ЭЛЕКТРОН-ФОНОННАЯ СВЯЗЬ В ТЕОРИИ ЭЛИАШБЕРГА – МАКМИЛЛАНА ЗА ПРЕДЕЛАМИ АДИАБАТИЧЕСКОГО ПРИБЛИЖЕНИЯ

М. В. Садовский

Институт электрофизики Уральского отделения Российской академии наук 620016, Екатеринбург, Россия

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

Поступила в редакцию 14 августа 2018 г., после переработки 14 августа 2018 г. Принята к публикации 20 сентября 2018 г.

Теория сверхпроводимости Элиашберга – Макмиллана основана на применимости адиабатического приближения. Параметр малости теории возмущений имеет при этом вид $\lambda\Omega_0/E_F\ll 1$, где λ — безразмерная константа электрон-фононного взаимодействия, Ω_0 — характерная частота фононов, а E_F энергия Ферми электронов. В данной работе предпринята попытка описания электрон-фононного взаимодействия в рамках подхода Элиашберга – Макмиллана в ситуации, когда характерная частота фононов Ω_0 становится достаточно большой (сравнимой или превышающей энергию Ферми E_F). Рассматривается общее определение спаривательной электрон-фононной константы связи λ , с учетом конечности частоты фононов. Получено простое выражение для обобщенной константы связи $\tilde{\lambda}$, определяющей перенормировку массы, с учетом конечной ширины зоны проводимости, описывающее плавный переход от адиабатического режима в область неадиабатичности. В условиях сильной неадиабатичности, когда $\Omega_0\gg E_F$, в теории возникает новый параметр малости $\lambda E_F/\Omega_0\sim \lambda D/\Omega_0\ll 1$ (D — полуширина электронной зоны), а поправки к электронному спектру становятся несущественными. В то же время, температура сверхпроводящего перехода T_c и в антиадиабатическом пределе определяется спаривательной константой связи Элиашберга – Макмиллана λ , а предэкспоненциальный множитель в формуле для $T_{
m c}$, сохраняющей типичный вид для приближения слабой связи, определяется шириной зоны (энергией Ферми). Для случая взаимодействия с одним оптическим фононом получена единая формула для Tc , справедливая как в адиабатическом, так и в антиадиабатическом режимах. Полученные результаты обсуждаются в контексте проблемы высокотемпературной сверхпроводимости в системе FeSe/STO.

DOI: 10.1134/S0044451019030155

1. ВВЕДЕНИЕ

Теория сверхпроводимости Элиашберга – Макмиллана является наиболее совершенным подходом к микроскопическому описанию свойств традиционных сверхпроводников с электрон-фононным механизмом куперовского спаривания [1–3]. Ее основные положения могут быть непосредственно обобщены и для рассмотрения нефононных механизмов спаривания в новых высокотемпературных сверхпроводниках. В последнее время эта теория была успешно

применена для описания рекордной сверхпроводимости в соединениях водорода под высоким давлением [4].

Хорошо известно, что теория сверхпроводимости Элиашберга – Макмиллана целиком основана на применимости адиабатического приближения и теореме Мигдала [5], позволяющей пренебречь вершинными поправками при расчетах, связанных с электрон-фононным взаимодействием в типичных металлах. При этом реальный параметр малости теории возмущений имеет вид $\lambda\Omega_0/E_F\ll 1$, где λ — безразмерная константа электрон-фононного взаимодействия Элиашберга – Макмиллана, Ω_0 — характерная частота фононов, а E_F — энергия Ферми электронов. В частности, это ведет к распростра-

^{*} E-mail: sadovski@iep.uran.ru

ненному мнению о том, что вершинными поправками в этой теории можно пренебречь даже при $\lambda>1$, благодаря выполнению неравенства $\Omega_0/E_F\ll 1$, характерного для типичных металлов. Это безусловно верно в континуальном приближении, когда пренебрегается эффектами дискретности решетки в электронном спектре.

Учет дискретности решетки ведет к нарушению применимости теоремы Мигдала при $\lambda \sim 1$, связанному с проявлением поляронных эффектов [6, 7]. В то же время, в области $\lambda < 1$ этими эффектами можно пренебречь [7]. В дальнейшем изложении мы будем вести все рассмотрение в континуальном приближении, имея в виду область не слишком больших констант электрон-фононного взаимодействия λ .

В последнее время был открыт ряд сверхпроводников, где адиабатическое приближение не может считаться выполненным, а характерные частоты фононов порядка или даже превышают энергию Ферми электронов. Имеются в виду, главным образом, высокотемпературные сверхпроводники на основе монослоев FeSe, прежде всего системы типа моноатомного слоя FeSe на подложке типа SrTiO₃ (FeSe/STO) [8]. Впервые на это обстоятельство в применении к таким системам обратил внимание Горьков [9, 10] при обсуждении идеи о возможном механизме повышения температуры сверхпроводящего перехода T_c в системе FeSe/STO за счет взаимодействия с высокоэнергетическими оптическими фононами в SrTiO₃ [8].

2. СОБСТВЕННО-ЭНЕРГЕТИЧЕСКАЯ ЧАСТЬ И КОНСТАНТА ЭЛЕКТРОН-ФОНОННОГО ВЗАИМОДЕЙСТВИЯ

Рассмотрим диаграмму второго порядка (по электрон-фононному взаимодействию), показанную на рис. 1. Для начала достаточно рассмотреть металл в нормальном (несверхпроводящем) состоянии. Рассмотрение можно вести как в мацубаровской технике $(T \neq 0)$, так и в технике T = 0. В частности, проведя вычисления в технике конечных температур, после аналитического продолжения с мацубаровских частот на действительные $i\omega_n \rightarrow \varepsilon \pm i\delta$ и в пределе T = 0, вклад диаграммы рис. 1 можно записать в стандартном виде [1,11]:

$$\Sigma(\varepsilon, \mathbf{p}) = \sum_{\mathbf{p}', \alpha} |g_{\mathbf{p}\mathbf{p}'}^{\alpha}|^{2} \left\{ \frac{f_{\mathbf{p}'}}{\varepsilon - \varepsilon_{\mathbf{p}'} + \Omega_{\mathbf{p} - \mathbf{p}'}^{\alpha} - i\delta} + \frac{1 - f_{\mathbf{p}'}}{\varepsilon - \varepsilon_{\mathbf{p}'} - \Omega_{\mathbf{p} - \mathbf{p}'}^{\alpha} + i\delta} \right\}, \quad (1)$$

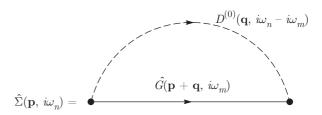


Рис. 1. Диаграмма второго порядка для собственно-энергетической части. Штриховая линия — функция Грина фонона $D^{(0)}$, сплошная линия — функция Грина электрона G в мацубаровском представлении

где в обозначениях с рис. 1 имеем $\mathbf{p}' = \mathbf{p} + \mathbf{q}$. Здесь $g_{\mathbf{p},\mathbf{p}'}^{\alpha}$ — фрелиховская константа электрон-фононного взаимодействия, $\varepsilon_{\mathbf{p}}$ — спектр электронов, отсчитанный от уровня Ферми, $\Omega_{\mathbf{q}}^{\alpha}$ — фононный спектр, $f_{\mathbf{p}}$ — фермиевская функция (ступенька).

В частности, для мнимой части собственной энергии при положительных частотах отсюда получаем

Im
$$\Sigma(\varepsilon > 0, \mathbf{p}) =$$

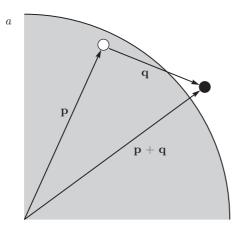
$$= -\pi \sum_{\mathbf{p'}, \alpha} |g_{\mathbf{p}\mathbf{p'}}^{\alpha}|^2 (1 - f_{\mathbf{p'}}) \delta(\varepsilon - \varepsilon_{\mathbf{p'}} - \Omega_{\mathbf{p} - \mathbf{p'}}^{\alpha}). \quad (2)$$

В этих выражениях индекс α нумерует ветви фононного спектра. Далее, для краткости, мы его просто опускаем.

Уравнение (1) можно тождественным образом переписать как

$$\Sigma(\varepsilon, \mathbf{p}) = \int d\omega \sum_{\mathbf{p}'} |g_{\mathbf{p}\mathbf{p}'}|^2 \delta(\omega - \Omega_{\mathbf{p}-\mathbf{p}'}) \times \left\{ \frac{f_{\mathbf{p}'}}{\varepsilon - \varepsilon_{\mathbf{p}'} + \omega - i\delta} + \frac{1 - f_{\mathbf{p}'}}{\varepsilon - \varepsilon_{\mathbf{p}'} - \omega + i\delta} \right\}. \quad (3)$$

В подходе Элиашберга – Макмиллана избавляются от явной зависимости от импульсов, проводя усреднение матричного элемента электронфононного взаимодействия по изоэнергетическим поверхностям, соответствующим энергиям электрона с начальным и конечным импульсами \mathbf{p} и \mathbf{p}' , что обычно совпадает с усреднением по соответствующим поверхностям Ферми, поскольку рассеяние на фононах происходит в узком энергетическом слое вблизи уровня Ферми шириной порядка удвоенной дебаевской частоты $2\Omega_D$, причем в типичных металлах всегда $\Omega_D \ll E_F$. Достигается это следующей заменой:



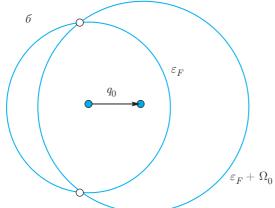


Рис. 2. a) Элементарный акт рассеяния электрона из окрестности поверхности Ферми на фононе. δ) Поверхности постоянной энергии для начального и конечного состояний электрона при рассеянии на оптическом фононе с энергией сравнимой с энергией Ферми. Усреднение матричного элемента взаимодействия в (12) или в (14) идет по области их пересечения

$$|g_{\mathbf{p}\mathbf{p}'}|^{2}\delta(\omega - \Omega_{\mathbf{p}-\mathbf{p}'}) \Longrightarrow \frac{1}{N(0)} \sum_{\mathbf{p}} \frac{1}{N(0)} \sum_{\mathbf{p}'} |g_{\mathbf{p}\mathbf{p}'}|^{2} \times \delta(\omega - \Omega_{\mathbf{p}-\mathbf{p}'})\delta(\varepsilon_{\mathbf{p}})\delta(\varepsilon_{\mathbf{p}'}) \equiv \frac{1}{N(0)} \alpha^{2}(\omega) F(\omega), \quad (4)$$

где в последней строке введено определение функции Элиашберга $\alpha^2(\omega)$, а

$$F(\omega) = \sum_{\mathbf{q}} \delta(\omega - \Omega_{\mathbf{q}})$$

— фононная плотность состояний.

В случае, когда энергия фонона становится сопоставимой или, тем более, превышает энергию Ферми, рассеяние электронов идет не в узком слое вблизи поверхности Ферми, а в более широком интервале энергий порядка $\Omega_0 \sim E_F$, где Ω_0 — характерная частота (например, оптического) фонона. Тогда при

начальном $|\mathbf{p}| \sim p_F$ усреднение по \mathbf{p}' в выражении типа (4) надо вести по изоэнергетической поверхности, соответствующей $E_F + \Omega_{\mathbf{p}-\mathbf{p}'}$, как это показано, например, на рис. 2. Соответственно, выражение (4) непосредственно обобщается как

$$|g_{\mathbf{p}\mathbf{p}'}|^{2}\delta(\omega - \Omega_{\mathbf{p}-\mathbf{p}'}) \Longrightarrow \frac{1}{N(0)} \sum_{\mathbf{p}} \frac{1}{N(0)} \times \times \sum_{\mathbf{p}'} |g_{\mathbf{p}\mathbf{p}'}|^{2}\delta(\omega - \Omega_{\mathbf{p}-\mathbf{p}'})\delta(\varepsilon_{\mathbf{p}})\delta(\varepsilon_{\mathbf{p}'} - \Omega_{\mathbf{p}-\mathbf{p}'}) \equiv \frac{1}{N(0)}\alpha^{2}(\omega)F(\omega), \quad (5)$$

что в последней δ -функции просто соответствует переходу от химического потенциала μ к $\mu+\Omega_{{\bf p}-{\bf p}'}$. Напомним, что у нас, как всегда, все энергии отсчитываются от $\mu=0$.

После замены типа (4) или (5) явная зависимость от импульсов в собственно-энергетической части пропадает и мы, фактически, работаем далее с усредненной по поверхности Ферми величиной

$$\Sigma(\varepsilon) \equiv \frac{1}{N(0)} \sum_{\mathbf{p}} \delta(\varepsilon_{\mathbf{p}}) \Sigma(\varepsilon, \mathbf{p}),$$

которая теперь записывается как

$$\Sigma(\varepsilon) = \int d\varepsilon' \int d\omega \, \alpha^2(\omega) F(\omega) \times \left\{ \frac{f(\varepsilon')}{\varepsilon - \varepsilon' + \omega - i\delta} + \frac{1 - f(\varepsilon')}{\varepsilon - \varepsilon' - \omega + i\delta} \right\}. \quad (6)$$

Это выражение, фактически, лежит в основе теории Элиашберга – Макмиллана и определяет структуру уравнений Элиашберга для описания сверхпроводимости.

3. ПЕРЕНОРМИРОВКА МАССЫ И КОНСТАНТА ЭЛЕКТРОН-ФОНОННОГО ВЗАИМОДЕЙСТВИЯ

В случае собственно-энергетической части, зависящей только от частоты (но не от импульса), мы имеем следующие простые формулы, связывающие перенормировку массы электрона с вычетом в полюсе функции Грина [12]:

$$Z^{-1} = 1 - \left. \frac{\partial \Sigma(\varepsilon)}{\partial \varepsilon} \right|_{\varepsilon = 0},\tag{7}$$

$$m^* = \frac{m}{Z} = m \left(1 - \frac{\partial \Sigma(\varepsilon)}{\partial \varepsilon} \Big|_{\varepsilon=0} \right).$$
 (8)

Тогда из (6) непосредственными вычислениями (все интегралы здесь берутся в бесконечных пределах) получаем

$$-\frac{\partial \Sigma(\varepsilon)}{\partial \varepsilon}\Big|_{\varepsilon=0} = \int d\varepsilon' \int d\omega \alpha^2(\omega) F(\omega) \times \left\{ \frac{f(\varepsilon')}{(\omega - \varepsilon' - i\delta)^2} + \frac{1 - f(\varepsilon')}{(\omega + \varepsilon' + i\delta)^2} \right\} =$$

$$= 2 \int_0^\infty \frac{d\omega}{\omega} \alpha^2(\omega) F(\omega), \quad (9)$$

так что, вводя безразмерную константу электрон-фононного взаимодействия Элиашберга – Макмиллана как

$$\lambda = 2 \int_{0}^{\infty} \frac{d\omega}{\omega} \alpha^{2}(\omega) F(\omega), \tag{10}$$

немедленно получаем стандартное выражение для перенормировки массы электрона за счет взаимодействия с фононами:

$$m^* = m(1+\lambda). \tag{11}$$

Функция $\alpha^2(\omega)F(\omega)$ в выражении для элиашберговской константы электрон-фононного взаимодействия (10) должна вычисляться по (4) или (5) в зависимости от соотношения энергии Ферми E_F и характерной частоты фононов Ω (грубо оцениваемой из Ω_D). Покуда $\Omega \ll E_F$, можно использовать стандартное выражение (4), тогда как в случае $\Omega \sim E_F$ нужно использовать (5). В принципе, все это давно известно — в неявном виде такой результат фигурировал еще в работе Аллена [13], но иногда в этом вопросе возникают недоразумения [14]. Используя (5), можно переписать (10) в следующем виде:

$$\lambda = \frac{2}{N(0)} \int \frac{d\omega}{\omega} \sum_{\mathbf{p}} \sum_{\mathbf{p'}} |g_{\mathbf{p}\mathbf{p'}}|^2 \delta(\omega - \Omega_{\mathbf{p}-\mathbf{p'}}) \times \delta(\varepsilon_{\mathbf{p}}) \delta(\varepsilon_{\mathbf{p'}} - \Omega_{\mathbf{p}-\mathbf{p'}}), \quad (12)$$

что и задает наиболее общий способ вычисления электрон-фононной константы λ , определяющей куперовское спаривание в теории Элиашберга – Макмиллана.

4. ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОНОВ С ОПТИЧЕСКИМИ ФОНОНАМИ, РАССЕИВАЮЩИМИ «ВПЕРЕД»

Открытие высокотемпературной сверхпроводимости в монослоях FeSe на подложках типа $SrTiO_3$ (FeSe/STO) с рекордной для сверхпроводников на

основе железа критической температурой T_c , почти на порядок превышающей ее значение в объемном FeSe (см. обзор [8]), обострило проблему поиска микроскопических механизмов повышения T_c . Последовавшее за этим открытие в ARPES-экспериментах существования в системе FeSe/STO так называемых «реплик» зоны проводимости [15] привело к идее о повышении T_c за счет взаимодействия электронов проводимости с оптическими фононами SrTiO₃, обладающими высокой энергией (частотой) около 100 мэВ, и рассеивающими электроны «почти вперед» (т. е. с малым передаваемым импульсом фонона) за счет особенностей взаимодействия с оптически активными диполями Ti-O на интерфейсе STO. Модель такого рассеяния, предложенная в работе [15], возродила интерес к предложенной ранее в работах Долгова и Кулича модели повышения T_c за счет взаимодействия с рассеянием «вперед» [16,17], что получило дальнейшее развитие, уже в применении к FeSe/STO, в работах [18, 19]. Эта модель действительно объясняет ряд экспериментальных фактов, таких как появление «реплик» зон проводимости и возможность достижения высоких значений T_c , однако ее основные выводы были подвергнуты критике (с разных точек зрения) в работах [20-22] и остаются дискуссионными.

Одним из важных обстоятельств, которому не было уделено достаточного внимания в работах [15,18,19], был отмеченный Горьковым [9,10] неадиабатический характер взаимодействия электронов FeSe с оптическими фононами STO. Энергия Ферми в зоне проводимости FeSe/STO мала, порядка 50–60 мэВ [8,15], что само по себе представляет собой серьезную проблему для теоретического объяснения [20,21]. Соответственно, энергия оптических фононов (около 100 мэВ) превышает ее практически в два раза, приводя к достаточно сильному нарушению условия адиабатичности. Посмотрим, прежде всего, к чему это может привести при расчете спаривательной электрон-фононной константы связи в подходе Элиашберга – Макмиллана.

Рассмотрим частный пример взаимодействия электронов с одиночной оптической (эйнштейновской) фононной модой с достаточно большой частотой Ω_0 , которая рассеивает, в основном, «вперед». Общая качественная картина такого рассеяния показана на рис. 2. В этом случае в (12) плотность фононных состояний есть просто $F(\omega) = \delta(\omega - \Omega_0)$, а для импульсной зависимости взаимодействия с оптическим фононом на интерфейсе FeSe/STO можно принять характерную зависимость, полученную в [15]:

$$g(\mathbf{q}) = g_0 \exp(-|\mathbf{q}|/q_0), \tag{13}$$

где типичное значение величины $q_0 \sim 0.1\pi/a \ll p_F$ (a — постоянная решетки, а p_F — импульс Ферми), приводящую к рассеянию электронов на оптических фононах почти «вперед».

Тогда безразмерная спаривательная константа электрон-фононного взаимодействия в теории Элиашберга записывается как

$$\lambda = \frac{2}{N(0)\Omega_0} \sum_{\mathbf{p}} \sum_{\mathbf{q}} |g_{\mathbf{q}}|^2 \delta(\varepsilon_{\mathbf{p}}) \delta(\varepsilon_{\mathbf{p}+\mathbf{q}} - \Omega_0).$$
 (14)

Поскольку в системе FeSe/STO фактически выполняется неравенство $\Omega_0 > E_F$, очевидно, что в данном случае конечность этой частоты во второй δ -функции в этом выражении должна учитываться.

Для простых оценок предположим линеаризованный характер спектра электронов: $\varepsilon_{\mathbf{p}} \approx v_F(|\mathbf{p}|-p_F)$ (v_F — скорость Ферми), что позволяет провести все вычисления явно в аналитическом виде. Теперь, подставляя (13) в (14) и рассматривая двумерный случай, после вычисления всех необходимых интегралов получим [21]

$$\lambda = \frac{g_0^2 a^2}{\pi^2 v_F^2} K_1 \left(\frac{2\Omega_0}{v_F q_0} \right), \tag{15}$$

где $K_1(x)$ — функция Бесселя от чисто мнимого аргумента (функция Макдональда). Применяя хорошо известную асимптотику $K_1(x)$ и отбрасывая ряд несущественных констант, имеем

$$\lambda \sim \lambda_0 \frac{q_0}{4\pi p_F},\tag{16}$$

при $\Omega_0/v_Fq_0\ll 1$, и

$$\lambda \sim \lambda_0 \frac{\Omega_0}{\pi E_F} \sqrt{\frac{v_F q_0}{\Omega_0}} \exp\left(-\frac{2\Omega_0}{v_F q_0}\right),$$
 (17)

при $\Omega_0/v_F q_0 \gg 1$.

Здесь мы ввели стандартную безразмерную константу электрон-фононного взаимодействия:

$$\lambda_0 = \frac{2g_0^2}{\Omega_0} N(0), \tag{18}$$

где N(0) — плотность электронных состояний на уровне Ферми на одну проекцию спина.

Результат (16) известен [18, 19] и сам по себе достаточно неблагоприятен для существенного повышения T_c в рассматриваемой модели. Еще хуже обстоит дело с учетом большой величины частоты Ω_0 , поскольку спаривательная константа взаимодействия оказывается экспоненциально подавлен-

ной при $\Omega_0/v_Fq_0 > 1$, что типично для интерфейса FeSe/STO, где $\Omega_0 > E_F \gg v_F q_0$ [8]. Это делает увеличение T_c благодаря взаимодействию электронов FeSe с оптическими фононами STO весьма маловероятным. Фактически, сходные выводы были сделаны, исходя из расчетов ab initio, и в работе [23], где также анализировались зависимости элиашберговской константы связи от частоты оптического фонона в STO. При этом, однако, эффект подавления этой константы был заметно меньше, что, вероятно, связано с нереалистически большим значением энергии Ферми, полученным в LDA-расчетах электронного спектра системы FeSe/STO, не учитывающих роль корреляций [23]. Соответственно в работе [23] всегда выполнялось неравенство $\Omega_0 \ll E_F$. Учет корреляций в рамках LDA+DMFT-расчетов, проведенных в работах [20,21], позволил получить значения энергии Ферми в зоне проводимости FeSe/STO, соответствующие данным ARPES-экспериментов, из которых следует, что в этой системе мы сталкиваемся с антиадиабатической ситуацией, когда $\Omega_0 > E_F$.

Разумеется, полученные выше результаты в асимптотике высоких частот Ω_0 зависят от вида импульсной зависимости в выражении (13). Например, при выборе гауссового закона убывания взаимодействия с передаваемым импульсом мы получим более быстрое гауссово убывание константы взаимодействия с частотой в асимптотике (17). В общем случае, при достаточно быстром убывании взаимодействия (13) на масштабе q_0 , мы всегда получим достаточно быстрое уменьшение константы взаимодействия при $\Omega_0 \gg v_F q_0$.

Более реалистический случай, когда оптический фонон рассеивает электроны не только «вперед», но и в широком интервале передаваемых импульсов (как это следует, например, из расчетов ab initio [23]), в приведенных выше формулах нужно просто взять достаточно большое значение параметра q_0 . Выбирая, например, $q_0 \sim 4\pi p_F$ и используя низкочастотный предел (16), немедленно получаем $\lambda \approx \lambda_0$, т. е. стандартный результат. Аналогичным образом, параметр q_0 можно взять равным вектору обратной решетки $2\pi/a$. Принимая $q_0 \sim 2\pi/a$, из (16) получаем

$$\lambda \sim \lambda_0 \frac{1}{2p_F a} \sim \lambda_0 \tag{19}$$

при типичном $p_F \sim 1/2a$. В общем случае тут всегда остается зависимость от величины импульса Ферми и параметра обрезания (ср. аналогичное рассмотрение в книге [12]).

В предельном случае (17), полагая $q_0 \sim p_F$, немедленно получаем

$$\lambda \sim \frac{\sqrt{2}}{\pi} \lambda_0 \sqrt{\frac{\Omega_0}{E_F}} \exp\left(-\frac{\Omega_0}{E_F}\right),$$
 (20)

что просто означает эффективное обрезание взаимодействия для $\Omega_0 > E_F$ в антиадиабатическом пределе. Это обстоятельство подчеркивалось в работах Горькова [9,10].

5. ЭФФЕКТЫ КОНЕЧНОЙ ШИРИНЫ ЗОНЫ И АНТИАДИАБАТИЧЕСКИЙ ПРЕДЕЛ

Как уже отмечалось, обычный подход Мигдала — Элиашберга полностью основан на адиабатическом приближении, связанном с наличием в обычных электрон-фононных системах (металлах) малого параметра $\Omega_D/E_F\ll 1$ (или $\Omega_0/E_F\ll 1$ для случая одного оптического фонона с частотой Ω_0). Фактическим параметром теории возмущений при этом оказывается $\lambda(\Omega_0/E_F)$, который мал даже при $\lambda\sim 1$. Наличие такого малого параметра позволяет ограничиться простой диаграммой второго порядка по электрон-фононному взаимодействию, рассмотренной выше, и пренебречь всеми вершинными поправками (теорема Мигдала) [5]. Эти условия нарушаются в системе FeSe/STO, где $\Omega_0\sim 2E_F$.

Рассмотрение, проведенное выше, неявно предполагало бесконечную ширину зоны проводимости. Ясно, что в случае достаточно большой характерной частоты фононов она может оказаться сравнимой не только с энергией Ферми, но и с шириной зоны проводимости. Ниже мы покажем, что в пределе очень сильной неадиабатичности, когда $\Omega_0 \gg E_F \sim D \ (D-$ полуширина зоны проводимости), фактически, возникает ситуация, когда в теории появляется новый малый параметр теории возмущений $\lambda D/\Omega_0 \sim \lambda E_F/\Omega_0$.

Для этого рассмотрим случай зоны проводимости конечной ширины 2D с постоянной плотностью состояний (что отвечает, формально, двумерному случаю). Уровень Ферми считаем, как и выше, соответствующим началу отсчета энергии и подразумеваем типичный случай полузаполненной зоны. Тогда (6) сводится к

$$\Sigma(\varepsilon) = \int_{-D}^{D} d\varepsilon' \int d\omega \alpha^{2}(\omega) F(\omega) \times \left\{ \frac{f(\varepsilon')}{\varepsilon - \varepsilon' + \omega - i\delta} + \frac{1 - f(\varepsilon')}{\varepsilon - \varepsilon' - \omega + i\delta} \right\} =$$

$$= \int_{0}^{D} d\varepsilon' \int d\omega \alpha^{2}(\omega) F(\omega) \times$$

$$\times \left\{ \frac{1}{\varepsilon + \varepsilon' + \omega - i\delta} + \frac{1}{\varepsilon - \varepsilon' - \omega + i\delta} \right\} =$$

$$= \int d\omega \alpha^{2}(\omega) F(\omega) \times$$

$$\times \left\{ \ln \frac{\varepsilon + D + \omega - i\delta}{\varepsilon - D - \omega + i\delta} - \ln \frac{\varepsilon + \omega - i\delta}{\varepsilon - \omega + i\delta} \right\}. (21)$$

Для модели с одним оптическим фононом $F(\omega) = \delta(\omega - \Omega_0)$ и мы сразу же получаем

$$\Sigma(\varepsilon) = \alpha^{2}(\Omega_{0})F(\Omega_{0}) \times \left\{ \ln \frac{\varepsilon + D + \Omega_{0} - i\delta}{\varepsilon - D - \Omega_{0} + i\delta} - \ln \frac{\varepsilon + \Omega_{0} - i\delta}{\varepsilon - \Omega_{0} + i\delta} \right\} =$$

$$= \alpha^{2}(\Omega_{0})F(\Omega_{0}) \ln \left\{ \frac{\varepsilon + D + \Omega_{0} - i\delta}{\varepsilon - D - \Omega_{0} + i\delta} \frac{\varepsilon - \Omega_{0} + i\delta}{\varepsilon + \Omega_{0} - i\delta} \right\}. \quad (22)$$

Соответственно, из (21) получаем

$$-\frac{\partial \Sigma(\varepsilon)}{\partial \varepsilon}\Big|_{\varepsilon=0} = 2\int_{0}^{D} d\varepsilon' \int_{0}^{\infty} d\omega \alpha^{2}(\omega) F(\omega) \frac{1}{(\omega+\varepsilon')^{2}} =$$

$$= 2\int_{0}^{\infty} d\omega \alpha^{2}(\omega) F(\omega) \frac{D}{\omega(\omega+D)}, \quad (23)$$

так что можно ввести, по определению, обобщенную константу связи в виде

$$\tilde{\lambda} = 2 \int_{0}^{\infty} \frac{d\omega}{\omega} \alpha^{2}(\omega) F(\omega) \frac{D}{\omega + D}, \tag{24}$$

которая при $D \to \infty$ сводится к обычной константе Элиашберга – Макмиллана (10), а при $D \to 0$ дает «антиадиабатическую» константу связи

$$\lambda_D = 2D \int \frac{d\omega}{\omega^2} \alpha^2(\omega) F(\omega). \tag{25}$$

Выражение (24) описывает плавный переход между пределами широкой и узкой зон проводимости. Перенормировка массы, в общем случае, определяется константой $\tilde{\lambda}$:

$$m^* = m(1 + \tilde{\lambda}). \tag{26}$$

В предельно антиадиабатическом случае $D \ll \Omega_0$, после элементарных вычислений, из (21) получим

Re
$$\Sigma(\varepsilon) = 2D \int d\omega \, \alpha^2(\omega) F(\omega) \frac{\varepsilon}{\varepsilon^2 - \omega^2},$$
 (27)

а из (22)

$$\operatorname{Re}\Sigma(\varepsilon) = \alpha^{2}(\Omega_{0}) \frac{2D\varepsilon}{\varepsilon^{2} - \Omega_{0}^{2}} = \lambda_{D} \frac{\Omega_{0}^{2}\varepsilon}{\varepsilon^{2} - \Omega_{0}^{2}}.$$
 (28)

Для модели одного оптического фонона с частотой Ω_0 имеем

$$\tilde{\lambda} = \frac{2}{\Omega_0} \alpha^2(\Omega_0) \frac{D}{\Omega_0 + D} = \lambda \frac{D}{\Omega_0 + D} =$$

$$= \lambda_D \frac{\Omega_0}{\Omega_0 + D}, \quad (29)$$

где константа связи Элиашберга – Макмиллана

$$\lambda = 2 \int_{0}^{\infty} \frac{d\omega}{\omega} \alpha^{2}(\omega) F(\omega) = \alpha^{2}(\Omega_{0}) \frac{2}{\Omega_{0}}, \quad (30)$$

а λ_D сводится к

$$\lambda_D = 2\alpha^2(\Omega_0) \frac{D}{\Omega_0^2} = 2\alpha^2(\Omega_0) \frac{1}{\Omega_0} \frac{D}{\Omega_0}, \quad (31)$$

где в последнем выражении выделен возникающий в сильном антиадиабатическом пределе новый малый параметр $D/\Omega_0\ll 1.$ Соответственно, в этом пределе всегда имеем

$$\lambda_D = \lambda \frac{D}{\Omega_0} \sim \lambda \frac{E_F}{\Omega_0} \ll \lambda, \tag{32}$$

так что при разумных значениях λ (вплоть даже до области сильной связи, когда $\lambda \sim 1$) «антиадиабатическая» константа связи остается малой. Очевидно, что и вершинные поправки также становятся в этом пределе малыми, что было показано непосредственными вычислениями в работе [24], во многом оставшейся незамеченной. Таким образом, мы приходим к неожиданному выводу — в пределе сильной неадиабатичности электрон-фононная связь становится слабой!

Для мнимой части собственной энергии в сильном антиадиабатическом пределе нетрудно получить

$$\operatorname{Im}\Sigma(\varepsilon > 0) = -i2\pi D\varepsilon \int d\omega \,\alpha^{2}(\omega)F(\omega)\delta(\varepsilon^{2} - \omega^{2}) =$$

$$= -i2\pi D\varepsilon \int d\omega \,\alpha^{2}(\omega)F(\omega)\frac{1}{2\varepsilon}\{\delta(\varepsilon - \omega) + \delta(\varepsilon + \omega)\} =$$

$$= -i\pi D\alpha^{2}(\varepsilon)F(\varepsilon), \quad (33)$$

что в модели с одним оптическим фононом сводится к

$$\operatorname{Im} \Sigma(\varepsilon > 0) = -i\pi D\alpha^{2}(\Omega_{0})\delta(\varepsilon - \Omega_{0}) =$$

$$= -\frac{i\pi}{2}\lambda_{D}\Omega_{0}^{2}\delta(\varepsilon - \Omega_{0}). \quad (34)$$

Из этих формул очевидно, что мнимая часть в этом пределе не особо актуальна (отлична от нуля только при $\varepsilon = \Omega_0$), а уравнение для действительной части электронной дисперсии

$$\varepsilon - \varepsilon_{\mathbf{p}} - \operatorname{Re}\Sigma(\varepsilon) = 0$$
 (35)

приобретает вид

$$\varepsilon - \varepsilon_{\mathbf{p}} - \alpha^2(\Omega_0) \frac{2D\varepsilon}{\varepsilon^2 - \Omega_0^2} = 0.$$
 (36)

Соответственно, при $\varepsilon \sim \varepsilon_{\mathbf{p}}$ можем написать

$$\varepsilon - \varepsilon_{\mathbf{p}} - \alpha^2(\Omega_0) \frac{2D\varepsilon_{\mathbf{p}}}{\varepsilon_{\mathbf{p}}^2 - \Omega_0^2} = 0, \tag{37}$$

что при $\varepsilon_{\mathbf{p}} \to 0$ дает малую поправку к спектру:

$$\varepsilon \approx \varepsilon_{\mathbf{p}} - \alpha^2(\Omega_0) \frac{2D}{\Omega_0^2} \varepsilon_{\mathbf{p}} = \varepsilon_{\mathbf{p}} - \lambda_D \varepsilon_{\mathbf{p}} = \varepsilon_{\mathbf{p}} (1 - \lambda_D), \quad (38)$$

очевидно, сводящуюся к малой ($\lambda_D \ll 1$) перенормировке эффективной массы (26).

Физический смысл слабости электрон-фононной связи в сильном неадиабатическом пределе достаточно ясен из качественных соображений, — когда ионы двигаются существенно быстрее электронов, последние не успевают «подстраиваться» к быстро меняющейся конфигурации ионов и, в этом смысле, слабо реагируют на их движение.

6. УРАВНЕНИЯ ЭЛИАШБЕРГА И ТЕМПЕРАТУРА СВЕРХПРОВОДЯЩЕГО ПЕРЕХОДА

Выше все рассмотрение проводилось для нормального состояния металла. Возникает вопрос, в какой мере полученные результаты можно распространить на случай металла в сверхпроводящем состоянии? В частности, какая константа связи $(\lambda, \tilde{\lambda}$ или $\lambda_D)$ определяет температуру сверхпроводящего перехода T_c в антиадиабатическом пределе? Проведем соответствующий анализ с помощью надлежащего обобщения уравнений Элиашберга.

С учетом того, что и в антиадиабатическом приближении вершинные поправки несущественны, и в пренебрежении вкладом прямого кулоновского взаимодействия, уравнения Элиашберга могут быть выведены путем расчета диаграммы рис. 1, в которой электронная функция Грина в сверхпроводящем состоянии берется в матричном представлении Намбу. Для действительных частот она записывается в следующем стандартном виде [2]:

$$G(\varepsilon, \mathbf{p}) = \frac{Z(\varepsilon)\varepsilon\tau_0 + \varepsilon_{\mathbf{p}}\tau_3 + Z(\varepsilon)\Delta(\varepsilon)\tau_1}{Z^2(\varepsilon)\varepsilon^2 - Z^2(\varepsilon)\Delta^2(\varepsilon) - \varepsilon_{\mathbf{p}}^2},$$
 (39)

что соответствует матричной собственной энергии вида

$$\Sigma(\varepsilon, \mathbf{p}) = [1 - Z(\varepsilon)]\varepsilon\tau_0 + Z(\varepsilon)\Delta(\varepsilon)\tau_1, \tag{40}$$

где τ_i — стандартные матрицы Паули, а функции перенормировки массы $Z(\varepsilon)$ и энергетической щели $\Delta(\varepsilon)$ определяются из решения интегральных уравнений Элиашберга, которые в представлении действительных частот записываются в следующем виде [2]:

$$[1 - Z(\varepsilon)]\varepsilon = -\int_{-D}^{D} d\varepsilon' K(\varepsilon', \varepsilon) \times \operatorname{Re} \frac{\varepsilon'}{\sqrt{\varepsilon'^2 - \Delta^2(\varepsilon')}} \operatorname{sign} \varepsilon, \quad (41)$$

$$Z(\varepsilon)\Delta(\varepsilon) = \int_{-D}^{D} K(\varepsilon', \varepsilon) \times \operatorname{Re} \frac{\Delta(\varepsilon')}{\sqrt{\varepsilon'^2 - \Delta^2(\varepsilon')}} \operatorname{sign} \varepsilon, \quad (42)$$

где интегральное ядро имеет вид

$$K(\varepsilon', \varepsilon) = \frac{1}{2} \int_{0}^{\infty} d\omega \alpha^{2}(\omega) F(\omega) \times \left\{ \frac{\operatorname{th} \frac{\varepsilon'}{2T} + \operatorname{cth} \frac{\omega}{2T}}{\varepsilon' + \omega - \varepsilon - i\delta} - \frac{\operatorname{th} \frac{\varepsilon'}{2T} - \operatorname{cth} \frac{\omega}{2T}}{\varepsilon' - \omega - \varepsilon - i\delta} \right\}. \quad (43)$$

Единственное отличие от аналогичных уравнений, приведенных в работе [2], состоит в появлении конечных пределов интегрирования, определяемых шириной зоны, а также в отсутствие вклада прямого кулоновского отталкивания, который здесь обсуждаться не будет. Фактически уравнения (41) и (42) являются прямым аналогом уравнений (6) и (21) для нормального металла и заменяют их при переходе в сверхпроводящую фазу.

Для определения температуры сверхпроводящего перехода достаточно, как обычно, рассмотреть линеаризованные уравнения Элиашберга, которые имеют вид

$$[1 - Z(\varepsilon)]\varepsilon = \int_{0}^{D} d\varepsilon' \times \times \int_{0}^{\infty} d\omega \, \alpha^{2}(\omega) F(\omega) f(-\varepsilon') \times \times \left(\frac{1}{\varepsilon' + \varepsilon + \omega + i\delta} - \frac{1}{\varepsilon' - \varepsilon + \omega - i\delta}\right), \quad (44)$$

$$Z(\varepsilon)\Delta(\varepsilon) = \int_{0}^{D} \frac{d\varepsilon'}{\varepsilon'} \operatorname{th} \frac{\varepsilon}{2T_{c}} \operatorname{Re} \Delta(\varepsilon') \times \times \int_{0}^{\infty} d\omega \, \alpha^{2}(\omega) F(\omega) \times \times \left(\frac{1}{\varepsilon' + \varepsilon + \omega + i\delta} + \frac{1}{\varepsilon' - \varepsilon + \omega - i\delta}\right). \tag{45}$$

Для наших целей достаточно рассмотреть в этих уравнениях предел $\varepsilon \to 0$ и искать решения Z(0) = Z и $\Delta(0) = \Delta$. Тогда из (44) получаем

$$[1 - Z]\varepsilon = -2\varepsilon \int_{0}^{\infty} d\omega \,\alpha^{2}(\omega) F(\omega) \int_{0}^{D} \frac{d\varepsilon'}{(\varepsilon' + \omega)^{2}} =$$

$$= -2\varepsilon \int_{0}^{\infty} d\omega \,\alpha^{2}(\omega) F(\omega) \frac{D}{\omega(\omega + D)}$$
(46)

или

$$Z = 1 + \tilde{\lambda},\tag{47}$$

где константа $\tilde{\lambda}$ была определена выше в (24). Таким образом, именно эта эффективная константа связи определяет перенормировку массы как в нормальной, так и в сверхпроводящей фазе. Как уже указывалось выше, в пределе сильной антиадиабатичности эта перенормировка оказывается весьма малой и определяется предельным выражением λ_D (31).

Иная ситуация реализуется в уравнении (45). В пределе $\varepsilon \to 0$, используя (47), немедленно получаем из (45) следующее уравнение для T_c :

$$1 + \tilde{\lambda} = 2 \int_{0}^{\infty} d\omega \, \alpha^{2}(\omega) F(\omega) \int_{0}^{D} \frac{d\varepsilon'}{\varepsilon'(\varepsilon' + \omega)} \operatorname{th} \frac{\varepsilon'}{2T_{c}}. \quad (48)$$

В антиадиабатическом пределе, когда характерные частоты фононов существенно превышают ширину

зоны проводимости, в знаменателе подынтегрального выражения в (48) можно пренебречь ε' по сравнению с ω , так что уравнение для T_c перепишется как

$$1 + \tilde{\lambda} \approx 2 \int_{0}^{\infty} d\omega \frac{\alpha^{2}(\omega) F(\omega)}{\omega} \int_{0}^{D} \frac{d\varepsilon'}{\varepsilon'} \operatorname{th} \frac{\varepsilon'}{2T_{c}} =$$

$$= \lambda \int_{0}^{D} \frac{d\varepsilon'}{\varepsilon'} \operatorname{th} \frac{\varepsilon'}{2T_{c}}, \quad (49)$$

где λ — константа связи теории Элиашберга — Макмиллана, определенная выше в (10). Отсюда немедленно следует результат типа БКШ:

$$T_c \sim D \exp\left(-\frac{1+\tilde{\lambda}}{\lambda}\right),$$
 (50)

где опущена стандартная константа в предэкспоненте. Выше мы видели, что в антиадиабатическом пределе всегда $\tilde{\lambda} \to \lambda_D \ll \lambda$, так что в показателе экспоненты в (50) ей можно пренебречь и выражение для T_c сводится просто к формуле слабой связи теории БКШ, в которой предэкспоненциальный множитель определяется полушириной зоны (энергией Ферми), а спаривательная константа связи в экспоненте определяется общим выражением теории Элиашберга – Макмиллана (с учетом обсуждения, проведенного выше).

В модели с одним оптическим фононом с частотой Ω_0 уравнение (49) имеет вид

$$1 + \tilde{\lambda} = 2\alpha^2(\Omega_0) \int_0^D \frac{d\varepsilon'}{\varepsilon'(\varepsilon' + \Omega_0)} \operatorname{th} \frac{\varepsilon'}{2T_c}.$$
 (51)

Уравнение (51) легко решается (интеграл в нем можно вычислить, как обычно, интегрированием по частям), и мы получаем

$$T_c \sim D \exp\left(-\frac{1+\tilde{\lambda}+\lambda \ln(D/\Omega_0+1)}{\lambda}\right) = \frac{D}{1+D/\Omega_0} \exp\left(-\frac{1+\tilde{\lambda}}{\lambda}\right), \quad (52)$$

где для λ естественно возникает выражение (30). Видим, что в антиадиабатическом режиме при $D/\Omega_0\ll 1$ это выражение сводится к (50), а в адиабатическом пределе $D/\Omega_0\gg 1$ отсюда получаем обычное выражение для T_c в теории Элиашберга для случая промежуточной связи:

$$T_c \sim \Omega_0 \exp\left(-\frac{1+\lambda}{\lambda}\right).$$
 (53)

Таким образом, выражение (51) дает единое выражение для T_c , справедливое как в адиабатическом, так и в антиадиабатическом режиме, плавно интерполирует между этими предельными случаями.

В итоге мы приходим к достаточно неожиданным выводам — в пределе сильной неадиабатичности T_c определяется выражением типа слабой связи теории БКШ, в котором предэкспонента определяется не характерной частотой фононов, а энергией Ферми (последний вывод подчеркивался и в недавней работе Горькова [10]), а константа спаривательного взаимодействия сохраняет стандартную форму теории Элиашберга — Макмиллана. Введенная выше эффективная константа связи $\tilde{\lambda}$, стремящаяся в антиадиабатическом пределе к λ_D , определяет перенормировку массы, но отнюдь не температуру сверхпроводящего перехода.

7. ЗАКЛЮЧЕНИЕ

В данной работе мы рассмотрели электронфононную связь в теории Элиашберга – Макмиллана при выходе за рамки стандартного адиабатического приближения. Были получены простые соотношения для параметров взаимодействия электронов и фононов в ситуации, когда характерная частота фононов Ω_0 становится достаточно большой (сравнимой или превышающей энергию Ферми E_F). В частности, было проанализировано общее определение спаривательной константы связи λ , с учетом конечности частоты фононов. Было показано, что конечность этой частоты в популярной модели с доминирующим рассеянием «вперед» приводит к экспоненциальному подавлению константы связи при частотах $\Omega_0 \gg v_F q_0$, где q_0 определяет характерные размеры области передаваемых импульсов, в которой имеется заметное взаимодействие электронов с фононами. Аналогичная ситуация возникает и в обычном случае, когда q_0 порядка импульса обратной решетки, а частота оптических фононов превышает энергию Ферми E_F .

Получено простое выражение для обобщенной электрон-фононной константы связи $\tilde{\lambda}$, определяющей перенормировку массы в теории Элиашберга — Макмиллана с учетом конечной ширины зоны проводимости, описывающее плавный переход от адиабатического режима в область сильной неадиабатичности. Показано, что в условиях сильной неадиабатичности, когда $\Omega_0\gg E_F$, в теории возникает новый параметр малости $\lambda E_F/\Omega_0\sim \lambda D/\Omega_0\ll 1$ (D- полуширина электронной зоны), а поправки к элек-

тронному спектру становятся, фактически, несущественными, как и все вершинные поправки.

Фактически, это позволяет применить общие уравнения Элиашберга и за пределами адиабатического приближения, в частности, в сильном антиадиабатическом пределе. Результаты нашего рассмотрения показывают, что при выходе за пределы адиабатического приближения, в пределе сильной неадиабатичности, для сверхпроводимости реализуется режим слабой связи. При этом величина перенормировки массы мала и определяется эффективной константой λ_D , тогда как величина спаривательного взаимодействия определяется стандартной константой связи $\lambda \gg \lambda_D$ теории Элиашберга – Макмиллана, соответствующим образом обобщенной с учетом конечности частоты фононов (сопоставимой или превышающей энергию Ферми). Поскольку обрезание спаривательного взаимодействия в куперовском канале в антиадиабатическом пределе, как мы видели выше (см. также работу Горькова [10]), происходит на энергиях порядка E_F , в приближении типа слабой связи (которое подтверждается проведенными выше оценками) возможные вершинные поправки можно считать несущественными и использовать для T_c обычное выражение теории типа теории БКШ (50), что также подчеркивалось в [10]. Малая величина E_F в системе FeSe/STO приводит к тому, что одного только взаимодействия с антиадиабатическими фононами в STO недостаточно для объяснения экспериментально наблюдаемых значений T_c , покуда мы остаемся в рамках приближения слабой связи и величина λ не превышает 0.25. Тогда необходим учет двух механизмов спаривательного взаимодействия — ответственного за формирование исходного T_{c0} в объемном FeSe (фононы или спиновые флуктуации в FeSe) и усиливающего спаривание за счет взаимодействия с оптическими фононами STO. Проведенные таким образом оценки T_c [8, 10] находятся в достаточно разумном соответствии с экспериментами на FeSe/STO, без привлечения идей о механизмах спаривания с рассеянием «вперед». В то же время, проведенное здесь рассмотрение показывает, что выражение для T_c типа (50), формально имеющее вид приближения слабой связи теории БКШ, в реальности «работает» (в пределе сильной неадиабатичности) и при достаточно больших значениях λ , по крайней мере, вплоть до $\lambda \sim 1$, когда становятся существенными поляронные эффекты. Соответственно, для объяснения экспериментально наблюдаемой T_c в системе FeSe/STO может оказаться достаточным учет взаимодействия только с оптическими фононами STO, коль скоро могут быть реализованы значения $\lambda \sim 0.5$. Впрочем, достижение столь больших значений константы связи в этой системе, в свете проведенной выше дискуссии, представляется достаточно маловероятным (см. также результаты ab initio-pacчетов λ в [23]).

Отдельный вопрос, оставшийся за рамками проведенного рассмотрения, это учет прямого кулоновского отталкивания. В стандартной теории Элиашберга – Макмиллана, в адиабатическом приближении, когда частота фононов на порядки меньше энергии Ферми, это отталкивание входит через кулоновский псевдопотенциал μ^* , который существенно подавлен толмачевским логарифмом [2]. В антиадиабатической ситуации этот механизм подавления отталкивания не работает, что создает дополнительные проблемы для реализации сверхпроводимости. В целом, вопрос о роли прямого кулоновского отталкивания в антиадиабатическом режиме электронфононного взаимодействия заслуживает серьезного дальнейшего изучения.

Работа выполнена при частичной поддержке РФФИ (грант № 17-02-00015) и в рамках программы фундаментальных исследований № 12 Президиума РАН «Фундаментальные проблемы высокотемпературной сверхпроводимости».

ЛИТЕРАТУРА

- D. J. Scalapino, in Superconductivity, ed. by R. D. Parks, Marcel Dekker, New York (1969), p. 449.
- **2**. С. В. Вонсовский, Ю. А. Изюмов, Э. З. Курмаев, Сверхпроводимость переходных металлов, их сплавов и соединений, Наука, Москва (1977).
- 3. P. B. Allen and B. Mitrović, Sol. St. Phys., Vol. 37, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Acad. Press, New York (1982), p. 1.
- L. P. Gor'kov and V. Z. Kresin, Rev. Mod. Phys. 90, 011001 (2018).
- **5**. А. Б. Мигдал, ЖЭТФ **34**, 1438 (1958).
- **6**. А. С. Александров, А. Б. Кребс, УФН **162**, 1 (1992).
- 7. I. Esterlis, B. Nosarzewski, E. W. Huang, D. Moritz, T. P. Devereux, D. J. Scalapino, and S. A. Kivelson, Phys. Rev. B 97, 140501(R) (2018).
- **8**. М. В. Садовский, УФН **178**, 1243 (2008).
- 9. L. P. Gor'kov, Phys. Rev. B 93, 054517 (2016).
- 10. L. P. Gor'kov, Phys. Rev. B 93, 060507 (2016).

- **11.** Д. Р. Шриффер, *Теория сверхпроводимости*, Наука, Москва (1968).
- **12.** М. В. Садовский, *Диаграмматика*, ИКИ, Москва-Ижевск (2010).
- 13. P. B. Allen, Phys. Rev. B 6, 2577 (1972).
- 14. M. L. Kulić, AIP Conf. Proc. 715, 75 (2004).
- 15. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y. T. Cui, W. Li, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D. H. Lee, and Z. X. Shen, Nature 515, 245 (2014).
- O. V. Danylenko, O. V. Dolgov, M. L. Kulić, and V. Oudovenko, Eur. J. Phys. B 9, 201 (1999).
- 17. M. Kulić, arXiv:1712.06222.
- L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016).

- Y. Wang, K. Nakatsukasa, L. Rademaker, T. Berlijn, and S. Johnston. Supercond. Sci. Technol. 29, 054009 (2016).
- **20**. И. А. Некрасов, Н. С. Павлов, М. В. Садовский, Письма в ЖЭТФ **105**, 354 (2017).
- **21**. И. А. Некрасов, Н. С. Павлов, М. В. Садовский, ЖЭТФ **153**, 590 (2018).
- Fengmiao Li and G. A. Sawatzky, Phys. Rev. Lett. 120, 237001 (2018).
- Y. Wang, A. Linscheid, T. Berlijn, and S. Johnson, Phys. Rev. B 93, 134513 (2016).
- M. A. Ikeda, A. Ogasawara, and M. Sugihara, Phys. Lett. A 170, 319 (1992).