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It is shown that spin glass ordering does not affect the superconductivity as a result of total compen-
sation of the paramagnetic effect and the effect of spin-flip scattering freezing out in a spin-glass
phase.

Torasano, uro ynopagodenue CUMHOR IIPH EPEXO0ME B COCTOSINE CIIHOBOI0 CTCKIIA HE
ORABLIBAET BIAMAHUA HA CBEPXIPOBOIMMOCTDL, YTO ABJAETCA CJACACTBHEM BIAMMHOIT Te0M-
TIEHCAIMH TapaMarmuTHoro afipenra m aperTa BEIMOPAHHBAHN MPOLCCCOB PACCETHUS
C IIEPEBOPOTOM CIIHHA,

1. Introduction

Recently there has been a considerable growth of the literature on the coexistence of
superconductivity and magnetic ordering [1, 2], due to the experimental discovery
of such phenomena in some rare-earth compounds with regular positions of magnetic
atoms [3 to 5]. Likewise it has been known for a long time that there is some ex-
perimental-evidence of such a coexistence in dilute alloys of transition metals in
a superconducting matrix [1]. In such systems the type of magnetic ordering is
unknown in most cases. In the theory of dilute alloys of magnetic impurities the
concept of the spin-glass phase is preferred now due to the long-range and oscillating
behaviour of the indirect exchange interaction via the conduction electrons [8571L
There is good experimental evidence for the coexistence of superonductivity and
spin-glass ordering in Gd,Th; _,Ru, [8] and Gd,Ce; _,Ru, [8], as well as some evidence
for it in the amorphous alloy of LagAu,, with Gd impurities [9].

The influence of magnetic impurities upon superconductivity was first considered
by Abrikosov and Gorkov [10]. Gorkov and Rusinov have considered a possibility of
coexistence of superconductivity and ferromagnetism in such a system [11]. In the
present paper we will attempt to analyze the influence of spin-glass ordering upon
superconductivity.

2. General Formalism

To describe superconductivity in a system with some kind of magnetic ordering it
is convenient to use a four-dimensional matrix formalism, defining the electron
operators in spinor form [1, 2]:
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where () is the ordinary electron destruction operator with spin directed upwards
and so on.
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The zero-order Hamiltonian for a superconducting system takes the form
Ty = [ dr W= (r) ho(r) P(r) , (2)
where
~ Hyr) Ar
iy — (o) A
Ay —Hi(r)
Hy(r) is the free-electron Hamiltonian, o; and 7, are two independent sets of Pauli
matrices, direct product of which can be used to represent any 4 > 4 matrix, A, =
— Re A, A, = Im A, where A is the gap function of superconductivity theory.
The electron interaction with magnetic atoms can be described by the ordinary s—d
exchange model and the interaction Hamiltonian in the four-dimensional matrix
formalism takes the form [1]

) = Hy(r) 6,73 + 40s7, + Asop7; - (3)

Ho =+ [ dr P (@) V) (), (4)
where N
Pr) = £ Jr — R) 2+ St (5)
Opu 0 5
&y = (0 —O’:f) (b)

1o is the electron spin operator, J(r — R;) is the s—d exchange integral, S; is the
spin of the magnetic atom at the site R,.

To consider superconductivity with any kind of magnetic ordering it is useful to
isolate the mean-field effects. The Hamiltonian of electron interaction with a mean
magnetic field, following from (5) is

GO =3 [ dr () Hr) (1), (7
where
H(r 0
) = ( {(;) ’ — H(r) 0”) el -
H(r) = X J(r — R) {Sp) )

is the mean magnetic field at the point », {§;> the thermodynamic average of the
impurity spin. The mean field H(r) leads to the paramagnetic effect suppressing
superconduetivity.
We must also consider a perturbation (fluctuations) over the mean-field:
innt = gf?int . J(HF — r dr ‘P*(’I‘) 2: J(i' = Ri) Ot(Sg == <S,>) yj('l') i (10)
9

“int E

The perturbation theory over iy produces the Green’s function
Dz, 7)) = — (T(S¥(x) — {8H) (8j(z") — <8 (11)

where 7 18 the Matsubara “time”.

3. Spin-Glass Ordering and Superconduetivity

At present there is no complete spin-glass theory even in the mean field approximation.
The most popular Edwards-Anderson model of spin-glass behaviour [12, 13] is based
on the so-called replica method and the limit of replica number n — 0 and faces some
basic difficulties (such as negative entropy) [7]. Some other models were proposed
not using the replica method [14 to 16]. All of these models try to describe the spin-
glass phase via the order-parameter ¢ = ({S;>*, [12], where (.5, denotes the con-
figurational averaging, and lead to a practically equivalent behaviour of physical
quantities, though not in complete agreement with the experiment [6]. There is even
some doubt in the existence of the spin-glass transition itself [17].
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Our aim is to consider the influence of the Edwards-Anderson order-parameter
upon superconductivity. The main results will be in fact independent of any specific
model of spin-glass in the mean-field approximation. Thus we consider the simplest
model of [14], which leads to the same main results as the Edwards-Anderson model,
but is free from the unphysical artefacts of the replica method.

In the Medvedev-Zaborov model and analogous models of [15, 16] it is supposed
that the chaotic orientations of impurity spins lead to a random magnetic mean field
at every site h; = h(R;). The distribution function of this field can he shown to be
Gaussian [14]:

P(h) = (2 mdg)~® exp [ — Tl (12)
¥ 3 " I _3 Ag !
where g is the Edwards-Anderson order-parameter defined by
[ee] 0 k
q = [ dk P(h) b% (—) (13)
D l
where
B2
Plh) = 4ah® (5 aqgd) =32 exp ( —= 4) (14)
ERs

is the distribution function for the absolute value of the mean field, bs(x) is the Brillouin
funetion,

A =

c

JdR I*(R) = cI?, (15)
Yy v,

where I(R) is the indirect exchange integral (for example of the RKKY type), ¢ the

concentration of magnetic atoms, 7, the volume per one such an atom, 7' the absolute

temperature. The integration in (15) goes over the whole volume of the system except

the volume #, around the origin.

The solution of (13) for ¢(7') leads to dependences similar to that of the Edwards-
Anderson theory, ¢(T) = 0 for T <7 Ty, where 7 is the spin-glass “freezing” temper-
ature:

Ty=58(8+ 1) AV2 = L §(§ + 1) ¢lz 112 (16)
where S is the magnitude of the impurity spin.

The distribution of molecular fields is factorized over the sites:

P{h;} = II P(h;) (17)
and there is no short-range magnetic order:
{hibyy, = qAS; . (18)

Following the methods of [14] it is easy to show that the mean magnetic field H(r)
acting upon a conduction electron is also Gaussian:

P(H(r)) = (5 mgA)~32 exp {k L"(;)é‘ 2} ; (19)

PUH(r)) = IT () o (20)

CH(v) II(r’))t, = qAd(r —»"), (21)
where

A = ’:T [ dR JX(R) = cJ? (22)

and q(T) is defined by (13).
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Now we have to consider the superconductivity of electrons under the influence of
the random magnetic field H(r) distributed according to (19) to (21). The interaction
given by (7) can be analyzed by perturbation theory, which leads to the summation
of graphs for the electrons Green’s function shown in Figure 1.

Here the continuous line represents the matrix Green’s function defined by the
equation of motion

a =
{~ Sy 0To — hu(r)} go(rT, v’y =38(r — )3t — 1) . (23)
The dashed line describes the interaction with the random field H(r). Averaging over
(19), (20) we obtain that the second graph in Fig. 1 is equal to zero, while the
third one gives the ordinary electron self-energy in the random field (see Fig. 2a). Tt
is equal to

Zup(r — .7 — ) = [ {SH(v)} P{H(r)} H'(r) H'(1") &, go(r7, 7'7) &, =

=B J(r — RBy) J(r' — Ry) (S {90 augo(r 5 1'7') 0, (24)
or, using (21)2j

Zup(r — v, v —7') = 3 Ag¥(r — 1) x,95(r7, ¥'T") &y (25)

or, in the momentum representation,
2ur(pen) = AqNo 5 [ dép &, go(Pen) . (26)

where N, is the free-clectron density of states at the Fermi level. Equation (26) coin-
cides with the appropriate expression of the Abrikosov-Gorkov theory [1, 10| with
the substitution of the ordinary spin-flip scattering rate by Iy = 2mdq(T) N, =
= 2me.J?q(T) Ny. Thus the paramagnetic effect (random molecular field) in spin-
glasses influences the superconductivity in the same way as magnetic impurities in
the Abrikosov-Gorkov theory.

Consider now the rest of the interaction given by the Hamiltonian (10). The simplest
self-energy corresponding to this interaction is shown in Fig. 2b:

Jre, v'v) = — T J(r — R) J (' — BRy) D& (2, 7') &, go(rT, ¥'7) &, . (27)
ij

uv .

We use now the static approximation for Di'(z, 7').

Dij(z,7') — — <887 + 81 (8 . (28)
Then

2, vy =3 Jr — Ry) J(r' — Ry) (SES} apugo(rr, ¥'t’) &, —

i

— Hv) H'(r") apgo(rT, v'T) o, . (29)
After the configurational averaging we get

2ir—v1 —1) =T J(r — R) J(» — R)) {88 augo(rs, v'7) o, —

i

— Ldg 8(r — v') aug,(rr, 7)o, . (30)
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In the following we use the standard assumption of the spin-glass theory [7, 13],
corresponding to the absence of short-range magnetic order:

€SS Y, = Buby; + S(S + 1) . (31)
Then the total electron self-energy is equal to ‘

2r—r,v—7)=Lyp(r — v, 7t —17") + .f(r —rt—1) =

=T I — B) J(r — Ri)ye 5 S8 + 1) & gy(rT, v'7) o, = (32)

3
= 4 cJ28(8 + 1) &, go(rT, ¥'7") 2 8(r — 1),

where the last equality is valid for the point-like s—d exchange. In the momentum
representation

. e 1 .
X(pen) = 2—; 5 [ A& augi(pen) o (33)
where
DI = 27¢J?8(8 + 1) N, (34)

is the standard electron spin-flip scattering rate (in Born approximation) coincides
with the well-known result of the Abrikosov-Gorkov theory. In the sum of (25) and
(30) the contributions dependent on the Edwards-Anderson order-parameter have
cancelled each other completely. The physical meaning of such a cancellation is ab-
solutely clear. We have seen that the paramagnetic effect in spin-glasses is equivalent
to the spin-flip scattering rate [y = 2me2q(1') N,. At the same time the “freezing”
of spins during the spin-glass transition “freezes” out the ordinary mechanism of
spin-flip scattering in such a way that the corresponding scattering rate becomes
equal to Iy = Iy — 2w (1) Ny = S(S + 1) — ¢{8>%).. Both effects just com-
pensate each other [y = [y + I'&. Superconductivity in the system of magnetic
impurities is determined by the dependences of the Abrikosov-Gorkov theory despite
the spin-glass ordering.
4. Discussion

The cancellation of the Edwards-Anderson order parameter demonstrated for the
simplest graphs of Fig. 2 persists for all diagrams in higher orders of pertur-
bation theory. This is quite obvious for diagrams without crossing interaction lines
and also can be demonstrated directly for diagrams with crossing lines. This can-
cellation follows from the fact that the configurational average of the random mole-
cular field is equal to zero and the Ahrikosov-Gorkov behaviour is due to equation
(31) holding both in paramagnetic and spin-glass phases. Note that we neglect the
quantum nature of impurity spins which allows us to use the standard diagram
technique.

Spin dynamies can be neglected [1] if the characteristic frequencies of spin motion
in the spin-glass phase Qgq <€ 7', ~ /1, where 1', is the temperature of superconducting
transition, and /; the superconductivity gap for 7' = 0. £2s¢ can be a characteristic
frequency of a spin wave or the typical inverse time of change of the Edwards-Anderson
order parameter when on the average it is equal to zero due to the slow relaxation
processes [17]. Spin-glass dynamics can lead to a change in superconducting behavior
in comparison with the Abrikosov-Gorkov theory. For example it is well known,
that electron-electron interaction due to the exchange of spin-waves is repulsive,
thus lowering the superconducting 7',.

Under the specific conditions [14] the system considered can undergo a transition
not to a spin-glass phase but to that of a random ferromagnet (with a non-zero
spontaneous magnetic moment). This leads to a change of the distribution function
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of the random molecular fields, particularly the average of the second graph in
Fig. 1 as well as all graphs of odd power in the random field become non-zero.
Then there is no compensation of the paramagnetic effect and spin-flip scattering
freezing out, as in the case of ordinary ferromagnets [1, 2]. 1t is possible that such
a situation was realized in the experiments with Gd,La; ,Ru, [18], where two super-
conducting transition temperatures (re-entrant superconductivity) have been found
for some concentrations of Gd.

Finally, note that we have neglected the influence of the superconducting transi-
tion upon a spin-glass transition. The appropriate analysis seems difficult due to the
present status of spin-glass theory. The oscillating behaviour of the indirect exchange
interaction via the conduction electrons remains in the supercondueting phase and
in fact this interaction is almost the same as in normal metals up to distances of the
order of the superconducting coherence length [19]. This interaction is effectively
cut off at distances of the order of the electron mean-free path, thus in the case of
mean-free paths shorter than the superconducting coherence length the effective
interaction of impurity spins is unchanged in a superconducting phase. Tn general,
the interaction parameter (15) determining the spin-glass transition is apparently
almost the same as in the case of a normal metal.
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