossed impurity
lines (Cooper channel). Thus there is no significant change of electron—phonon vertex
due to Cooperon. In this latest conclusion we disagree with Ref.[105]. Thus the only
relevant contribution to electron—phonon vertex in impure system is defined by the
sum of diagrams of Fig. 3 (b) leading to Eq. (156) which does not contain diffusion
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type renormalization. Localization appears via generalized diffusion coefficient which
replaces the Drude one. Thus localization singularities does not appear in electron—
phonon vertex, though surely this interaction is really changed by disorder scattering
in comparison with “pure” case.

In the following we shall model pairing interaction due to phonon exchange by some
constant A as'in BCS model. Of course we must stress that this constant is different from
that in regular metal. It is constant in a sense that it does not contain singularities due
to metal—insulator transition. Electron—phonon kernel in the linearized gap equation
can be taken in the simplest form:

, _J=A |E|,|E'| <wp
K m={ 7 A (s

and consider ) as relatively weakly dependent on disordering. More detailed discussion
of electron—phonon pairing in disordered systems can be found in Refs.[103,105,106).

As we mentioned above it is quite difficult to speculate on disorder dependence of
pairing interaction in high—temperature superconductors. In case of the “marginal”
Fermi—liquid approach [95,96] pairing interaction can be modelled as in Eq. (160)
with the replacement of Debye frequency wp by some phenomenological electronic fre-
quency &, which we briefly mentioned above while discussing localization in “marginal”
Fermi—liquid. In the following we shall just assume that this pairing interaction is
weakly dependent on disorder as in the case of phonon mechanism of pairing.

3.2.3 Metallic Region

In metallic region we can use Eqs. (143—145) and Eq. (147) and find the diffusional
contribution to Coulomb kernel:

¢Fq 1

k) = (Zw)s Im e ibeg ™
5 [~ v -
= [IDg()l] ~ |D¥P(w)|
N 2.;{ -lr k< a60)
TR (s )” ol > we
Accordingly for the Coulomb kernel defined by Eq. (147) we get {20]:
Kelw) = Wb(Er = fol) + ¢ { ; (%S“i'ui Y co<qmpy 8

Upper limit cut—off in the integral in Eq. (161) was taken ~ [~!. Rough estimate
of contribution of higher momenta can be achieyed introducing cut—off ~ pr (Cf.
Ref.[112]). This will cancel (prl)~? in Eq. (162). Close to Anderson transition [~! ~ pr
and this correction is irrelevant. We shall assume that far from transition these higher
momenta corrections can be included in the definition of . From Eq. (162) we can
see that diffusion renormalization of Coulomb kernel leads to substantial growth of
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Coulomb repulsion close to Anderson transition (i.e. when conductivity drops below
0—“minimal metallic conductivity”).

Superconducting transition temperature T, is determined by the linearized gap
equation [111] which in the weak coupling approximation can be written as[115,116}:

<w>do' o, W
Aw) = M(< w > —w) /o =AW thg -
Er du' . 0 ’ 4
—0(Er — w) A = Rew =) AW)thgs (163)
Consider metallic region and take w, »< w > which in accordance with w, estimate
given in Eq. (146) roughly corresponds to o > o, for typical Er/ < w >~ 10%, so0 that
the system is not very close to Anderson transition. The change of T:. due to diffusion
contribution in Coulomb kernel Eq. (162) can be determined by perturbation theory
over K%/(w) in gap equation. First iteration of Eq. (163) gives:
FPaw T -di o
Tt T4 Aith o K (0 - o) Aolo)thitf

. o * _ (164)
o | doldolePlehl

Tw
where A(w) is the usual “two—step” solution of Eg. (163)[9.111) which is valid for
standard form of Coulomb kernel K.(w) = u6(Er — |w|),

To=113<w>erp (—ﬁ;) (165)
= Ho

is a critical temperature in regular superconductor when the Coulomb pseudopotential
is given by :

3= oo 166
Ho 1+I‘Iﬂ<—_,§ (166)

Using the first relation in Eq. (162) we get from Eq. (164):

L . _# 12 (167)
To (A=m)rrlo

This change of T, is équivalent to the following change of Coulomb pseudopotential
[20}: '

Su* = p (168)

o(o +0.)
where we have used Eq. (64) and ppl & go/0. = (0 + 0.)/0. to replace prl in Eq.
(167). As we noted above this later factor disappears from Eq. (167) if we use cut—
off at ¢ ~ pr in Eq. (161). According to Eq. (168) Coulomb pseudopotential u*
grows as o drops and this dependence is more strong than a similar one obtained in
Ref.[18], which is connected with our use of the results of self—consistent theory of
localization. Method of Ref.[18] is based upon the use of ¢—dependence of diffusion
coefficient as given by Eq. (75) . Our expression for 6" leads to a significant growth of
u" for conductivities ¢ < 1030hm~—cm~!. This growth can easily explain the typical
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T, degradation in “very dirty” superconductors as their conductivity in normal state
drops approaching the loffe—Regel limit [27]. At the same time expressions for u*

- proposed in Ref.[18] can explain experimental data only under the assumption that a

characteristic conductivity scale determining u* is an order of magnitude larger than
Ioffe—Regel limit., for which we see no serious grounds. More extensive discussion can
be found in Ref.[105].

Let us consider now the situation at the mobility edge itself, when o =0 and w. =0
so that K (w) is determined by the second expression in Eq. (162) for all frequencies
below 4 ~ Er. In this case we can show [20] that the influence of Coulomb repulsion
on T, is again described by effective pseudopotential u* which can be estimated as:

-1/3
<w>
t~a a~1 (169)
# ”( 2y )

In this case T, may remain finite at the mobility edge only under very strict conditions:
both Er ~ 4 and u must be very small, while A must be at least close to unity. As
a crude estimate we can demand something like A ~ 1, g < 0.2 and Er < 10°T.
Obviously only some narrow band superconductors like Chevrel phases can satisfy
these conditions among traditional systems. High—T7. superconductors are especially
promising. Experimental situation will be discussed later.

Using Eq. (168) and Eq. (169) we can write down a simple interpolation formula
for the conductivity dependence of x*:[20]

ap(<w> 29)R — uy (170)
1+ (<w> [27)Vo(o +o.)/0?

B+

To get an expression via observable parameters take into account < w > [y = (< w >
/EF)(1 + o/c.). These expressions describe continuous crossover from the region of
weak localization corrections to the vicinity of Anderson transition where its influence
upon T, becomes very strong. This crossover takes place at w. ~< w >.

8.2.4 Localization Region

Let us now consider Anderson insulator. According to Eq. (143) and Eq. (48) Coulomb
kernel acquires in this case §(w)—contribution:

K (w) = voApb(w) = < Y 8(E - &,)|¢(x)Pi¢(r)]* > (171)

1 4

Ap = Ag(t =)= ~ B3

1
Y N(E)

which is actually connected with “Hubbard—like” repulsion of electrons in a single

- quantum state becoming nonzero in localization region [117,75,7]. This mechanism

acts in addition to diffusion contributions in Coulomb pseudopotential 4* considered

above, which are due to “regular” part of Gorkov—Berezinskii spectral density. Using

Eq. (172) as a full Coulomb vertex in linearized gap equation (163) we can solve it
exactly (20] and find:

Alw) = (<w> -LIWI)UAl (172)

1+ 2N )uthiﬁ
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where < 1
w> w
A=A ~th—r
) /o dwA(w)-ths (173)
and equation for 7, takes the form:
<wD> th%
1=2) dw 2. 174
o w+ w‘zms)thi;‘—‘ (174)

To account for “regular” diffusion contributions to u* we can just replace here A — A* =
A — u*, where 4* is given by Eq. (169). Then our equation for 7. can be approximately

represented by[20]:
™ 1 BAEg (1 )

In—xy(=+L2E_| _u(=

nT Y (2 + 4T,N(E)) ¥{3 (175)
where ¢(z) is digamma function, and T™ is taken to be equal to T of the system at the
mobility edge which is given by Eq. (165) with u} replaced by u* from Eq. (169). Here
we slightly overestimate the role of Coulomb repulsion in localization region. We can
see that this additional “Hubbard—like” repulsion acts upon T, as magnetic impurities
[9,111] with effective spin—flip scattering rate:

1 __ A ~ B
= N(E) " NEELE) (176)

Obviously this result is connected with the appearance below the mobility edge of the
“band” of singly occupied electron states of the width voR;;> [117,75,7,118]. Supercon-
ductivity persists until ;' < 0.57T7, i.e. until

1/3
RE) > (o]~ tonrt ~ o ()
Where the last estimates are valid for typical values of parameters and correspond to
the simple estimate of Eq. (130). Thus the Coulomb repulsion in a single (localized)
quantum state leads to a sharp reduction of 7. below the mobility edge even if su-
perconductivity survived up to the Anderson transition. Another interpretation of this
effect is the influence of “free” spins of Mott’s band of singly occupied states below the
Fermi level of Anderson insulator.

Coulomb gap [37,38,39,39,40] effects can be neglected here [20] because according
to the estimates given in Eq. (14) and Eq. (15) the Coulomb gap width:

A.~[NERL(E)]"' «T.~A (178)

i.e. is small in comparison to superconducting gap A (or 7.} under conditions given by
Eq-. (130) which is necessary for the observation of superconductivity in localization
region.

3.2.5 Spin Fluctuations

4@3 we mentjoned during our discussion of interaction effects upon Anderson transi-
tion the role of magnetic fluctuations (spin effects) in general becomes stronger as
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we approach metal—insulator transition. The band of single—occupied states is being
formed below the Fermi level of Anderson insulator, which is equivalent to the appear-
ance of localized moments [117,7,118]. These effects actually may become important
already before metal-—insulator transition(81,87,88,89,90,91,36], and lead to additional
mechanism of T, degradation. Unfortunately there is no complete theoretical under-
standing of these effects and accordingly only few estimates can be done concerning
superconductivity. Here we shall mention only some of these crude estimates following
Refs.[119,120,121]. ° :
In the framework of Hubbard model with weak disorder it can be shown [119] that
the spin susceptibility is represented by:
Xo =X X
X = TUNE) F =7 -7 1 1)

where X is spin susceptibility of free electrons, o = 1 — UN(E) + ¥ is enhancement
factor for the ordered case (U is Hubbard interaction, 4o i$ correlation correction to
RPA approximation), ' is the correction due to the interference of Hubbard interaction
and disorder scattering:

Y=B¥  B=6VaNEWP{1- %UN(E)} (180)

Here A = 1/(2rE7) = 1/(pFl) is the usual perturbation theory parameter for disorder
scattering. As v/ > 0 we can see from Eq. (179) that disordering leads to diminishing
denominator f = 5o ~ 7. If we reach a critical disorder defined by:

B
R (181)

we get x, — 00. It should be stressed that this divergence of x, in a disordered
system must not be identified with any kind of ferromagnetic instability but may signify
something like the appearance of a spin—glass state or just of localized moments. In
any case it means the growth of spin dependent effects under disordering.

If the initial enhancement of spin susceptibility is strong enough (e.g. due to a large
U).i.e. 7o € 1, the critical disorder defined by Eq. (181) may be lower than the critical
disorder for Anderson localization, appearing at prl ~ 1. Then these spin dependent
effects may become important well before Anderson transition. In the opposite case
these effects will appear only very close to metal—insulator transition. In general case
the relation between these two transitions depends on parameters.

If spin fluctuations are strong enough (7 < 1) a strong mechanism for 7. degrada-
tion in superconducting state appears[120] analogous to similar effect due to magnetic
impurities [9,111]: :

T. 1 1y
e =¥(z+0)-+(3) (182
where [120):
- _QﬁrA,ITN(E)_M[UN(E)] z (183)
=3 7 2 B |X-xa
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As p from Eq. (183) diverges as (A. — A)™! for A — . superconducting transition
temperature T, drops to zero.

K ). < 1, which is possible for no < 1, superconductivity will be destroyed long
before metal—insulator transition. In the opposite case this mechanism may lead to
its destruction on the either side of metal—insulator transition depending on the pa-
rameters of the system, such as U. In general we need a more accurate analysis which
must include the mutual interplay of magnetic fluctuations and disorder scattering
leading to metal—insulator transition. In any case magnetic mechanisms of T, degra-
dation close to metal—insulator transition may be as important as Coulomb effects
considered above.

3.3 Ginzburg—Landau Theory and Anderson Transition
8.3.1 General Analysis

The main result of the previous analysis may be formulated as follows. Despite many
mechanisms leading to T, degradation and destruction of superconductivity in strongly
disordered systems there seems to be no general rule prohibiting a possibility of a super-
conducting state in Anderson insulator. Of course we must meet very rigid conditions
if we hope to observe this rather exotic state. There is almost no chance to observe
it in traditional superconductors but high—7 systems seem promising. The following
analysis will be based on the general assumption that T, survives in 2 strongly disor-
dered system or even in Anderson insulator, i.e. that these strict conditions are met.
Our aim is to study superconducting properties of such a strongly disordered system to
determine specific characteristics which will make this case different from the usual case
of “dirty” superconductors. We shall se¢ that even before Anderson trausition there
are significant deviations from the predictions of standard theory which make strongly
disordered system different. So on the practical side our aim is simply to generalize the
usual theory of “dirty” superconductors for the case of strong disorder in a sense of
the mean free path becoming of the order of interatomic spacing or I~ p7!.

To claim that superconductivity is possible close to disorder—induced metal—
insulator transition it is not sufficient just to demonstrate the finite values of T.. Even
more important is to show the existence of superconducting response to an external
electromagnetic potential A. In general case the analysis of response functions of a
superconductor with strong disorder seems to be a difficult task. However, close to T,
significant simplifications take place and actually we only have to show that the free—
Fnergy dtlmsit_v of the system can be expressed in the standard Ginzburg—Landau form

122,12,9]:

F=F+AAP 4+ = BIAI‘ +Ci(V - —A)Alz (184)

where F, is free energy density of the normal state. Our problem is thus reduced to
2 microscopic derivation of expressions for the coeflicients 4, B, and C of Ginzburg—
Landau expansion Eq. (184) taking into account the possibility of electron localization.
This will be the generalization of the famous Gorkov’s derivation [12] of similar expres-
sions for the case of “dirty” superconductors. Such analysis was first done by Bulaevskii
and Sadovskii {19,20] and later by Kotliar and Kapitulnik [21,22]. Recently the same
results were obtained by Kravisov [124].
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Figure 5: Graphic representation of two—particle Green's functions ¥z(qwsm) and
®r(qwm) (for w, = 2¢,). There is no summation over ¢, in the loops.

Within the BCS model coefficients 4 and B which determine the transition temper-
ature and the equilibrium value of the order—parameter A do not change in comparison
with their values found in the theory of “dirty” superconductors, even if the system
is close to Anderson transition. This corresponds to the main statement of Anderson
theorem. Less trivial is the behavior of the coefficient C, which in fact defines the super-
conducting response. In the usual theory of “dirty” superconductors [12] this coefficient
is proportional to diffusion coefficient of electrons, i.e. to conductivity (at T = 0). As
the Fermi level approaches the mobility edge conductivity drops to zero. However, we
shall see that the coefficient C remains finite in the vicinity of Anderson transition,
even in the region of localized states.

To derive Ginzburg—Landau coefficients we must know the two—electron Green's
function in the normal state [12]. Let us introduce the following two-particle Matsubara
Green’s functions in momentum representation {20]:

1 ’ ’
VE(q.wm, &) = —55 z < G(P+~P+e ~En + Wn)G(=P_, ~P-, —€a) > (185)
P+pPL

1
OE(Q,wm.&a) = =5 > < G(P4+.Py. —€n +wm)G(P_, P-,—¢a) > (186)
i o
where py. = ptq/2 and wy, = 2rmT. Graphically these functions are represented in
Fig. 5. Then Ginzburg—Landau coefficients are defined by [12,123]:

A= -;- +20TS Up(q = Oum = 2¢5) (187)
. &

C= ’TTZ 73 VE(qwm = 2¢a)(¢=0 (188)
< o¢

Thus the superconducting properties are determined by the Green'’s function ¥g
describing the propagation of electronic (Cooper) pair. At the same time we have
seen that the Green’s function £ determines transport properties of a normal metal
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and An.derson transition. In case of time—invariance (i.e. in the absence of external
magnetic field or magnetic impurities) we have [64]:

‘I’E(q“’men) = ¢E(q“"men)_ (189)

and it is sufficient to know only ®c(quym = 2¢,) to determine Ginzburg—Landau
coeflicients.

As 2 one—electron model of Anderson transition we can take the self—consistent
theory of localization which will allow us to perform all calculations explicitly. We only
have to formulate the main equations of this theory in Matsubara formalism (finite T')
[20]. For small ¢ and wp, analogously to Eq. (34), we have: '

N N(E)
ilm| + Dg(lwm|)g?

where. the generalized diffusion coefficient Dg(w,) is determined by the sef—consistency
€equation analogous to Eq. (39):

Ox(qun) = wm = 2xmT (190)

D .
FET:M—) =1- ;ﬁlﬁ—) 2 Pc(qwm) (191)

i<k )
In three-dimensional case Eq. (191) reduces to (Cf. Eq. (66)):

Dg(wm) _, _ A rA[ Do w,,.]"’

Do X T2X |Drlwn 2y (192
where we h.ave used the same notations as in our discussion of self~—consistent theory
of localization. Analogously to Eq. (67) and with accuracy sufficient for our aims we

can write down the solution of Eq. (192) as:

1/3
De(wr)x= M D L Lm
() “{ s () } (%3

where Dg is the renormalized diffusion coefficient defined in Eq. (69) and wy is the
fundamental frequency defined by Eq. (53), which signals a transition to insulator.

As we have already noted Ginzburg—Landau coefficients A and B are given by the
usual expressions valid also for “dirty” superconductors [12,20):

IT-T.

T
A= N(Ep)lni & N(EF) a (194)
where T, is given by the usual BCS relation of Eq. (129), and
%3 '
B="0) niE) (195)

8x2T2°

W.here {(z) is Riemann zeta—function (( (3) = 1.202...). These coefficients depend on
dlsort.:ler onl?' through the appropriate disorder dependence of N (Er) and are valid
even in localized phase. This is equivalent to the main statement of Anderson theorem.
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Significant changes appear in the gradient term coefficient C. Using Eqs. (188)—
(190) with Eq. (193) we can find that in different limiting cases this coeficient can be
expressed as [19,20]:

a=De,  &olEr) < (b))%, Ef>E.
C = N(EE =~ N(Er) | (B)" = (PP &ulEr) > (EP)* Ep~E.

R (Er)ingrtss  RiEr) < (6P)'%  Er <(E= |

196

where we have defined the coherence length £, and £ = 0.18vr/T. is BCS coherence
length, [ as usual is the mean free path. Practically the same results were obtained in
Refs.[21,22]using the approach based upon elementary scaling theory of localization,
which is as we already noted is equivalent to our use of self—consistent. theory of
localization. In Ref.[124] the same results were confirmed using the o—model approach
to localization.

In metallic state, as Fermi level Er moves towards the mobility edge E. localization
correlation length £, grows and the coefficient C initially drops as the generalized
diffusion coefficient Dg,, i.e. as conductivity of a system in the normal state. However,
in the vicinity of Anderson transition while & — 0 the drop of C coefficient saturates
and it remains finite even for Er < E,, i.e. in Anderson insulator. With further lowering
of Er into localization region (or with E. growth with disorder) the C coefficient is
being determined by localization radius Rj,. which diminishes as Er moves deep into
insulating state. However, remembering Eq. (130) and Eq. (132) we recognize that our
analysis is valid only for large enough values of localization length, which satisfy Eq.
(132). In this sense the last asymptotics in Eq. (196) is actually outside these limits of
applicability.

The finite value of the coefficient C in Ginzburg—Landau expansion in the vicinity
of Anderson transition signifies the existence of superconducting (Meissner) response to
an external magnetic field. Accordingly. for T < 7 the system can undergo a transition
from Anderson insulator to superconductor. The physical meaning of this result can
be understood from the following qualitative picture (Cf. Ref.[101] where the similar
estimates were used for the granular metal). In Anderson insulator all electrons with
energies E close to Fermi level are localized in spatial regions of the size of ~ Ri.(E).
Nearby regions are connected by some tunneling amplitude V which determines the
probability of electron transition between such regions as:

Pr = 27|V?N(E)R}, (E) (197)
However, Anderson localization means that

1
— 198
V< NERLE) (199)
and coherent tunneling between states localized in these regions is impossible, and we
have Pr < 2xN-(E)R;2. At the same time if conditions given by Eq. (130) or Eq.
(132) are satisfied inside each region ~ Rj,. Cooper pairs may form and supercon-
ducting gap A appears in the spectrum. Then a kind of “Josephson” coupling appears
between regions of localized states which determines the possibility of pairs tunneling:

E; n 2?[N(E)RL(E) VA (199)

173



Itis Easy to see that for 9 .
—— 200
A NETRE) (200)
we have E; > Pr, so that if Eq. (130) is satisfied we can get E; > N"(.E)R“’(E)
despite of Eq. (198) and tunneling of pairs between nearby regions of localized states
is possible, even in the absence of single—particle tunneling. )

It is convenient to rewrite Eq. (196) using the the relation between generalized
diffusion coefficient and conductivity like Eq. (43) as well as Eqs. (62),. (64). Then
using the Ginzburg—Landau expansion and the expressions for its coefficients we can
easily find the temperature dependent coherence length £(T) [9,19,20]:

T. &I;EL oc>o* (Efr>E,)
N =577 { (7 o<o (Er~E) o

where g, = e’pr/(x*h%) and characteristic conductivity scale o* is given by
Tc 1/3
o malpre) ™~ o (55) (202)

Thus in the region of very small conductivities o < o* the scale of £(T) is defined not
by £ ~ /& as in the usual theory of “dirty” superconductors [12,9] but by the new
length £ ~ (§oI2)*/® ~ (&o/p%)*/?, which now is the characteristic size of Cooper pair
close to Anderson transition.

In a case if w*/*—law for a diffusion coefficient at the mobility edge is invalid and we
have w*—behavior, with some unknown critical exponent § (which is possible because
the modern theory actually cannot guarantee precise values of critical exponm.)t.s 'at
Anderson transition [47,7]) we can easily show in a similar way th:t for conductivities
0 < 0* % 0.(prée)~ the coherence length is defined by £ ~ &7 14, Qualitatively
this leads to the same type of behavior as above.

From Eq. {201) we can see that £*(7T) initially diminishes as we approach metal—
insulator transition proportionally to o as in the case of a “dirty” supe-roondu.ct.or.
However, already in metallic region for ¢ < o* it diminishes much slower remaining
finite both at the transition itself and below.

The superconducting electron density n, can be defined as [9):

n(T) = 8mCA¥(T) = 8mC(-A)/B (203)
Close to Anderson transition we can estimate:
n, ~ mN(Ep)EA* ~ mpr(o/p}) A% ~ n(T}?/ E})YY(T. — T) (204)

where n ~ p} is total electron density. If we take here T' ~ 0.5T.. i.e. more or less low
temperatures we get a simpler estimate:
n )4/3 ) (205)
n,~n ( yo
which is actually valid up to T = 0, as we shall see belqw. From these estxmates
we can see that only a small fraction of electrons are superconducting in a strongly
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disordered case. However this confirms a possibility of superconducting response of
Anderson insulator.

Characteristic conductivity o* defined in Eq. (202) gives an important conduc-
tivity scale at which significant influence of localization effects upon superconducting
properties appear [20]. While o, is of the order of Mott’s “minimal metallic conduc-
tivity” [2,3] o* is in general even lower. However, for small enough Cooper pairs (i.e.
small § which is characteristic of strong coupling and high—T, superconductors) it
is more or less of the order of g.. Experimentally it can be defined as a conductivity
scale at which significant deviations from predictions of the standard theory of “dirty”
superconductors appear under disordering.

We must stress that these results show the possibility of Cooper pairs being delo-
calized in Anderson insulator, while single—particle excitations of such superconduc-
tor are apparently localized, which may lead to some peculiar transport properties of
“normal” electrons for T < T.. First attempts to explore this peculiar situation were
undertaken in Refs.[125,152,127,128].

These results are easily generalized for the case of strongly anisotropic quasi—two—
dirnensional systems such as high—T. superconducting oxides. Using the analysis of
such systems within the self—consistent theory of localization [62] we can write down
the following Matsubara generalization of Eq. (84):

Dj(wm) . | Maz [EIE':E‘, (21Epwf’)"’/3(u,,.f)‘/3] wy, € Wit (206)
D} Tl1- o v ~ (“—_L,) R

where j = ||, L. Now carrying out calculations similar to that of Ref.[20] we obtain for
the coefficients of gradient terms in Ginzburg—Landau expansion [16,129]:

Cia = N(Er)§i, (207)

where for the coherence lengths £ we obtain a number of different expressions,
depending on the value of the ratio w?r/2zT.% which determines as we shall see
the “degree of two—dimensionality” of the problem under study. For the case of
w?r[2xTA > 1, corresponding to an anisotropic but three—dimensional system, we

have:
x Er—-E, (Er— E, '

s = gD (_—"Ee ) =&t ( E, ) (208)
where q" ~ hvp/T., £} ~ wa, [T, Iy = vpr and I, = wa,7/h are the longitudinal
and transverse BCS coherence lengths and mean free paths. The above expressions are
valid in the conductivity region oj > o*, where

fﬁ Iq 2/3
* gl [ e 209
7y (EFW) (209)

Here of; was defined in Eq. (83). The condition of w?r/2xT.h 33 1 is equivalent to the
requirement:

fr~8UL>ay (210)
which clarifies its physical meaning: the transverse size of a Cooper pair must be much
greater than interplane lattice spacing. In this case we have just anisotropic three-
dimensional superconductivity.
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In the immediate vicinity of the Anderson transition, for o) < o* we have:

2 —~5/3 4\-1/3 DII--L 0 12 Tcz i
€ = (1 —275/3)(16x%)71/3¢(5/3) = (§).1) Erw (211)

(EFTw)*r
It is easy to see that for w ~ Ef all these expressions naturally go over to those derived
above for the three—dimensional case.
For the case of w?r/2rT.k < 1 which corresponds to “almost two—dimensional”
case of
L~y <ay (212)

i.e. of transverse size of Cooper pairs smaller than interplane spacing, we have

D}
§L Er—E > o* DO 1 1
G~ { Hof @) }+(w’/8—1);”F (- g5 5rs)
—,'3——1——-,7,—“ yor o n (o < o) ¢ F ¢

(213)
Essential difference from just anisotropic case of Eq. (208) and Eq.(211) is the ap-
pearance here of a second term of “two-dimensional” type. In purely two—dimensional
problem (w = 0) we have [123]:

D? 1 1
==1_|l.( 1 gL 214
=37 \! 21rEp1'In21rT,'r) (214)

For high—T'¢ oxides it is reasonable to estimate ¢ ~ Iy, T. ~ w, T. ~ 0.1EF, so that
o ~ aj, i.e. these systems are always more or less close to the Anderson transition. For
T. ~ wand %/t ~ Er which is characteristic of rather strongly disordered case, we have
w?r/2xT.k < 1, 50 that for these systems we can realize almost two—dimensional be-
bavior, though in general high—T. oxides are apparently an intermediate case between
strongly anisotropic three—dimensional and nearly two—dimensional superconductors.

The significant change of Ginzburg—Landau coefficients and the new scale of coher-
ence length close to the Anderson transition lead to an increased width of critical region
of thermodynamic fluctuations near 7,[21,22]. These are well known to be important
for any second—order phase transition. The width of the critical region is defined by
the so called Ginzburg criterion [41,43] which may be expressed via the coefficients
of Landau expansion. Mean—field approximation for the order parameter in Landau
theory is valid (for d = 3) forf41,43]

B*T?
aC; =716 ’ (215)

where « is defined by A = a(T —T.)/T.. In case of superconducting transition we have:
a = N(EF), B ~ N(Ef)/T? and C = N(EF)£2. Accordingly, from Eq. (215) we get
the following estimate for the critical regiod:

1 Ern? 1
O~ NUERET? ("T“) ot (@)

1> 222>
T.
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In the “pure” limit £ = £ ~ vr/T. and we get 7 ~ (T./EF)*, so that critical region
is practically unobservable. In a “dirty” superconductor £ ~ /&l and

16 ~ (E%-) (-;11)—3 @17)

and again we have 7¢ < 1. However, for a superconductor close to mobility edge
& ~ (&/p2)/? and from Eq. (216) we get:[21,22

Tc~1 (218)

Note that in fact 7¢ may still be small because of numerical constants which we have
dropped in our estimates. Anyhow, the critical region in this case becomes unusu-
ally wide and superconducting transition becomes similar in this respect to super-
fluid transition in Helium. Fluctuation effects may thus become observable even in
bulk three—dimensional superconductor. Note that in localized phase § ~ Ry, and
16 ~ [N?(EF)R{.T2)~ > 1 if the condition given by Eq. (130) is violated.

Finally we should like to mention that thermodynamic fluctuations lead {21,22] to
an additional mechanism of T. degradation for a system which is close to Anderson
transition. This follows from the general result on thr reduction of mean—field tran-
sition temperature due to critical fluctuations. If these fluctuations are small (and we
can use the so called one—loop approximation) for a three-dimensional system it can
be shown that [21.22]: )

7¢(3 0
1674¢3N(EF) (219)
where T is the mean—field transition temperature. If we use here our expressions for
£ valid close to metal—insulator transition we easily find for ¢ > o*[22]:

3/2 1/

T, T, [1 -05 ("—) / (T—°°) ’] (220)
o Er

For o < o* this fluctuation correction saturates as the further drop of coherence length

stops there. Obviously higher—order corrections are important here, but unfortunately

little is known on the importance of this mechanism of T. degradation outside the limits

of one—loop approximation.

TC=T¢0—

3.3.2 Upper critical field

Direct information on the value of £3(T) can be obtained from the measurements of
the upper critical field H,; [9}:
= 221

Ha = seea) ez
where ¢y = wch/e is superconducting magnetic flux quantum. Using Eq. (201) we
obtain the following relation between normal state conductivity o, the slope of the
upper critical field at T = T. given by (dH.;/dT )z, and the value of electronic density
of states at the Fermi level (per one spin direction) N(Er)[19,20]):

o (dHa o o>0
-7 [%ha) w02 . . (222)
N(EF) \ dT ], boGrPrT, X PFESTFE <O
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For 0 > o* the r.b.s. of Eq. (222) contains only the fundamental constants. This so
called Gorkov'’s relation [12] is often used to interpret experimental data in “dirty”
superconductors. Using it we may find N(Er) for different degrees of disorder from
measurements of (dHe/dT )y, and conductivity o. On the other hand N(EF) can in
principle be determined from independent measurements e.g. of electronic contribution
'to specific heat. However, our expression for ¢ < o* which is valid close to metal—
fnsulator transition shows that in this region Gorkov’s relation becomes invalid and
Its use can “simulate” the drop of N(EF) with the growth of resistivity (disorder).
Roughly speaking Eq. (222) shows that under the assumption pf relatively smooth
change of N(Er) and T. with disorder. the usual growth of (dH/dT)r, with disorder
saturates in conductivity region of 0 < o* close to the Anderson transition and the
slope of the upper critical field becomes independent of resistivity. This stresses the
importance of independent measurements of N(Ef).

Note that the qualitative behavior given by Eq. (222) is retained also in the case
when w’—dependence of diffusion coefficient at the mobility edge (with some arbitrary
critical exponent §), only the expression for o* is changed as noted above. Thus this
behavior is not related to any specific approximations of self—consistent theory of
localization, except the general concept of continuous transition.

For an anisotropic (quasi—two-—dimensional) system we have similar relations:

dHS\ _ 4

(75), = "nerL. (223)
dHL\ _ 4
(dT) " TEGaT: (224)

with §., given above during our discussion after Eq. (207). This leads to relations and

qualitative behavior similar to Eq. (222). However, we should like to note an especially

interesting rela.tipn for the anisotropy of the slopes of the upper critical field [16]:

(dHY/dT)r. _ &  vr
(QH3/@)r, ~ &1 = walh (225)

We see that the anisotropy of (dH,/dT )1, is actually determined by the anisotropy
of the Fermi velocity irrespective of the regime of superconductivity: from the “pure”
limit, through the usual “dirty” case, up to the vicinity of the Anderson transition.
The above derivation of C coefficient of Ginzburg—Landau expansion explicitly
used the time— reversal invariance expressed by Eq. (189). This is valid in the absence
of the external magnetic field and magnetic impurities. Accordingly the previous results
for the upper critical field are formally valid in the limit of infinitesimal external field
and this is sufficient for the demonstration of superconducting (Meissner) response
and for the determination of (dH,/dT)r,, because Hy — 0 as T — T.. In a finite
externa.l field we must take into account ite iifiuence upon localization. The appropriate
analysis was performed in Refs.[68,130] and with a slightly different method in Ref.[73].
The results are essentially similar and below we shall follow Ref.[68]. The standard
scheme for the analysis of superconducting transition in an external magnetic field
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[12,9,131,132] gives the following equation determining the temperature dependence of
H(T): ‘

T 1 1
g =#TL {2lenl T 22 DaZen) Hlde 2|en|} (226)

where D;(2e,|) is the generalized diffusion coefficient in the Cooper channel as defined
after Eqs. (87) and (88). Eq. (226) is valid [9] for

_ mcvg
Ry = i 33 (227)

Ry is Larmor radius of an electron in magnetic field, £ is the coherence length. Note
that Eq. (226) describes only the orbital motion contribution to Hy. In fact Hy is
also limited by the paramagnetic limit [9,132]:

1
S9osH < A (228)

where gg is the usual g—factor of an electron, up is Bohr magneton.

Standard approach of the theory of “dirty” superconductors is based upon the
replacement of D,(2]<,|) in Eq. (226) by Drude diffusion coefficient Dy which is valid
for a metal with I » pz'. For a system which is close to the Anderson transition
we must take into account both the frequency dependence of diffusion coefficient and
the fact that in magnetic field D, is not equal to D; — the usual diffusion coefficient
determining electronic transport. Actually we shall see that the external magnetic
field influence upon localization leads to rather small corrections to H,(T') practically
everywhere except the region of localized states [68]. Thus we may really neglect this
influence as a first approximation as that was done in Refs.[19,20] and start with the
replacement of D, in Eq. (226) by D, = Dg. where Dg is the frequency dependent
generalized diffusion coefficient in the absence of magnetic field. Detailed analysis of
Eq. (226) can be found in Ref.[68]. , :

Summation over Matsubara frequencies in Eq. (226) must be cut—off at some
frequency of the order of < w > — the characteristic frequency of Bose excitations
responsible for pairing interaction. It is convenient here to measure the distance from
Anderson transition (degree of disorder) via frequency w, defined in Eqs. (32),(68) or
Eq. (90) . If 2 system is far from Anderson transition, so that w, »< w > we can
completely neglect the frequency dependence of diffusion coefficient and find the usual
results of the theory of “dirty” superconductors:

Ha(T) = %—"I‘f n-Tis T~T (229)

1 T, 1 r44T
_1&L[ 14T ) 230
Ha =320 [1 24(T)’] T<T. (230)

where v = 1.781.... For the H,, derivative at T = T, we find from here the first relation
of Eq. (222), and H,(T = 0) is conveniently expressed as[12,131]:

__Ha(0)
T.(dH4/dT )z,
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In this case Hx(T) curve is convex at all temperatures below T..[12,131,9,132] Very
close to the Anderson transition, when w, < 2xT , only w'/® behavior of diffusion
coefficient is important in Eq. (226) and we find[68]:

2/3
Hao(T) = m?i“—’?—rﬂwll%% T~T, (232)
1

/.
Hao(T) = m?(x/.,)z/aTcz/sEtls [1 - §c3 (“;—T) ’J T&T, (233)

where ¢; = $32,(n +1/2)75/ x 4.615 and ¢, = 0.259. From these expressions we get:

1_(dH. (4x) 2 b
~NE ( “Td)n: o ...¢o(E/T=)1/s_c_l[N_.___.(E)Tc]m (234)

which makes precise the second relation in Eq. (222), while for H»(T = 0) we obtain:

___Ha(0) _ a
T.dHa/dT)r, ~ (47)*®

As was first noted in Refs.[19,20] this ratio for the system at the mobility edge is
significantly larger than its classical value 0.69. In this case Hez(T') curve is concave for
all temperatures below 7..[20]Detailed expressions for the intermediate disorder when
27T € w. €< w > can be found in Ref.[68].

On Fig. 6 we present the results of numerical solution of Eq. (226) for the different
values of characteristic frequency w,, i.e. for the different disorder. A smooth crossover
from the classical behavior of the theory of “dirty” superconductors [131,9,132] to
anomalous temperature dependence close to the Anderson transition [20] is clearly
seen.

Below the mobility edge (i.e. in Anderson insulator) and forw, = 1/(2x*N(E)R},.) <
2xT, i.e. very close to mobility edge we can again use w'/*—behavior of diffusion coef-
ficient and find the same temperature dependence of H,; as at the mobility edge itself
or just above it. For 2xT € w. < 27T, Eq. (226) takes the form [68]:

~1.24 (235)

In(T/T.) = zin(ywe/*T.) + %(1 +z)in(1+2) (236)

where we have defined z = wy/w?/*E/3. This equation implicitly defines Hy(T') and
shows [68] that now H,(T) — oo for T — 0 (logarithmic divergence). Numerical
solution of Eq. (226) is shown at the insert in Fig. 6. Below we shall see however, that
this divergence of H,, is lifted by the inverse influence of magnetic field upon diffusion.

Let us now turn to the problem of magnetic field infiuence upon diffusion and its
consequences for H., temperature behavior. If we are far from the Anderson transition
magnetic field influence is small on parameter ~ \/wjz/E and its influence upon Hy is
insignificant. Close to the transition magnetic field correction may overcome the value
of D(H = 0) and we have to consider its influence in detail [68]. Accordingly we shall
limit ourselves with the case of w./E < (wy/E)*/? for which we have already discussed
the magnetic field behavior of generalized diffusion coefficient in Cooper channel. It was
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Figure 6: Temperature dependence of the upper critical field H.;: Numerical solution
of Eq. (226) for the dependence of & = wy/T?/3E'/? on T/T. for different values of
0 =w/T.:1.606=100;2.0=10;3. 0 = 2r; 4. § = 3; 5. § = 1; 6. & = 0 (Mobility
edge). No magnetic field influence on diffusion. At the insert:Low temperature part of
h on T/T. close to the Anderson transition: 1. Mobility edge (# = 0) with magnetic
field influence on diffusion; 2. Metallic phase (¢ = 0.1). no magnetic field influence; 3.
Mobility edge (6 = 0), no magnetic field influence; 4. Insulating phase (§ = 0.1), no
magnetic field influence. Numerical cut—off was taken at < w >= 100T..

given in Eq. (94) and Eq. (95). In this case we have seen that characteristic frequency
w, is replaced by:

wf, = (won/ EVP? (237)
where ¢ = W?/2 & 0.18.(W was defined during our discussion of localization in mag-
netic field). For T ~ T, there is no change in the slope of H.; given by Eq. (234) as
was noted already in Ref.[20]. Here we shall consider the case of T < T..

For 27T > w/ in all sums over Matsubara frequencies we can take D(w) ~ w'/?
and actually we can neglect magnetic field influence upon diffusion. In this case H.,(T)
behaves like in Eq. (233) i.e. as at the mobility edge in the absence of magnetic field
effects. For 27T < w! we find

_ % “1/3 2/3paf3 /3 |1 _ 4y T
Ha(T) = m—(1+ @) a7 PTIREV 1 = o — PRI T T (238)
Accordingly we have
H(0) -1/3_ G
T{dHa/dT)s ~ T yn S 118 (259)
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and the change in comparison with Eq. (235) is actually small. However, for 2xT <
w the Hy(T) curve becomes convex. The inflexion point can be estimated as T™ =
w, /2% = 0.02T. This behavior is shown in the insert on Fig. 6.

__Consider now insulating region. We shall see that the magnetic field effects on
diffusion lead to the effective cut—off of the weak divergence of Hp as T — 0 noted
above. It can be shown([68] that the external field defined by

w

5 V2r/E > (we/ EY® (240)
tl:a:nsfers the system from insulating to metallic state. If the system remains close to mo-
bility edge we can estimate the upper critical field as above by wy =& (x/7)*/*T3/REY3
and Eq. (240) reduces to:

1
we & NEEL

a.n.d ;{ractica.lly in all the interval of localization lengths where according to our main
criterion of Eq. (130) we can have superconductivity in Anderson insulator the upper
critical field in fact destroys localization and the system becomes metallic. Accordingly
there is no way to observe the divergence of the upper critical field as T — 0 and
the Hy(T') curves in “insulating™ phase all belong to the region between the curves of
He(T) at the mobility edge defined in the absence of magnetic field (curve 3 in the in-
sert on Fig. 6) and at the mobility edge defined in magnetic field (curve 1 in the insert).
This result actually shows that it may be difficult to confirm the insulating ground state
of strongly disordered superconducting system just applying strong enough magnetic
field to destroy superconductivity and perform usual transport measurements at low
temperatures.

Note another mechanism for the change of H;(T) at low temperatures was proposed
by Coffey, Levin and Muttalib [133]. They have found the enhancement of H; at low
temperatures due to the magnetic field dependence of the Coulomb pseudopotential pg*
which appears via the magnetic field dependence of diffusion coefficient. Magnetic field
suppression of localization effects leads to the reduction of Coulomb pseudopotential
enhancement due to these effects [18]. Accordingly we get the enhancement of H; at low
temaperatures. Unfortunately the apparently more important effects of the frequency
dependence of generalized diffusion coefficient were dropped.

Returning to general criteria of validity of Eq. (226) we note that the condition
of Ry > ¢ is reduced to wy < T}/’E}/ 3 which is obviously satisfied in any practical
case. Note, however, that our estimates for H.; at low temperatures lead to wy =
Qo(EF[A0)*/* > Ag which can easily overcome paramagnetic limit. In this case the
experimentally observed H; of course will be determined by paramagnetic limit and
anomalous behavior due to localization will be unobservable at low temperatures. At
the same time in case of He; being determined by paramaguetic limit it may become
possible to obtain insulating ground state of the system applying the strong enough
magnetic field. Note that the effective masses entering to cyclotron frequency and
paramagretic splitting may be actually very different and there may be realistic cases
when orbital critical field may dominate at low T. For T ~ T. H_, is always determined
by orbital contribution.

< g(ﬂl’/\/f)":rc % 0.14T, (241)
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3.4 Superconductivity in Anderson Insulator at T =0

We have already considered the superconducting response of a system which is close

to Anderson transition within Ginzburg—Landau approximation. i.e. for temperatures

T ~ T.. In fact it is not difficult to obtain similar results also for T = 0.[23]
Superconducting current density at T = 0 is given by [9]:

. n,e?

Ji=—TA (242)
where n, is superconducting electron density, A is vector potential of an external
magnetic field. On the other hand, using exact eigenstates representation DeGennes has
obtained the following beautiful relation between superconducting response at T = 0
and conductivity of a system in the normal state [9,23]:

. . 1 Y] y) Y n_CZ
J.={27;/dc/deL(e,e)Rw(c-c>— mc}A (243)
All characteristics of a superconducting state are contained here in the kernel:
y_ LEE'— - A3 244

where E = 1/£2 + A} and A, is superconducting gap at T’ = 0. Note that in normal
state j, = 0 and we can rewrite Eq. (243) as:

3o = 5 [ e [ ILEENacae — LEOlamclA (245)

Taking into account that L(£, &')|aca, = L(£. £')|a=o for large [€ —¢'| drops as | —£'|~3
it is sufficient to know only the low—frequency response of a system in normal state. In
particular, for “pure” system (with no scattering) we have Res(w) = (ne?fm)x~16(w)
and comparing Eq. (242) with Eq. (245) it is immediately clear that at T’ = 0 we have
n, = n, i.e. in an ideal system all electrons are superconducting.
Close to the Anderson transition we can use the results of elementary scaling theory
of localization, e.g. Eq. (21) and Eq. {(23) to write
At w < We

) Yae
= { i o

where w, ~ [N(E)£3]™? is defined in Eq. (32). g. is the critical conductance of scaling
theory (g ~ 1), A ~ 1. From Eq. (244) and Eq. (245) it is clear that the main
contribution into integral in Eq. (245) comes from [ — §’| ~ Ao, so that the value of
n, depends on the relation between Ag and w. For Ag < w, we have 7(A¢) = Age/Eioc
and

(246)

n, = AT Ay = (247)
[ 4 oc

For A¢ > w, we have 0(Ag) = Ag.[N(E)Ao]'/* and it becomes independent on the
further growth of & in the region of £.c > [N(E)Ao]*/3. Accordingly n, does not
vanish at the mobility edge but saturate at

n, = AZ0[N(E)Ad? (248)
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In localization region we can write instead of Eq. (246)

0 < w,
ety { Agc[NL?E )‘:il/ P wow (249)

which again leads to o(Ap) & Ag.[N(E)Ao)/? and Eq. (248) remains valid until
Ry,. > [N(E)Ag)]™Y2. Thus the density of superconducting electrons n, remains finite
close to Anderson transition both in metallic and insulating states.

However, from Eq. (248) it is easy to see that close to Anderson transition

n, A, ”»
=~ (%) (250)
This coincide with an estimate of Eq. (205) based upon Ginzburg—Landau expan-
sion. For typical Ag and Er only small part (~ 10~ in traditional superconductors)
of conduction electrons form Cooper pairs. The condition of Ripe > [N(E)Ag]™Y/3 ~
a(Er/Ag)Y/3 as discussed above defines the size of possible superconducting region in
Anderson insulator. This region is of course quite small, e.g. if metal—insulator transi-
tion takes place with a change of some external parameter z (impurity concentration,
pressure, fluence of fast neutrons etc.), so that Ry, ~ @l(z — z.)/z.]™", then for v = 1
and typical Ep/Ag ~ 10* we get |z — z.| < 0.1z,.

These estimates are in complete accordance with the results of our discussion of
Ginzburg—Landau approximation [19,20] and we can obtain the qualitative picture of
superconductivity in Anderson insulator both for ' ~ T, and T — 0, i.e. in the ground
state.

4 STATISTICAL FLUCTUATIONS OF SUPER-
CONDUCTING ORDER PARAMETER

4.1 Statistical Critical Region

Thermodynamic fluctuations within Ginzburg critical region has been briefly consid-
ered above, with the conclusion of their increased importance in systems which are
close to Anderson transition. Fluctuation conductivity of Cooper pairs (above T.) is
especially interesting in strongly disordered system because the usual single—particle
contribution to conductivity drops to zero as the system moves towards Anderson
transition. It can be analyzed within the standard approach [134,135] which takes
into account fluctuational Cooper pairs formation above T.. From these estimates we
can see that as the system approaches the Anderson transition a temperature inter-
val where the fluctuation contribution to conductivity is important widens. Fluctu-
ation Cooper pair conductivity becomes comparable with a single—particle one for
7 < 0" % 0.(prb)Y? = o (T./Er)'/3, i.e. close enough to mobility edge. In fact this
confirms the above picture of Cooper pairs remaining delocalized while single—particle
excitations localize as the system undergoes metal—insulator transition.

Here we shall demostrate the appearance of the new type of fluctuations which are
at least of the same importance as the usual critical fluctuations of superconducting
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order—parameter. We call them statistical finctuations [58] and their nature is closely
connected to the problem of self—averaging properties of this order parameter (i.e.
with a possibility of decoupling transforming Eq. (123) into Eq. (124)). We shall more
or less follow Ref.[58], equivalent resuts were recently obtained in Ref.[136].

Let us return to the Eq. (118) and analyze the situation in more details. We shall
use a simple iteration procedure assuming that fluctuations of the kernel A'(rr’) due
to disorder are small. Similar approach was first used in Ref.[137]. In this case we can
represent K'(rr') and A(r) as

K(rr') = Ko(r - r') + K (rr'); ) Ko(r —r') =< K(rr') >

A(r) =< A > +A,(r) (251)

where < A > is the solution of linearized gap equation with averaged kernel Kp(r — r’)
while A;(r) is the first order correction over the perturbation defined by K;(rr’).
We have seen that the linearized gap equation Eq. (124) with the averaged kernel
Ko(r — r') determines the standard transition temperature of BCS theory given by Eq.
(129) which we shall now denote as T. In the first order over A} there is no correction
to Tp: < K} >=0. In the second order of this perturbation theory we obtain the
following change of transition temperature, defined as the temperature of appearance
of homogeneous order—parameter:

To ApJ (27)° 1 - Ko(q,To)

Ry = / dre'¥ K (r, T.)

where

Ky(0q) = Ky(~q0) = / dr / dr'eé (K (rr') — Ko(r —1')] =
<wd>

=% [ Fo bape [ e [ SlersE- e -1

Here A, = gN(Er) and we bave used the completenes and orthonormality of exact
eigenfunctions ¢,(r). It is obvious that correction to T, given by Eq. (253) is always
positive. After averaging Eq. (253) over disorder we get the relative change of transition
temperature due to fluctuations as

8T, <T=—T¢o>=A Pa __ Q) (254)

To To (2531 = Ko(q,T¢)
(@) = [dreo(r)
where
<wd> <wd>
dE . E dE'  E' 1
@(r) = / —E—thﬁ —E-l—th 5T { N E) < pe(r)per(0) 7 —l} (253)
) co ¢

and we have introduced the spectral density of Eq. (72). which is actually a correlation
function of local densities of states.
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Remember now that in a “dirty” system [132]:
1

1= Ko@T)=1-2Th 3 o D e
~h[F22+6¢]  ea=@nnaT (256)

where ¢ is the coherence length defined previously e.g. in Eq. (196). The approximate
equality here is valid for [T — To|/T. <1, €¢%¢* < 1. From Eq. (255) and Eq. (256)
we get the change of transition temperature in the following form:

6Te = [ fa ¢(@
Gy oF @7

Here we must cut—off mtegra.tlon at ¢ ~ E" in accordance with limits of applica-
bility of the last expression in Eq. (256). However, the contribution of short—wave
fluctuations here may be also important.

The Ginzburg—Landau functional expressed via non—averaged order parameter
A(r) has the following form [9):

Fiay= [ e HEhAwr - N(E) [ K Ia@IAR + 3BIAEI @9)

where we have neglected the fluctuations of pairing interaction ), and of the coefficient
B, which is defined by the standard expression given in Eq. (195). Using Egs. (251)—
(253) we can find Ginzburg—Landau equations which describe the slow changes of
Afr):

{N(Ep) =T + 6A(r) - BlA(r)]* + C%}A(r) =0 (259)
where
<w>
saw) = Mer) [ Form{ g TiePaE-a)-1} ()

describes the fluctuations of the coefficient A of Ginzburg—Landau expansion and we
have neglected the fluctuations of the C coefficient .

Ginzburg—Landau equations with fluctuating coefficients were analyzed for the
first time by Larkin and Ovchinnikov[138]. It was shown that § A(r)—fluctuations lead
to a shift of transition temperature given by Eq. (257) and the solution of Eq. (259)
for l:he order parameter in the first order over fluctuations has the form of Eq. (251)
with: .

4y(r) = / %AKQ)CW

<A> 6A(q)

Ay(q) = “NE Bg 1 2r (261)
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where 1 = (T. — T)/T. is temperature measured relative to the new transition tem-
perature. The mean—square* fluctuation of the order—parameter itself is determined
from Eq. (261) by: o

<a’> q __ »(q)

1= —_— 262

<a> 1T mrEg+ oy (262)
where o(q) was introduced in Egs. (255), (255). It is important to note that fluctuations
of A(r) as opposed to T.—shift are determined by small q behavior of ¢(q).

We can see now that all the physics of statistical fluctuations is described by the
correlation function of local densities of states. This function was determined above in
Eqs. (73). Using Eq. (74) for the metallic state not very close to the mobility edge we
can get from Eq. (255): :

=0) ~ = 263
where £ = /%l and D, is the Drude diffusion coefficient. Estimating the T.—shift
from Eq. (257) we get:

oT. 1 T. 1
—_— ~ ————  —— e A 264
T, ~ NAEr)DRE ~ Er (el © (264)

where 7g is the size of Ginzburg critical region defined by Eq. (215). We have seen
that in the usual “dirty” superconductor 1 < 1. For the order—parameter fluctuations
from Eq. (262) we obtain:

<A?> ~ Lpa=0) 12
TS 8’—\/==—€a o (H) (265)

From here we can see that the width of the temperature region where statistical fluc-
tuations are important is given by:

2 2
4 (0) 1 ~ (_E_) _1_ ~7d 966)
™~ g~ NERDRE el T (
It is obvious that in a“dirty” superconductor we have Tp € g < 1 and statistical
fluctuations are absolutely unimportant.
Situation change for a system which is close to the mobility edge. Using Eq. (74)
with D, replaced by Do(w/~)*/® we obtain:

T,
~ q dw ;2 -2/3 ,3/3,4)-1/4 31nl 267

where £ ~ (£opF?)!/3. Similarly we get:

C—!
<A?> E’q’dq 1 1 1 i 268
<as> %) @erere T Ji (268)
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From Eq. (268) it follows that close to the mobility edge statistical fluctuations become
important and even overcome thermodynamic fluctuations due to the logarithmic factor
in (q). Thus in this region we have rp > 76 ~ 1.

The crossover from the regime of weak statistical fluctuations (rp <€ 76) to the
strong fluctuation regime occurs at the conductivity scale o ~ 0* = a.(préo) 2/ which
was extensively discussed above. Thus close to the mobility edge the superconducting
order—parameter is no more a self averaging quantity. Here the mean—field theory
approach becomes formally invalid due to thermodynamic and also because of statistical
fluctuations. Below we shall analyze this situation in more details.

Finally we shal briefly discuss the region of localized localized states. Here we again
encounter a singular §(w)—contribution to the correlator of local densities of states,
~ the same as for Gorkov—DBerezinskii spectral density, which leads to the additional

contribution to y(q):

<w> ’
_“FdE [, E\ As(q) As, _
o= [ 5 thar) WMo+~ Wzt
1
- 269
NENTO+ R | (269)
Accordingly a new contribution to A(r) fluctuations is given by:
R—l
< A? '“
A po— gdg . (270)

N(EFRT. | (€4 +27P(1+ Rig’) " NEFTE.
and it grows fast as the localization length Ry, diminishes. Using our main criterion of

<A>?

superconductivity in localized phase given by Eq. (130) we can see that in all region of -

possible superconductivity statistical fluctuations of A(r) remain of the order of unity
and are important in rather wide temperature interval around 7.

4.2 Superconducting Transition at Strong Disorder

We consider now superconductivity in systems with strong statistical fluctuations of
the “local transition temperature” as described by Eq. (259) and Eq. (260). In this
analysis we shall follow Refs.[139,140). .For simplicity we assume Gaussian nature of

these fluctuations. Note, however, that close to the mobility edge the fluctuations of '

local density of states become strongly non—Gaussian [141] and this can complicate
the situation. Unfortunately the importance of this non—Gaussian behavior for super-
conductivity has not been studied up to now.

We shall see that as statistical fluctuations become strong enough the supercon-
ducting state can appear in inhomogeneous fashion even if the correlation length of
disorder induced fluctuations of local transition temperature is small compared with
the superconducting correlation length ¢ (microscopic disorder). This case was first an-
alyzed by Ioffe and Larkin[145]. Investigating the case of extremely strong disorder they
have shown that as the temperature is lowered the normal phase acquires localized su-
perconducting regions (drops) with characteristic size determined by £(T). Far from T.
their deusity is low, but with further cooling the density and dimensions of the drops
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increase and they begin to overlap leading to a kind of percolative superconducting

transition.
Our treatment of superconductors with large statistical fluctuations will be based

on the Ginzburg—Landau functional:

F{A(r),A(r)} = / dr { B;fr"’ + N(Ef) [(7 +(r))|A(r)*+

2 2ie 2 "

+8|(V - 32AE)) A + ZHAWD) ]} (271)
where B = rotA is magnetic field and we have redefined the coefficient of quartic term
as B = N(Ep)\. Here t(r) is defined by Eq. (260) as §A(r) = N(EFr)t(r) and plays the
role of the fluctuation of local “critical temperature”, which appears due to fluctuations
of local density of states. In general case it also can have contributions from local
fluctuations of pairing interaction or other types of microscopic inhomogeneities. As
noted above we assume Gaussian statistics of these fluctuations. though real situation
clese to the mobility edge may be more complicated [141]. Given the distribution of
t(r), the free energy of the system and the order—parameter correlator are equal to:

F{t(r)} = ~ThZ, Z= / D{A.,A}ezp|~F{A(r), A(N}/T]  (272)

<AR)A(F) >= 27! / D{A,A}A(r)A(F)ezp|-F{A(r),A(N)}/T]  (2713)
and must be averaged over the Gaussian distribution of #(r). From our definition of
t(r) and using the approach of the previous section, assuming the short—range of
fluctuations of local density of states(on the scale of £), it is easy to estimate the
correlator of ¢(r) as:

<Hr(r) >=6(r—r'), =1y (274)

Then the probability of a configuration with a given ¢(r) is given by
=ezpl-L [ drt? 275
P} = eap -5 | e (215)

The problem reduces thus to calculation of the functions F{#(r)} and < A(r)A(r) >
and their subsequent averaging over P{t(r)}.

We shall limit ourselves to consideration of noninteracting drops and no vortices.
Then we can consider the phase of the order—parameter A(r) as nonsingular. After
the gauge transformation

A(r) — A(r) + (ck/2¢)V(r)
A(r) = A(r)ezpl—id(r)] (276)
where o(r) is the phase of the order parameter we can use real A(r) and Ginzburg—
Landau functional of Eq. (271) becomes:

PLA®.AE) = [ ar {4 N(ER) [ir + o) + S M 018%00+

(VAR + prasey] fem)
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Integration over phase in Eq. (272) gives an inessential constant factor to the partition
function which we disregard.

To average the logarithm of the partition function Eq. (272) over #(r) we can use
the replica trick{142] which permits the averaging to be carried out in explicit form.
We express the average free energy Eq. (272) of the system in the form:

< F>=-Thmil<2*> -1] (278)
n—0n

To calculaté < Z" > in accordance with the idea of the replica method, we first assume
n to be an arbitrary integer. Expressing Z* in terms of an n—fold functional integral
over the fields of the replicas A,, A,(r), @ =1,...,n and carrying out exact Gaussian
averaging over t(r), we get

< 7" >= [ D{A.8}erpl-Su{Acr )] (219)
${Awba} = [ dr{ > 20, NEr) > [(‘r +enaim + L armazee
+e(vaim + rase)] - 32 [ 830 }

The last expression here represents the “effective action” and § = YN(Er)/T. ~
/zN (EF)/T. grows with disorder . Note that the random quantities ¢(r) have already
dropped out of these expressions, and that the action S{A,,A,} is translahonally
invariant. For the correlator of Eq. (273) we obtain:
, .1 L 7
<AEAF) >=lim- [ D{A,Alezpl-5u{An A1 T Ac(®)Aulr)  (280)
a=l
where we have symmetrized over the replica indices.
Far from the region of strong fluctuations of the order parameter |7| » 7p,7¢ the
functional integrals in Eq. (279) and Eq. (273) can be calculated by the saddle—point
method. The extrema of the action are determined by classical equations:

[r - V14 a2 —ﬁz":A,’,(r)] Bo(r)=0 A, =0 (281)

B=1

The nontrivial conclusion is that these equations for A,(r) besides spatially homo-
geneous solutions do have localized solutions with finite action (instantons). These
correspond at 7 > 0 to superconducting drops. We shall limit ourselves to a picture
"of noninteracting drops and consider only instanton solutions above T, (at T > 0). We
“shall be interested only in those solutions that admit analytic continuation as n — 0.
We designate them AY)(r), where the superscript i labels the type of solution. To find
their contribution we must expand the action of Eq. (279) up to the terms quadratic
in deviations @,(r) = Au(r) — AL)(r). It can be shown that fluctuations of the fields
A,(r) can be neglected if we consider noninteracting drops [139,140].
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Figure 7: Qualitative form of instanton solution.

For 7 > 0 and for 4 > ) Eq. (281) possess (besides the trivial solution A, = 0) the
following nontrivial solution with finite action (instanton)(Cf. Refs.[143,144,7)):

A(r) = Ao(r)baiy,  i=1,.0m
Aor) = [Hx([d]. €D =% (282)

where the dimensionless function x(z) satisfies the condition dx(z)/dz|s=0 = 0 and its
asymptotic form: x(z) ~ z~lezp{—z) for z 3 1 (for spatial dimension d = 3). The
qualitative form of this solution is shown in Fig. 7.

From Eq. (282) it is seen that instantons are oriented along axes of replica space
(there are n types of instanton solutions) which is due to the “cubic anisotropy” term
AAY in the effective action of Eq. (279). Index ¢ characterizes the direction in replica
space along which the symmetry breaking takes place. For A — 0 the action becomes
O(n)—symmetric and instantons take the form :
=1 (283)
o=l
i.e. are oriented along arbitrary unit vector € in replica space. Such instantons earlier
were studied in the theory of localization [143.144,7].

The quadratic expansion of the effective action near instanton solution takes the
form (Cf. analogous treatment in Refs.[143,144,7)):

S{8a) = S1a8) +3 [ dr T (vellen) (284)

Aq(r) = Ag(r)eq,

where the operator Mﬁ'} on instanton solutions is equal to:

M = (M6 + Blr(1 = 62n (#%)
with 2N(E
Myr= ‘_§~—Fll—£‘V’ + 7ULz(r)] (286)
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Figure 8: Qualitative structure of eigenvalues of My, (a) and Mr (b) operators: & =0
— translation zero—mode; €] — 0 for A — O0—transforms to “rotation” zero—mode.
The continuous part of the spectrum is shaded.

where
UL(r) =1-3x*[r/&(T)] (287)
Ur(r) =1- (1~ 2/5)"x*[r/&(T))
The value of Gaussian functional integral is determined by the spectra of eigenstates of
operators My and Mr . Detailed analysis can be found in Refs.[139,140]. The qualitative
form of these spectra is shown in Fig. 8.

Operator M, always possess an eigenvalue cf = 0—the so called translation zero—
mode, connected with translation symmetry: instanton center may be placed anywhere
in space, the action does not change . However, this is not a lowest eigenvalue of My,
there is always a negative eigenvalue £& < £f = 0. It can be shown rigorously that it
is the only negative eigenstate of M[146]. Operator Mr possess also a single negative
eigenvalue &7 < 0[139,140), however this eigenvalue tends to zero for A — 0 becoming
the “rotation” zero—mode, reflecting the arbitrary “direction” of instanton in replica
space in the absence of cubic anisotropy in the action [143,144,7). For A = A* = 2/3%
we have M; = Mr and the spectra of both operators coincide.

Including the contributions of instantons oriented along all the axes in replica space
we obtain the following one—instanton contribution to the partition function entering
Eq. (278)[139,140):

d/2 .
<Z">=nf (;_:) [Dct’]t{;,]'*[DctMT]L"czp{-—So(r)} (288)
where Q is the system volume,
1 o\ _ T S)
n=3/e(52) = wiEe (259)
-and the action at the instanton is given by:
63.’.1/2

5ol = AN ER) 20

where A = 37.8 is a numerical constant[147]. The prime on DetM, means that we
must exclude the zero—eigenvalue &f = 0 from the product of eigenvalues determining
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this determinant. The condition of applicability of the saddle—point approximation
looks like So(7) >» 1, and in fact all our analysis is valid outside the critical regions
both for thermodynamic and statistical fluctuations.

In the limit of » — 0 the total cancellation of imaginary contributions appearing
due to negative eigenvalues takes place in Eq. (288) and using Eq. (278) we get for
¥ > 3/2X the following real contribution to the free energy:

F = —p,(1)TQ (291)
where the density of superconducting “drops”
T 3% . [DetMr1¥?
= |— =3 | —- =S 2
pu(m) [41rN(EF)50("')] e parn] (=S} )

Thus for 4 > 3/2X even for T > T. the superconducting “drops™ (instantons) appear in
the system which directly contribute to the equilibrium free energy. This contribution
given by Eqs. (291)— (292) exists along the usual thermodynamic fluctuations. The
condition of ¥ > 3/2X defines critical disorder 7p > 13 > 7, and this inhomogenedus
picture of superconducting transition appears only for the case of sufficiently strong
statistical fluctuations. The knowledge of qualitative structure of spectra of eigenvalues
of My and Mr allows to analyze different asymptotics of Eq. (291)[139,140]. For
7S0(T) € XA € X* we get:

A\ V2
2,(T) = E7(T) (;) S (1)exp|—So(T)) (293)
For A — \* we obtain:
A 3/2
p(m) = €7(T) (T - 1) §3/%(r)ezpl~Solr)] (294)

Thus the density of superconducting “drops™ p,(7) vanishes as A — A*. they are de-
stroyed by thermodynamic fluctuations.
For the order—parameter correlator of Eq. (273) we get the following result:

< AEA() >= py(r) [ dRoBo(r + Ro)Bo(r’ + Ro) (295)

The integration over instanton center Ro here means in fact averaging over differ-
ent positions of “drops”. Note that over large distances this correlator decreases like
ezp[—|r — r’[/£(T)] and does not contain the usual Ornstein—Zernike factor |r - r'|~1.

We have found the free—energy of inhomogeneous superconducting state in the
temperature region 7 3» Tp, where the “drop” concentration is exponentially small
and the picture of noninteracting “drops” is valid. They give exponentially small con-
tribution to the specific heat and diamagnetic susceptibility. The characteristic size of
“drops” is determined by £(T) and as T — T the “drops” grow and begin to overlap
leading to a percolative superconducting transition. Thus for 7p > 7§ > 7¢ supercon-
ductivity first appears in isolated “drops”. This is similar to the picture of decay of
2 metastable state in case of the first—order phase transitions[148]). However, in this
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latter case instantons give imaginary contribution to the free energy determining the
decay rate of a “false” equilibrium state (critical bubble formation). Here instanton
contributions lead as was noted above to real free energy and “drops” appear in the
true equilibrium state.

It is more or less obvious that between isolated “drops™ a kind of Josephson coupling
may appear and lead to rather complicated phase diagram of the system in external
magneticfield, e.g. including the “superconducting glass™ phase{149,150}. Note the com-
pletely different appraoch to these problems proposed by Oppermann(151,152,153,154).
The existence of inhomogeneous regime of superconductivity will obviously lead to the
rounding of BCS—like singularities of the density of states and superconductivity may
become gapless. (Cf. Ref.[153]). Note that diffusion—enhanced Coulomb interactions
can also lead to the gaplessness of strongly disordered superconductors via Coulomb—
induced inelastic scattering [155). Fluctuation conductivity in a similar inhomogeneous
superconducting state was studied in Ref.[156].

Note the closely related problem of strongly disordered superfluids [157,158,159).
Some results here may be quite useful for the case of strongly disordered superconduc-
tors, though the limitations of this analogy are also important.

These and other possible manifestations of this new regime of superconductivity
in strongly disordered systems define rather wide range of problems to be studied in
future.

5 SUPERCONDUCTIVITY IN STRONGLY DIS-
ORDERED METALS: EXPERIMENT

Our review of experiments on strongly disordered superconductors will be in no sense
exhaustive. This is mainly a theoretical review and the author is in no way an expert
on experiment. However, we shall try to illustrate the situation with the interplay of
Anderson localization and superconductivity in bulk (three—dimensional) supercon-
ductors, both traditional and high—temperature. Here we shall confine ourselves to a
limited number of the experiments , which we consider most interesting from the point
of view of illustration of some of the ideas expressed above. More than anywhere else
in this review our choice of material is based on personal interest of the author, or our
direct involvement in the discussion of experiment. We shall not deal with the general

problem of disorder influence upon superconductivity, but shall consider only the sys- .

tems which remain superconducting close to the disorder—induced metal—insulator
transition. Complete review of the experiments on highly—disordered superconductors
is left to somebody more competent.

5.1 Traditional Superconductors

There exists a number of strongly disordered systems which remain superconducting
close to the metal—insulator transition induced by disorder.

The drop of T, with conductivity decrease from the value of the order of 1040hm=1cm™} 3 4

was observed in amorphous alloys of GeAl[160), SiAu[161] and MoRe[162), in Chevrel

phase superconductors disordered by fast neutron irradiation, such as Pb; .. U- Mg Ss[163),
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Figure 9: Fluence dependence of T, and |dH.3/dT |z, in SnAMosSs (Ref.[164]).

51 Mo Ss[164), MogSeq[165), in amorphous InO.[166], in BaPb,_.Bi,.O; in the con-
centration interval 0.25 < z < 0.30[167] and in metallic glass Zro rJro[169]. In all of
these systems superconducting transition is observed apparently not very far from the
metal—insulator transition. For a number of these systems, such as Pb;..U.MogSs,
SnMogSs, MogSes, Zro.2Irg3 and BaPby 75 Big2505[167] and some others a character-
istic strongly negative temperature resistivity coefficient has been observed. The drop
of T, close to the mobility edge apparently was also observed in As;Te3[170). However,
in all of these systems T apparently vanishes before metal—insulator transition. Below
we present some of the data on these and other similar systems.

On Fig. 9 we show the dependence of T. and |dH./dT|r, in SnMosSe (Chevrel
phase superconductor) on the fluence of fast neutron irradiation (the number of neu-
trons which passed through a crossection of a sample during irradiation)[164].

In the region of large fluences (large disorder), when the system becomes amor-
phous, characteristic values of conductivity in the normal state are of the order of
~ 10°0hm™='em™!, which is not far from the values of “minimal metallic conductivity”
% ~ 510°0hm~'em™1, which define the conductivity scale of disorder induced metal—
insulator transition. The negative temperature coefficient of resistivity was observed
in this conductivity range. The experimental data on T. decrease with the growth of
resistivity in this system were rather well fitted in Ref.[20] using the y* dependence on
resistivity given by Eq. (170). A clear tendency for |dH./dT |z, saturation with disor-
de is also observed. Analogous dependence of T, and |[dH2/dT|r, on the resistivity in
the normal state for MogSes disordered by fast neutrons is shown in Fig. 10[165).

_ Here superconductivity exists up to conductivities o ~ 2500hm='cm=?. Further
disordering (irradiation) leads to the destruction of superconducting state and metal—
1nsulator transition (an unlimited growth of resistivity with decrease of T, with variable—
Tange hopping conduction(2,3] is observed). The slope of the upper critical field |dH.;/dT |z,
also has a tendency to saturate with the growth of resistivity. Standard interpretation
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Figure 10: Resistivity dependence of T, and |dH/dT |z, in MogSes (Ref.[165)).

of such behavior of |dH,;/dT |y, was based upon the use of Gorkov’s relation (Cf. first
relation in Eq. (222)) and lead to the conclusion of N(EF) decrease under disorder-
ing. In fact, we have seen that no such conclusion can be reached for systems with
conductivities ¢ < 10230hm~1em™1, because such saturation behavior may be a natu-
ral manifestation of the approaching metal—insulator transition. Similar dependences
were observed in other Chevrel phase superconductors [163,171,172).

In Fig. 11 we show the dependence of conductivity and T, on the parameter prl/%
in amorphous InO, alloy[166). ’

In Fig. 12 from Ref.[173] the data on the temperature dependence of H.; in amor-
phous In/InO, (bulk) films are presented for different degrees of disorder. We can see
that in the low temperature region H.(T') deviates from the standard temperature
dependence, but apparently confirm the qualitative form predicted above for systems
which are close to Anderson transition.

Probably the most impressive are the data for amorphous Si;.pAu. alloy [160,
161,174]. In Fig. 13 [161] the data on 7. and conductivity dependence on the gold
concentration z are shown. In Fig. 14 H.4(T) dependence for this system is shown for
different alloy compositions [161).

From these data it is clearly seen that T, vanishes before metal—insulator transi-
tion. The metal—insulator transition itself is continuous, conductivity vanishes linearly
with the decrease of gold concentration and the values of conductivity significantly
less than the estimated “minimal metallic conductivity” are definitely observed. The
system remains superconducting even for such low conductivity values. The slope of
Hq(T) at T = T, is practically constant , despite the change of conductivity (dis-
order) in rather wide range. This behavior apparently cannot be explained only by
the appearance of correlation pseudogap in the density of states observed in Ref.[174],
which becomes significant only very close to metal—insulator transition. Low temper-
ature deviation from standard convex dependence on T is also clearly seen. In Fig.
15 from Ref.[174) we show the temperature dependences of resistivity and supercon-
ducting energy gap (determined by tunneling) of a sample with z = 0.21. It nicely
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Figure 11: Conductivity o and T, dependence on the parameter prl/k in amorphous
InO;. op is estimated Drude conductivity. (Ref.[166)).

demonstrates superconducting transition in the system which is very close to disorder
induced metal—insulator transition.

Note, that according to Ref.[174] the superconducting energy gap in this sample is
substantially broadened which may indicate the growth of statistical gap fluctuations
due to the same fluctuations of the local density of states. These data are in obvious
qualitative correspondence with the geperal theoretical picture described throughout
this review.

These data show that in systems which are superconducting close to the disorder
induced metal—insulator (Anderson) transition T, decreases rather fast and in all
reliable cases vanishes before the transition to insulating state. At the same time the
temperature dependence of H is not described by the standard theory of “dirty”
superconductors both with respect to (dH./dT)r, behavior and at low temperatures,
where the upward deviations from the standard dependence are readily observed. This
confirms most of our theoretical conclusions.

Some indications of a possible superconducting state in the insulating phase of
granular Al and Al ~ Ge were observed in Refs.[175,176). Obviously, the granular
systems are more or less outside the scope of our review. However, we should like to
mentijon that the strong smearing of BCS—like density of states and the gapless regime
of superconductivity was observed (via tunneling measurements) in Refs.[177,178], close
to the metal—insulator transition in these systems. This may confirm our picture of

197



[ele]

80

40

80

~,
S

o

®)
O

\_\

S
NN \

C-FliLM ¢

Q-Fuum b
A-Ffiivc

Figure 12: H4(T) in amorphous films of In/InQ;. Dashed lines show standard theo-

T

"ﬁl\qor\ s
T 2

T )

"

s

10

Bea (T)

0.235
0.21
0.195
0.19

T(K)

0.6

Figure 14: H.,(T) in amorphous Si;.-. Au, alloy. (Ref.[161)).

retical dependences. (Ref.[173]).
. a~Sh. Avy
_ & 1.2 ] %=0.21 30¢C
£ - 5
v L —10 .
:. / < —
B4 il Tl L £ =z [ s -1200 o
3 TR £ 3 % w0l ! i
% 2} .3 405 © ; 2 s — >~
) °’,’ G5 42 a - I . "‘
2t — .:.;1'/_’ 154 20- <. II B had
o .
/ g ] - <« e, 1
14 & 032 . H
./‘ Ap 0 0 1 } P 1 o
o . : . ) 0.1 oz .3 X3 c.8
4} 0.1 0.2 02 04 T(K ° ° v

Figure 15: Temperature dependences of superconducting energy gap A and of the

Figure 13: Conductivity o and T. dependence on gold concentratior in amorphous 4
Tesistance R for amorphous SiompAuoz. (Ref.[174)).

Siy-s Au, alloy. (Ref.[161]).

199

198



stztistical fluctuation smearing of the density of states. Note. that more recent work
on granular Al [179] apparently exclude the possibility .of superconductivity in the
insulating phase. Similar conclusions on superconductivity vanishing at the point of
metal—insulator transition were reached for amorphous Al,Ge;_.[180] and amorphous
Ga — Ar mixtures[181].

These results are not surprising since we have seen the existence of strong mecha-
nisms of T, degradation close to disorder induced metal—insulator transition.

5.2 High—T, Superconductors

Very soon after the discovery of high—temperature oxide superconductors [14,15) it
was recognized that localization effects has an important role to play in these systems.
There are many sources of disorder in these systems and the low level of conductivity
indicate from the very beginning their closeness to Anderson transition. In the field
where there are hundreds of papers published on the subject it is impossible to review
or even to quote all of them. More or less complete impression of the status of high—T
research can be obtained from Conference Proceedings[182]. Here we shall concentrate
almost only on papers which deal with disordering by fast neutron irradiation which
we consider probably the “purest” method to introduce disorder into the system (al-
lowing to neglect the complicated problems associated with chemical substitutions).
Also historically it was apparently the earliest method used to study disorder effect in
high—T. superconductors in a controllable way [183,184].

There are several reasons for localization effects to be important in high—T oxides:

¢ Two—Dimensionality. All the known high—7T, systems (with 7. > 30K") are
strongly anisotropic or quasi-two-dimensional conductors. We have seen above
that for such systems it is natural to expect the strong enhancement of local-
ization effects due to the special role of spatial dimensionality d = 2: in purely
two-dimensional case localization appears for infinitely small disorder|28,4,6,7).
The inplane conductivity scale for metal—insulator transition in such systems
as given by Eq. (12) or Eq. (83) is larger than in isotropic case. Reasonable
estimates show that the values of inplane “minimal metallic conductivity” may
exceed 10°0hkm~"cm~!. While due to continuous nature of Anderson transition
there is no rigorous meaning of minimal metallic conductivity, these estimates ac-
tually define the scale of conductivity near the metal—insulator transition caused
by disorder. Then it is clear that most of the real samples of high—7. supercon-
ductors are quite close to Anderson transition and even the very slight disordering
is sufficient to transform them into Anderson insulators[129].

¢ “Marginal™ Fermi Liquid. During our discussion of interaction effects we have seen
that there are serious reasons to believe that importance of localization effects in
high—T., oxides may be actually due to more fundamental reasons connected with
anomalous electronic structure and interactions in these materials. The concept
of “marginal” Fermi liquid [95] leads to extreme sensitivity of such system to
disordering and the appearance of localized states around the Fermi level at
infinitesimally weak disorder[97)].
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On the other hand high—7., systems are especially promising from the point of view
of the search for superconductivity in the Anderson insulator:

e High transition temperature T, itself may guarantee the survival of superconduc-
tivity at relatively high disorder.

¢ Due to small size of Cooper pairs in high—T7, systems in combination with high—
T. (large gap !) we can easily satisfy the main criterion for superconductivity in
localized phase as given by Eq. (130).

¢ Being narrow band systems as most of the conducting oxides high—T7.. systems are
promising due to low values of the Fermi energy Er which leads to less effective
T, degradation due to localization enhancement of Coulomb pseudopotential y~.
{Cf. Eq. (169)).

Anomalous transport properties of high—7, oxides are well known[185]. Experi-
mentally there are two types of resistivity behavior of good single-crystals of these
systems. In highly conducting ab plane of ¥ Ba;Cu307_s and other oxides.resistivity of
a high quality single-crystal always shows the notorious linear—T behavior (by “good”
we mean the samples with resistivity p,; < 10°0Ahmem). However, along orthogonal
¢ direction the situation is rather curious:- most samples produce semiconductor-like
behavior p. ~ 1/7T', though some relatively rare samples (apparently more pure) show
metallic-like p. ~ T (with strong anisotropy p./pes ~ 107 remaining).[185] Metallic be-
havior in ¢ direction was apparently observed only in the best samples of ¥ Ba;Cu30+.4
and almost in no other high—T, oxide. In Fig. 16 taken from Ref.[186] we show the
temperature dependence of p. in a number of high—T7, systems. It is seen that p.(T')
changes between metallic and semiconducting behavior depending on whether the re-
sistivity is below or above the Ioffe—Regel limit defined for quasi-two-dimensional case
by Eq. (12). Rather strange is the absence of any obvious correlation between the
behavior of p. and T..

This unusual behavior leads us to the idea that most of the samples of high—T7,
svstems which are studied in the experiment are actually already in localized phase
due to internal disorder which is always present. This may be due to their quasi-
two-dimensional nature or because of marginal Fermi liquid effects. In this case a
simple conjecture on the temperature behavior of resistivity of single-crystals can be
made qualitatively explaining the observations [187,188]. In case of localized states
at the Fermi level and for finite temperatures it is important to compare localization
length Ry, with diffusion length due to inelastic scattering L, = /D7, where D is
diffusion coefficient due to elastic scattering on disorder, while 7, is phase coherence
time determined by inelastic processes. For T > 0 this length L, effectively replaces
the sample size L in all expressions of scaling theory of localization when L 3 L,
because on distances larger than L, all information on the nature of wave functions
(e.g. whether they are localized or extended) is smeared out. Taking into account the
usual low—temperature dependence like 7, ~ T—? (where p is some integer, depending
on the mechanism of inelastic scattering) this can lead to a non—trivial temperature
dependence of conductivity, in particular to a possibility of a negative temperature
coefficient of resistivity [30]. Similar expressions determine the temperature dependence
of conductivity also for the localized phase until L, < Rio. In this case electrons do
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not “feel” being localized and conductivity at high enough T will show metallic like
behavior. For localization to be important we must go to low enough temperatures. so
that L, becomes greater than Ry,.. If high—T, superconductors are Anderson insulators
with very anisotropic localization length, Ri. » R, and both localization lengths
diminish as disorder grows, L, is also anisotropic and we can have three different types
of temperature behavior of res:stmty[lS‘i]

1. Low T or strong disorder, when we have

L:b = \/Dy1, > RIG,:. L, =~ /D.7, » Rj, (296)

This gives semiconductor-like behavior for both directions.
2. Medium T or medium disorder, when

IP<RY  LL>E. (207)
and metallic bebavior is observed in ab plane, while semiconducting temperature de-
pendence of resistivity is observed along c axis.

3. High T or low disorder, when

LY <Ry Ly<Ri. (298)
and metallic behavior is observed in both directions.

Here we do not speculate on the inelastic scattering mechanisms leading to the
concrete temperature behavior in high—T7,, oxides, in particular on linear T behavior
in ab plane or 1/T behavior in ¢ direction. Unfortunately too little is known on these
mechanisms[185] to be able to make quantitative estimates on the different types of
behavior predicted above. However, all experimental data as we shall see below at least
do not contradict the idea of possibility of Anderson localization in high—T. cuprates.

Now let us consider the experiments on controllable disordering of high—temperature
superconductors. Already the first experiments on low temperature (T = 80K) fast
peutron irradiation of ceramic samples of high—T7, systems [189,190,191,192,193,195]
bas shown that the growth of structural disorder leads to a number of drastic changes
in their physical properties:

¢ continuous metal—insulator transition at very slight disordering,
¢ rapid degradation of T,

e apparent coexistence of hopping conductivity and superconductivity at interme-
diate disorder,

¢ approximate independence of the slope of H, at T ~ T, on the degree of disorder,
. anomalous erponential growth of resistivity with defect concentration.

These anomalies were later confirmed on single-crystals and epitaxial films{194,196,197,
198], and were interpreted[129,16] using the ideas of possible ooexxstenoe of Anderson
localization and superconductivity. .
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In Fig. 17 we show data[129] on the dependence of the superconducting transition
temperature and resistivity (at T = 100K, i.e. just before superconducting transition)
on fast neutron fluence for ¥ Ba;CusOg.9s.

In all high—7,. compounds introduction of defects leads to strong broadening of
superconducting transition. The derivative (dH2/dT)r. in ceramic samples measured
at the midpoint of the superconducting transition does not change as pioox grows by
an order magnitude. In Fig. 18[129] we show the temperature dependence of resistivity
for samples of Y Ba,Cu3Osgs and La, g3Sr0,17Cu0, for different degrees of disorder. -

In all these materials the p(T') curves vary in the same way. In the fluence range
® > 10"cm=2, where superconductivity is absent, p(T') follows a dependence which is
characteristic of conductivity via localized states[2,3]:

P(T) = poezp(Q/T*)  Q =21[N(EF)RL]* (299)

as shown in Fig. 19. (Mott’s variable-range hopping conduction).

The most striking anomaly of resistivity’ behavior of all high—7. systems under
disordering is nonlinear, practically ezponential growth of resistivity at fixed tempera-
ture (e.g. p(T = 100K)) with fluence, starting from the low fluences ® < 710'%cm
including superconducting samples{189,129,190,191,192,193]. These data are shown in
Fig. 20[129] for the dependence of p(T = 80K) on & obtained from measurements made
directly during the process of irradiation. For comparison the similar data for SnMoeSs
are shown which do not demonstrate such an anomalous behavior, its resistivity is just
proportional to & and saturates at large fluences. We relate this exponential growth of
p with the increase of & (i.e. of defect concentration) in all high—T. systems to local-

" ization, which already appears for very small degrees of disorder in samples with high
values of T.. As we have seen in samples with much reduced or vanishing 7 localization

is observed directly via Mott’s hopping in the temperature behavior of resistivity given

by Eq. (299).

From these results it follows that the electronic system of high-—7T. superconductors
is very close to the Anderson transition. The observed variation of p as a function both
of fluence and of temperature can be described by the following empirical formula[189]:

P(T,®) = (a+ cT)ezp(b®/T'/*) (300)

Identifying the exponential factors in Eq. (299) and Eq. (300) it is possible to obtain
a fluence dependence of localization length (Cf. Ref.[129]) and below).

Detailed neutron diffraction studies of structural changes in irradiated samples were
also performed (189,129,199). These investigations has shown definitely that there are
no oxygen loss in Y Ba;Cu3Og9s during low temperature irradiation. Only some par-
tial rearrangement of oxygens between positions O(4) and O(5) in the elementary cell
occur as radiation-induced defects are introduced. In addition, in all high—7, com-
pounds the Debye— Waller factors grow and the lattice parameters a,b,c increase
slightly(129,199]. The growth of Debye—Waller factors reflect significant atomic shifts,
both static and dynamic, from their regular positions, which induce a random poten-
tial. This disorder is pretty small from the structural point of view, the lattice is only
slightly distorted. However, we have seen that this small disorder is sufficient to in-
duce metal—insulator transition and complete degradation of superconductivity. The
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Figure 17: Dependence of the superconducting transition temperature and resistivity
(at T = 100K) on neutron fluence for ceramic Y Ba;CusOggs. Different notations
correspond to different methods of measurement and also evolution after annealing at
300K. (Details see in Ref.[129]).
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Figure 18: Temperature dependence of resistivity p for ceramic sample
Y Ba;CusOggs (curves 1—3 and 5—8) and La; 53S570.17Cu04 (curves 4, 9)'m’a§1a.ted
at T = 80K with different fluences: 1—® =0; 3,6, 8 — =25 and710"cm : plus
annealing for 2 hours at 300K; 2, 5, 7 — irradiated with & = 2.5 and710" om” plus
annealing for 2 weeks at 300K; 4 — & = 0; 9 — & = 510"*cm™? plus annealing for 2
hours at 300K . (Ref.[129])
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Figure 19: Dependence of Inp on T4 for Y Ba;CusOggs irradiated with a flu-
ence of & = 1.210"%cm~? at T = 80K (curve 1), and after 20-minute annealing at
T = 150K (2); 200K (3); 250K (4); 300K (5) and two weeks annealing at T = 300K (7).
Similar dependences for La;g3Sr017Cu0, for & = 210®cn—? annealed for 2 hours
at 300K(6) and for La;CuQy for ® = 210'""cm~2 annealed for 2 hours at 300K(8).
(Ref.[129]). .
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Figure 20: Dependence of Inp on fiuence ® during irradiation at T = 80K:
1—La,Cu0,; 2—Y Ba;Cu30ses; 3—single crystaline p,; in Y Ba;CusOges; 4—
La, 43574 1:Cu0,; 5—Bi — Sr — Ca — Cu — O; 6— ShMogSes. (Ref.{129]).
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absence of oxygen loss implies that there is no significant change in concentration of
carriers and we bave really disorder—induced metal—insulator transition. This is also
confirmed by other methods{195,200]. In Fig. 21 we show the data[195,196] on tem-
perature dependence of the Hall concentration of ceramic samples of irradiated and
oxygen deficient Y Ba;CusOz_;.

It is seen that disordering weakens the anomalous temperature dependence of Hall
effect, but Hall concentration ng at low T practically does not change in striking
difference with data on oxygen deficient samples, where ny drops several times. This
also confirms the picture of disorder—induced metal—insulator transition in radiation
disordering experiments. Similar Hall data were obtained on epitaxial films{197] and
single-crystals[198].

Qualitatively same resistivity behavior was also-obtained in the experiments on
radiation disordering of single-crystals[194,196) and epitaxial films{197]. Electrical re-
sistivities of Y Ba;Cu30;_; single crystals were measured at T = 80K directly during
irradiation by fast neutrons. The data are shown in Fig. 22.

We can see that p,; increases exponentially with @ (defect concentration) start-
ing from the smallest doses, while p. grows slower and only for & > 10°cn=? they
grow with the same rate. At large fluences both p,; and p. demonstrate Mott’s hop-
ping Inpgs. ~ T-1/4 [201]. Similar data of Ref.[197] show Inp ~ T-1/2 characteristic
of Coulomb gap. We do not know the reasons for this discrepancy between single-
crystalline and epitaxial films data (note that another method of disordering by 1MeV
Ne* jons was used in Ref.[197]). Anisotropy p./pas at T = 80K drops rapidly (to the
values ~ 30 for & = 10'?cm~?) and then practically does not change and “residual”
anisotropy of the order of its room—temperature value in initial samples remains. This
means that temperature dependence of anisotropy weakens in the disordered samples.
Note, that unfortunately only the single-crystals with “semiconducting” temperature
dependence of resistivity along ¢ axis were investigated up to now.

The upper critical fields of Y Ba;Cu30:_; single-crystals (determined from standard
resistivity measurements) for different degrees of disorder are shown in Fig. 23[196).

Temperature dependence of H,; in disordered samples is essentially nonlinear, es-
pecially for samples with low T.. The estimated from high-field regions temperature
derivative of H} (field along the c axis) increases with disorder. However, similar
derivative of HE (field along ab plane) drops in the beginning and then does not
change. Anijsotropy of H.; decreases with disorder and in samples with 7. ~ 10K the
ratio of (Hl)/ (HZLY is close to unity. According to Eq. (225) this means the complete
isotropisation of the Cooper pairs. This is illustrated by Fig. 24[202)].

The remaining anisotropy of resistivity may be connected with some kind of planar
defects in the system.

Under irradiation localized moment contribution appears in the magnetic suscep-
tibility of high—T., oxides[189,129]. In the temperature range from 7T, to 300K x(T)
is satisfactorily described by Curie—Weiss type dependence: x(T) = o + C/(T — ©).
The value of xo and the Curie constant ' as a function of fluence & are given in Fig.
25. The value of C is proportional to fluence.

Note that the threefold larger slope of C(®) in Y BazCu3Oess as compared with
La, 83570,7Cu0, is an evidence that this Curie-law temperature dependence is asso-
ciated with localized moments forming on Cu (there are three times more coppers in
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Figure 21: Temperature dependence of Hall concentration for the irradiated (left) and
oxygen deficient (right) ceramic samples of Y Ba;Cu30:_;. (Ref.[195,196]).
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the elementary cell of ¥ compound than in La compound).

These data show that electronic properties of high—T. systems are quite differ-
ent under disordering from that of traditional superconductors [171,172) or even some
closely related metallic oxides[198,203]. We associate these anomalies with the closeness
of the Anderson transition and believe that real samples of high—T. systems which al-
ways possess some noticeable disorder may well be already in the state of the Anderson
insulator.

Using the data on electrical resistivity of disordered samples of ¥ Ba;Cu3QOgs and
the relations given by Eq. (299) and Eq. {300) (assuming that exponentials there
are identical) we can calculate the change of localization length Rj,. as a function of
fluence[129,190,191,192,193).

This dependence is shown on Fig. 26 along with fluence dependence of T.. It is
clearly seen that superconductivity is destroyed when localization length R}, becomes
smaller than ~ 304, i.e. it becomes of the order or smaller than a typical size of the
Cooper pair in this system (Cf. Fig. 24) in complete accordance with our basic criterion
of Eq. (130). We can estimate the minimal value of R, for which superconductivity
can still exist in a system of localized electrons via Eq. (130)[129] taking the free-
electron value of N(Er) & 510%(ergem®)~? (for carrier concentration of ~ 6102 em=3)
and the gap value A ~ 5T, corresponding to very strong coupling{184]. We obtain the
result shown in Fig. 26. In any case we can see that criterion of Eq. (130) ceases to be
fulfilled for @ ~ (5 — 7)10**em™=? in remarkably good agreement with the experiment.

In the absence of accepted pairing mechanism for high temperature superconduc-
tors it is very difficult to speculate on the reasons for T, degradation in these systems.
If we assume that the main mechanism of T, degradation is connected with the growth
of Coulomb effects during disordering, as discussed above in this review, we can try
to use appropriate expressions to describe the experimental data. Assuming supercon-
ductivity in the localized phase we can use Eq. (175), estimating Ri.. as above from
empirical relation Eq. (300) and Eq. (299) (or directly expressing the parameters en-
tering Eq. (175) via experimental dependence of resistivity on fluence as described by
Eq. (300)[129]). The results of such a fit (with the assumption of x = 1) are also shown
in Fig. 26. The agreement is also rather satisfactory, the more rapid degradation of T,
for small degrees of disorder can be related to additional contributions to Coulomb
repulsion within Cooper pairs neglected in the derivation of Eq. (175). Surely we do
not claim that this is a real explanation of T. degradation in disordered high tempera-
ture superconductors. However, note its relation to localized moment formation under
disordering. ]

According to Mott[117] (Cf. also Refs.[118,7]) the appearance of localized moments
may be related to the presence of localized states (single occupied states below the
Fermi level as briefly discussed above). We can then estimate the value of the effective
magnetic moment (in Bohr magnetons) in unit cell as{129):

BRZ0 = Pireor (301)

where (1, is the volume of a unit cell. For large degrees of disorder (& = 210%cm~?)
and Ry, = 84 with s = 1 we obtain Paveor = 0.66 for Y BazCu30s.s in full agreement
with experiment. However, for smaller fluences peseor is considerably smaller than the
experimental value. Note, though , that the estimate of Eq. (301) is valid only for small
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and Y Ba;Cu30q s (circles). (Ref.[129]).
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is the localization length calculated using Eq. (299) and Eq. (300). Dashed curve

defines the minimum lécaliztion length at which superconductivity can exist at given
?;; 50[0021;}% to Eq. (130). Dashed-dotted curve is theoretical fit using Eq. (175).
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enough values of Rj,., i.e. when the Fermi level is well inside the localized region. On
the other hand, the accuracy with which the Curie constant is determined in weakly,
disordered samples is considerably less than in strongly disordered case. Of course,
the other mechanisms of local moment formation, which were discussed above and can
become operational even before the metal—insulator transition can be important here.

We shall limit ourselves to this discussion of localization effects in high temperature
superconductors. Qur conclusion is that these effects are extremely important in these
systems and some of the anomalies can be successfully described by theoretical ideas
formulated in this review.

6 CONCLUSION

We conclude our review trying to formulate the basic unsolved problems. From the
theoretical point of view probably the main problem is to formulate the theory of
superconducting pairing in strongly disordered system along the lines of the general
theory of interacting Fermi systems. This problem is obviously connected with the
general theory of metal—insulator transition in such approach, which as we mentioned
during our brief discussion above is rather far from its final form. These problems
become even more complicated if we addréss ourselves to the case of high temperature
superconductors, where we even do not know precisely the nature of pairing interaction
in regular system.

Concerning the semiphenomenological approach to the theory of superconductivity
close to the Anderson transition we must stress the necessity of further investigation of
the region of strong statistical fluctuations with the aim of more detailed study of their
influence upon different physical properties, like e.g. the upper critical field, density of
states, nuclear relaxation etc. Obviously, all of them may be significantly changed in
comparison with predictions of what we called the statistical mean—field theory.

As to experiment, certainly too much is still to be done for unambigous demonstra-
tion of exotic possibility of superconductivity of Anderson insulators.
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