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nowhere realized experimentally. The discoveries of high – 
temperature in copper oxides (1986) and iron pnictides and 
chalcogenides (2008) were more or less unrelated to these 
theoretical proposals and will not be discussed here.

The similar idea of the use of much larger values of ωD 
in the case of the usual electron – phonon pairing mecha-
nism was introduced later by Ashcroft [4], who proposed to 
study the metallic hydrogen (with apparently larger ωD due 
to a small mass of hydrogen ion) and different hydrides [5], 
which can be stable under extremely high pressures. It is 
important to stress that all of these works used basically the 
standard weak (or intermediate) coupling approximation of 
BCS (McMillan) theory.

These proposals were criticized in the notorious paper 
by Cohen and Anderson [6], where rather elegant argu-
ments were given, seemingly quite convincing, that char-
acteristic scale of Tc values due to electron – phonon or 
“excitonic” mechanism (based on exchange of Bose – like 
excitations in metals) can be of the order of about 10 K 
only. This paper was immediately seriously criticized in 
Refs. [3, 7], with the conclusion that in reality there are no 
such limitations. However, the point of view expressed in 

1  Introduction

First ideas to enhance superconducting critical temperature 
Tc were introduced soon after the formulation of BCS the-
ory. In 1964 Little [1] and Ginzburg [2] proposed an idea 
of an “excitonic” mechanism – the replacement of phonons 
as a “glue” leading to Cooper pairing by some other Boson 
– type excitations with higher energies, thus changing the 
Debye frequency ωD in the preexponential factor of BCS 
expression for Tc by some ωex (with ωex > ωD), which 
leads to the increase of Tc (probably in some lucky case up 
to room temperatures). These ideas were further developed 
in many papers reviewed in the famous book [3]. Unfortu-
nately, up to now this “excitonic” mechanism was never and 
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Cohen – Anderson paper became popular in physics com-
munity (Anderson himself till the end of his life adhered 
to the view expressed in Ref. [6], though Cohen [8] has 
acknowledged the validity of arguments expressed in Dol-
gov et al. [7]), so that at the time of discovery of high – 
temperature superconductivity in cuprates (1986 – 1987), 
the common belief was that the “usual” electron – phonon 
mechanism does not allow values of Tc higher, that 30 – 40 
K. Because of this after the discovery of superconductivity 
in cuprates the “great race” has started for new theoretical 
models and mechanisms of superconductivity, which may 
explain the high values of Tc. It is most probable, that in 
these compounds Tc is determined by some kind of non – 
phonon pairing mechanism (e.g. due to antiferromagnetic 
fluctuations). Thus the problems of superconductivity in 
cuprates (as well as in iron pnictides and chalcogenides) 
are outside the scope of this work, which will discuss only 
the electron – phonon pairing.

The remarkable discovery by Mikhail Eremets group of 
superconductivity in H3S with Tc ∼200 K and further rapid 
development of experimental studies of high – temperature 
superconductivity in different hydrides [10–13] (to quote 
only some of the review papers) has opened the new path 
to almost room – temperatures superconductivity (though 
at extremely high (megabar) pressures) and stimulated an 
active theoretical work [14, 15]. There was no doubt from 
the very beginning, that high – Tc superconductivity in 
hydrides is due to the usual electron – phonon coupling. So 
from theoretical point of view probably the most important 
result of discovery of record Tc values in hydrides under 
high pressures, in our opinion, is the final (and experimen-
tal!) rebuttal of the point of view expressed in Ref. [6], 
explicitly demonstrating the possibility of achieving high 
- Tc values (of the order of 102 K) with the common elec-
tron – phonon mechanism. Most pressing now becomes the 
question of the upper limit of Tc, which can be achieved due 
to this pairing mechanism. Below we shall try to discuss this 
problem once again within the standard approach, based on 
Eliashberg – McMillan equations, as most successful the-
ory, describing superconductivity in the system of electrons 
and phonons in metals.

2  Electron – Phonon Interaction and 
Eliashberg – McMillan theory: Strong 
Coupling Limit

2.1  Some General Expressions and Definitions

Fröhlich Hamiltonian which is commonly used to describe 
electron – phonon interaction is written as:

H =
∑
p

εpa+
p ap +

∑
k

Ω0kb+
k bk+

+ 1√
N

∑
pk

gka+
p+kap(bk + b+

−k)
� (1)

where εp is the conduction electron energy (counted from 
the Fermi level), Ω0k is the “bare” phonon spectrum in the 
absence of electron – phonon interaction (which is actually 
rather poorly defined in the case of a real metal), and we 
have introduced the standard notations for creation a+

p  and 
annihilation ap operators of electrons and phonons – b+

k  and 
bk, N is the number of atoms in crystal.

The matrix element of electron – phonon interaction is 
usually written as:

gk = − 1√
2MΩ0k

⟨p|e(q)∇Vei(r)|p + q⟩

≡ − 1√
2MΩ0k

I(k)
� (2)

where Vei is electron – ion interaction potential, M is the 
ion mass, and e(q) is polarization vector of a phonon with 
frequency Ω0q.

McMillan [19] has derived a simple, but very general, 
expression for the dimensionless electron – phonon coupling 
in Eliashberg theory. The so called Eliashberg – McMillan 
function is defined [19, 23] as:

α2(ω)F (ω) =

= 1
N(0)

∑
p

∑
p′

|gpp′ |2δ(ω − Ωp−p′)δ(εp)δ(εp′) =

= 1
N(0)

∑
p

∑
p′

1
2MΩp−p′

|I(p − p′)|2δ(ω − Ωp−p′)

× δ(εp)δ(εp′)

� (3)

where Ωp−p′  is the phonon frequency and 
F (ω) =

∑
q δ(ω − Ωq) is the phonon density of states. As 

phonons typically scatter electrons in metals only in some 
narrow region close to the Fermi surface we introduce the 
matrix element of the gradient of electron –ion potential 
averaged over Fermi surface:

⟨I2⟩ = 1
[N(0)]2

∑
p

∑
p′

|I(p − p′)|2 δ(εp)δ(εp′) =

= 1
[N(0)]2

∑
p

∑
p′

|⟨p|∇Vei(r)|p′⟩|2)δ(εp)δ(εp′) =

= ⟨|⟨p|∇Vei(r)|p′⟩|2⟩F S

� (4)

Then we immediately get:

1 3

  234   Page 2 of 12



Journal of Superconductivity and Novel Magnetism          (2025) 38:234 

ˆ ∞

0
dωα2(ω)F (ω)ω = N(0)⟨I2⟩

2M
� (5)

Dimensionless electron – phonon coupling constant is 
expressed now via this Fermi – surface average as [19, 23]:

λ = 2
ˆ ∞

0

dω

ω
α2(ω)F (ω) =

= 2
⟨Ω2⟩

ˆ ∞

0
dωα2(ω)F (ω)ω

� (6)

where the mean square phonon frequency is defined as:

⟨Ω2⟩ =
´∞

0 dωα2(ω)F (ω)ω´∞
0

dω
ω α2(ω)F (ω)

= 2
λ

ˆ ∞

0
dωα2(ω)F (ω)ω� (7)

From this expression we can immediately see that:

λ = N(0)⟨I2⟩
M⟨Ω2⟩ � (8)

This expression gives very useful representation for λ, which 
is often used in the literature and in practical calculations.

Migdal’s theorem [16] allows us to neglect vertex cor-
rections in all calculations of Feynman diagrams related to 
electron – phonon interaction in typical metals. The actual 
small parameter of perturbation theory is λ Ω0

EF
≪ 1, where 

λ is the dimensionless constant of electron – phonon inter-
action and Ω0 is characteristic phonon frequency (e.g. of 
the order of Debye frequency ωD), while EF  is the Fermi 
energy of electrons, which in typical metals is of the order of 
conduction band width. In particular this leads to a common 
belief, that vertex corrections in this theory can be neglected 
even in case of λ > 1 (up to the values of λ ∼ EF

Ω0
≫ 1), as 

inequality Ω0
EF

≪ 1 holds in typical metals. This fact is the 
cornerstone of Eliashberg – McMillan theory for supercon-
ductors which allows the description of the so called strong 
coupling superconductivity outside the usual weak coupling 
limit of BCS theory [17–23].

2.2  Lower Bound for Tc in Eliashberg – McMillan 
Theory and Strong Coupling Limit

Limitations on the value of Tc in Eliashberg – McMillan 
theory in the limit of very strong coupling can be derived 
analytically [20, 23]. In the following we shall not consider 
the role of direct Coulomb repulsion of electrons within the 
Cooper pair, which is accounted for in the complete Eliash-
berg – McMillan theory, limiting ourselves only to electron 
– phonon interaction. The accounting for Coulomb contri-
butions is not especially difficult [19] and reduces at the end 

to introduction of the usual Coulomb pseudopotential µ⋆, 
which in typical metals is rather small and not so important 
in the limit of very strong coupling with phonons, which 
will be of the main interest for us in the following.

From the general system of Eliashberg – McMillan equa-
tions directly follows the linearized equation for the gap 
∆(ωn) [23], determining Tc:

∆(ωn)Z(ωn) = πT
∑
n′

ˆ ∞

0
α2(ω)F (ω)×

×D(ωn − ωn′ ; ω)∆(ωn′)
|ωn′ |

� (9)

where ωn = (2n + 1)πT  are usual Matsubara frequencies 
of electrons. The renormalization factor Z(ωn) is deter-
mined from:

1 − Z(ωn) = πT

ωn

∑
n′

ˆ ∞

−∞
dξ

ˆ ∞

0
dωα2(ω)F (ω)×

× D(ωn − ωn′ ; ω) ωn′

|ωn|

� (10)

and phonon Green’s function is expressed as:

D(ωn − ωn′ ; ω) = 2ω

(ωn − ωn′)2 + ω2 � (11)

Actually, Eq. (9) represents the system of linear equations 
for ∆(ωn). Let us consider here first the term with n = 0. 
Then, leaving in the sum in Eq. (10) only the contribution 
from n′ = 0, we obtain:

Z(0) = 1 + λ� (12)

which represents the usual electron mass – renormaliztion 
factor due to electron – phonon interaction: m⋆ = m(1 + λ). 
Its substitution into Eq. (9) for n = 0 just cancels the similar 
(corresponding to n′ = 0) term in the r.h.s., so that the equa-
tion for ∆(0) = ∆(πT ) takes the form:

∆(0) =

= πT
∑
n′ ̸=0

ˆ ∞

0
α2(ω)F (ω) 2ω

(πT − ωn′)2 + ω2
∆(ωn′)
|ωn′ |

� (13)

All terms in the r.h.s. here are positive. Let us leave only the 
contribution from n′ = −1, then after simple algebra with 
the account of ∆(0) = ∆(πT ) = ∆(−πT ) = ∆(−1) we 
immediately obtain the inequality [20, 23]:

1 >

ˆ ∞

0
dω

2α2(ω)F (ω)ω
(2πT )2 + ω2 � (14)
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1 >
∑

i

λi
Ω2

i

(2πT )2 + Ω2
i

� (20)

which in the limit of very strong coupling immediately 
gives the natural generalization of (17):

Tc >
1

2π

√
λ⟨Ω2⟩� (21)

Numerically exact solution of the full system of Eq. (9), per-
formed in Ref. [20] leads to the final expression for Tc in the 
strong coupling limit of λ ≫ 1 with replacement of 1/2π =
0.16 in (17) or (21) by 0.182:

Tc = 0.182
√

λ⟨Ω2⟩� (22)

It is obvious, that even the simplest solution (16) is quite 
sufficient for qualitative estimates of Tc in the limit of very 
strong coupling. The general situation is illustrated in Fig. 
1. From this figure it can be seen, in particular, that asymp-
totic behavior of Tc for λ ≫1 (22) with coefficient 0.182, 
approximates the values of critical temperature rather well 
already starting from the values of λ >1.5-2.0. The remark-
able result here is the replacement of exponential depen-
dence of Tc on the coupling constant, typical for the weak 
coupling BCS or intermediate coupling McMillan approxi-
mations, by the square root dependence, leading to monoto-
nous and seemingly unlimited growth of Tc with increasing 
λ. Then an important question arises – are there any limita-
tions to the growth of λ ?

3  Possible Limitations for Electron – Phonon 
Coupling

3.1  Fröhlih Instability

The general expression for phonon Green’s function, tak-
ing into account the interaction with electrons, is given by 
Dyson equation shown in Fig. 2. Then such “dressed” pho-
non Green’s function can be written as:

D(kω) = 2Ω0k

ω2 − Ω2
k + iδ

� (23)

where the renormalized phonon spectrum is determined 
from the equation:

Ω2
k = Ω2

0k

[
1 + 2|gk|2

Ω0k
Π(k, Ωk)

]
� (24)

Putting T = Tc in (14) we obtain the lower bound for Tc. 
In particular, in the model with Einstein spectrum of pho-
nons F (ω) = δ(ω − Ω0) and this inequality is immediately 
rewritten as:

1 > 2α2(Ω0) Ω0

(2πT )2 + Ω2
0

= λ
Ω2

0
(2πT )2 + Ω2

0
� (15)

so that for Tc we get:

Tc >
1

2π

√
λ − 1Ω0� (16)

which for λ ≫ 1 reduces to:

Tc >
1

2π

√
λΩ0 ≈ 0.16

√
λΩ0� (17)

For the model of phonon spectrum consisting of discrete set 
of Einstein phonons:

α2(ω)F (ω) =
∑

i

α2(Ωi)δ(ω − Ωi)

=
∑

i

λi

2
Ωiδ(ω − Ωi)

� (18)

In this case from (7) we simply obtain:

⟨Ω2⟩ = 1
λ

∑
i

λiΩ2
i � (19)

where λ =
∑

i λi. In this case the inequality (14) reduces 
to:

Fig. 1  Temperature of superconducting transition in Einstein model of 
phonon spectrum in units of Tc/Ω0 as a function of pairing constant λ 
[20]: 1 – lower bound (16), 2 – numerically exact solution of the full 
system of equations [20]. McMillan expression for Tc [19] is shown by 
dashed line (for the case of µ⋆=0)
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We see, that for λk
0 → 1/2 the renormalized coupling con-

stant λk monotonously grows and finally diverges. It is this 
constant that determines the “true” value of electron – pho-
non interaction (with “dressed” phonons) and there are no 
limitations for its value at all. This physical picture was dis-
cussed in detail in already in Ref. [3].

In the model with single Einstein phonon, which is a 
reasonable approximation for an optical phonon, we have 
Ωk = Ω0 and we can forget about dependence of the cou-
pling constant on phonon momentum, so that:

λ0 = 2g2
0N(0)
Ω0

� (30)

Ω2 = Ω2
0[1 − 2λ0]� (31)

λ = 2g2
0N(0)
Ω0

(
Ω0

Ω

)2

= λ0

1 − 2λ0
� (32)

Equation (29) can be reversed and we can write:

λk
0 = λk

1 + 2λk
� (33)

expressing nonphysical “bare” constant of electron – pho-
non coupling λk

0  via the “true” physical coupling constant 
λk. Using this relation in the equation for renormalized pho-
non spectrum (25), we can write it as:

Ω2
k = Ω2

0k

[
1 − 2λk

1 + 2λk

]
= Ω2

0k
1

1 + 2λk
� (34)

so that in this representation there is no instability of spec-
trum (lattice), and the growth of λk just leads to continuous 
“softening” of spectrum due to the growth of electron – pho-
non coupling.

In a model of Einstein phonon all relations simplify and 
we get:

λ0 = λ

1 + 2λ
� (35)

Ω = Ω0√
1 + 2λ

� (36)

In Eliashberg – McMillan formalism, where we perform 
the averaging over the momenta of electrons over the Fermi 
surface, Eliashberg – McMillan function α2(ω)F (ω), natu-
rally should be determined bu the physical (renormalized) 
spectrum of phonons. In particular case of Einstein phonon 
it immediately reduces to (32) and there are no limitations 
on the value of λ.

In adiabatic approximation, taking into account Migdal 
theorem, polarization operator here can be taken as a sim-
ple loop. With rather high accuracy in polarization opera-
tor here we can put ω = 0, k = 0 so that it reduces to 
Π(0, 0) = −2N(0) [23].

Then the phonon spectrum, renormalized by interaction 
with electrons, is determined by:

Ω2
k = Ω2

0k

[
1 + 2|gk|2

Ω0k
Π(0, 0)

]
= Ω2

0k
[
1 − 2λk

0
]
� (25)

where we have introduced the usual definition of dimension-
less coupling constant of electron – phonon interaction [23]:

λk
0 = 2|gk|2N(0)

Ω0k
� (26)

In this (rough enough) approximation the relatively small 
damping of phonons due to electron – phonon interaction is 
just neglected. It can be taken into account by more accu-
rate treatment of the imaginary part of polarization operator 
which is just zero in the approximation used here.

The spectrum given by Eq. (25) signifies the lattice 
instability for λk

0 > 1/2, when the square of the phonon 
frequency becomes negative. This instability was correctly 
interpreted already in the early paper by Fröhlich [24], 
where it was observed for the first time. Let us rewrite the 
“dressed” Green’s function (23) identically as:

D(kω) = 2Ωk

ω2 − Ω2
k + iδ

Ω0k

Ωk
� (27)

Then it becomes clear that during diagram calculations 
using from the very beginning this renormalized Green’s 
function of phonons, the physical coupling constant of elec-
tron – phonon interaction takes the form (instead of (26)):

λk = 2|gk|2N(0)
Ωk

Ω0k

Ωk
= 2|gk|2N(0)

Ω0k

Ω2
0k

Ω2
k

= λk
0

Ω2
0k

Ω2
k

� (28)

or, using (25):

λk = λk
0

1 − 2λk
0

� (29)

Fig. 2  Dyson equation for the full (“dressed”) phonon Green’s function

 

1 3

Page 5 of 12    234 



Journal of Superconductivity and Novel Magnetism          (2025) 38:234 

by electron – phonon interaction. The physical meaning 
of the “bare” spectrum Ω0 in these models remains not so 
clear, in contrast to phonon spectrum in metals, calculated 
in adiabatic approximation.

3.2  Specific Heat Instability?

Recently Semenok et al. [30] proposed a possible limita-
tion for λ due a certain electronic specific heat instabil-
ity previously derived in Yuzbashyan and Altshuler [31] 
within Eliashberg – McMillan theory . It was claimed that 
electronic specific heat in Eliashberg – McMillan theory 
becomes negative for the values of λ > λ⋆ in a certain tem-
perature interval, signifying thermodynamic instability of 
electron – phonon system. For Einstein model it was shown 
that λ⋆ =3.69 (for Debye model of phonon spectrum λ⋆ =
4.72). The use of this value in Allen – Dynes expression 
for Tc (22), immediately leads to Tc ≈ 0.35Ω as an upper 
limit for superconducting transition temperature (for Ein-
stein model).

However the authors of Ref. [32] disagreed and explicitly 
shown that the total specific heat in Eliashberg – McMil-
lan theory remains positive for all parameters of the model, 
at least until adiabatic approximation is valid. i.e. λ < EF

Ω0
. 

The essence of argumentation is as follows. The free energy 
per unit volume in Eliashberg – McMillan theory can be 
shown [32] to be determined as:

F = Ffree + T

2
∑
mk

log[−D−1(k, iωm)]� (37)

where Ffree is the free energy of free electrons and 
D(k, iωm) is the renormalized phonon Green’s function 
(23), (27) in Matsubara representation, calculated in the 
simplest approximation used above. Actually electron – 
phonon interaction enters here only through this “dressed” 
function.

After the detailed calculations an explicit expressions for 
F and specific heat Cep(T ) = −Td2F/d2T  can be derived 
[32] of which we quote only the limiting forms for Cep(T ) 
for the case of Einstein phonons, using our notations. For 
2πT ≪ Ω (with Ω given by Eq. (31)):

Cep = 2π2

3
N(0)T

(
1 + λ0

1 − 2λ0

)
= 2π2

3
N(0)T (1 + λ)� (38)

which is the standard result for low – temperature con-
tribution to specific heat with the account of electronic 
mass renormalization due to interaction with phonons: 
m⋆ = m(1 + λ). For high temperatures 2πT ≫ Ω:

In self – consistent derivation of Eliashberg equa-
tions we have to use the the phonon Green’s function a 
“dressed”form (23) or (27), which corresponds to the physi-
cal (renormalized) phonon spectrum. In this case we do not 
have to include corrections to this function due to electron 
– phonon interaction, as they are already taken into account 
in the renormalized phonon spectrum (25).

It should be noted that the value of critical coupling 
constant obtained above, at which Fröhlich instability of 
phonon spectrum appears, is obviously directly related to 
the use of the simplest expression for polarization operator 
of the gas of free electrons, which was calculated neglect-
ing vertex corrections and self – consistent “dressing” of 
electron Green’s functions entering the loop. Naturally, 
even in the simplest cases like the problem with Einstein 
spectrum accounting for these higher corrections, as well as 
more realistic structure of electron spectrum in a lattice, can 
somehow change the value of λ0, corresponding to instabil-
ity of the “bare” phonon spectrum, so that it will differ from 
1/2. In this sense it is better to speak about instability at 
some “critical” value λc

0 ∼ 1/2.
This analysis can be significantly improved within the 

simplified Holstein model, where the electron – phonon 
interaction is considered to be local (single site), which 
allows solving this model using the dynamical mean field 
theory (DMFT) approach [25], which becomes (numeri-
cally) exact in the limit of lattice of infinite dimensions 
(infinite number of nearest neighbors). Such analysis was 
performed e.g. in Ref. [26], using as quantum Monte – Carlo 
(QMC) as impurity solver of DMFT. The usual behavior of 
Fröhlich theory is nicely reproduced with slightly changed 
λc

0=0.464. Behavior similar to Eq. (36) was obtained also 
for the renormalized phonon frequency Ω.,

The instability appearing at λ0 = λc
0 in Holstein model 

with half – filled bare band, was convincingly interpreted 
in Ref. [27] as transition into the state of bipolaron insu-
lator. Until this transition the system remains metallic and 
is nicely described by Eliashberg theory (with insignificant 
numerical corrections).

It should be stressed here, that all conclusions on instabil-
ity of metallic phase were done above in the framework of 
purely model approach and in terms of “bare” parameters of 
λ0 and Ω0, which, as was often noted in the literature, are 
not so well defined physically. The problem here is that the 
phonon spectrum in a metal, considered as system of ions 
and electrons, is usually calculated in adiabatic approxima-
tion [28]. This spectrum is relatively weakly renormalized 
due to nonadiabatic effects, which are small over the param-
eter 

√
m
M  [28, 29]. In this respect, it is drastically differ-

ent from the “bare” spectra of Fröhlich or Holstein models, 
which, as we have seen above, is significantly renormalized 
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It may seem now, that there is no limit for Tc growth due 
to electron – phonon pairing mechanism in the limit of 
very strong coupling. The only more or less obvious limit 
is related to the limits of adiabatic approximation, which 
is usually considered to be the cornerstone of Eliashberg 
theory.

In the model with Einstein spectrum of phonons we sim-
ply have: ⟨Ω2⟩1/2 = Ω, where Ω is assumed to be the renor-
malized phonon frequency. Then (40) reduces to:

Tc = 0.18
√

λΩ� (41)

so that seemingly for λ ≫ 1 we can, in principle, obtain 
even Tc > Ω. However, if we remember the renormaliza-
tion of phonon spectrum and take into account Eq. (36), we 
immediately obtain from Eq. (41):

Tc = 0.18
√

λΩ = 0.18Ω0

√
λ

1 + 2λ
� (42)

which in the limit of λ ≫ 1 gives

T max
c ≈ 0.13Ω0,� (43)

because of significant softening of phonon spectrum. At the 
same time, as noted above, the physical meaning of “bare” 
frequency Ω0 in a metal is rather poorly defined, and in par-
ticular it can not be determined from any experiments.

If we just forget about “bare” spectrum of phonons and 
consider parameters Ω and λ independent, we can obtain 
from Eq. (41) very high values of Tc. A certain , though 
rather artificial model, leading precisely to this kind of 
behavior was recently introduced in Ref. [34]. It consid-
ered the interaction of N–component electrons with N × N

–component system of Einstein phonons in the limit of 
N → ∞. It was shown that in this model the renormaliza-
tion of phonon spectrum due to interaction with conduction 
electrons is suppressed, so that in the limit of very strong 
coupling with 1≪ λ ≪ N  we always obtain Allen – Dynes 
estimate (41) with Ω = Ω0.

However, the problem here is, that in real situation we 
never can consider Ω and λ as independent parameters 
simply because of the general relations (6) and (7), which 
express λ and ⟨Ω2⟩ via integrals of Eliashberg – McMillan 
function α2(ω)F (ω). In fact, we may rewrite the expression 
for Tc in the region of very strong coupling as:

Tc = 0.18
√

λ⟨Ω2⟩ = 0.25
[ˆ ∞

0
dωα2(ω)F (ω)ω

]1/2
� (44)

We see, that this expression for Tc is completely determined 
by the integral of α2(ω)F (ω) over the phonon spectrum, 

Cep = 2π2

3
N(0)

(
T + 6EF

π2 − 3
π2 λ0

Ω2
0

T

)
� (39)

Consider now this last expression. The first term here is just 
the usual contribution from free electrons, the second is the 
contribution from free phonons with effective frequency, 
renormalized by the interaction with electrons, and the third 
term is the contribution from electron – phonon interaction. 
Without the middle term, the specific heat becomes negative 
below T ≈ 0.39

√
λ0Ω0 = 0.39

√
λΩ which is higher that 

superconducting transition temperature in the strong cou-
pling limit. However, with the account of the middle term 
the full Cep(T ) is never negative.

The authors of Ref. [31] argued that the negative con-
tribution from the third term in (39) indicates the normal 
state instability below a certain T, despite the total Cep(T ) 
remains positive, as the contribution from free phonons has 
nothing to do with electrons. However, both positive and 
negative contributions here come from the free energy term 
T
2

∑
mk log[−D−1(k, iωm)], so that both terms should be 

treated equally. Thus, the electron – phonon coupling gener-
ates the negative contribution to Cep(T ) and simultaneously 
gives the rise to much larger positive T – independent contri-
bution. The detailed numerical calculations of specific heat 
for all temperatures and different values of parameters of the 
model, performed in Ref. [32], has shown that specific heat 
remains always positive. In our opinion this clearly shows, 
that there is no specific heat instability discussed in Refs. 
[30, 31], at least within the standard formalism of equilib-
rium statistical mechanics.

However, the situation may be more complicated. It 
was shown in Ref. [33] using the standard kinetic equation 
approach, that thermal equilibrium between electrons and 
phonons can actually become unstable for large values of 
electron – phonon coupling constant. It was claimed that the 
negative values of electronic specific heat only are sufficient 
for such instability, leading to the difference between the 
temperatures of electrons and phonons. These results stress 
the importance of further studies of possible specific heat 
instabily in electron – phonon system at large couplings.

4  Upper Bound for Tc in the Very Strong 
Coupling Limit

As we have seen above in the limit of very strong coupling 
λ ≫ 1 solution of Eliashberg – McMillan equations gives 
the following expression for Tc:

Tc = 0.18
√

λ⟨Ω2⟩� (40)
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In the recent paper [36] a new upper limit for Tc was 
proposed, expressed via certain combination of fundamen-
tal constants. Below we show that with minor modifications 
such Tc limit follows directly from Eliashberg – McMil-
lan theory. The relation of λ and ⟨Ω2⟩ is clearly expressed 
by McMillan’s formula for λ (8). Equation (8) gives very 
useful representation for the coupling constant λ, which is 
routinely used in the literature and in practical (first – prin-
ciples) calculations [15, 39].

Using Eq. (8) in Eq. (40) we immediately obtain:

T ⋆
c = 0.18

√
N(0)⟨I2⟩

M
� (48)

where ⟨I2⟩ was defined in Eq. (4). Both λ and ⟨Ω2⟩ just drop 
out from the expression for T ⋆

c , which is now expressed via 
Fermi surface averaged matrix element of the gradient of 
electron – ion potential, ion mass and electronic density of 
states at the Fermi level.

As was already noted, all parameters entering this expres-
sion can be rather simply obtained during the first – prin-
ciples calculations of Tc for specific materials (compounds) 
[15, 39]. Let us also stress that the value of T ⋆

c  defined in 
Eq. (48), calculated for any specific material does not have 
any direct relation to real value of Tc, but just defines pre-
cisely the upper limit of Tc, which “would be achieved” 
in the limit of strong enough electron – phonon coupling. 
Below we shall present some rough heuristic (dimensional) 
estimates of its value [38].

In the following we assume to be dealing with three – 
dimensional metal with cubic symmetry with an elementary 
cell with lattice constant a and just one conduction electron 
per atom. Then we can estimate the density of states at the 
Fermi level as for free electrons: N(0) = mpF

2π2ℏ3 a3, where 
pF ∼ ℏ/a is the Fermi momentum, m is the mass of free 
(band) electron. Electron – ion potential (single – charged 
ion, e is electron charge) can be estimated as:

Vei ∼ e2

a
∼ e2pF /ℏ� (49)

so that its gradient is:

∇Vei ∼ e2

a2 ∼ e2p2
F /ℏ2� (50)

Then we easily obtain the following estimate of (4):

I2 ∼
(

e2

a2

)2

∼ (e2p2
F /ℏ2)2� (51)

while there is no explicit dependence of Tc on λ and ⟨Ω2⟩ 
separately.

Experimental discovery of high – temperature super-
conductivity in hydrides under high (megabar) pressures 
[9] stimulated the search for the ways to achieve supercon-
ductivity at room temperature [10–13]. At the moment the 
common view [14, 15] is that the high – temperature super-
conductivity in hydrides can be described in the framework 
of the standard Eliashberg – McMillan theory. Within this 
theory many attempts were undertaken to estimate the max-
imal achievable superconducting transition temperature and 
the discussion of some of these attempts can be found in the 
reviews [14, 15, 23].

In Ref. [35] a another simple inequality for Tc was pro-
posed, limiting its value by the square A under α2(ω)F (ω):

Tc ≤ 0.2309
ˆ ∞

0
dωα2(ω)F (ω) ≡ 0.2309A� (45)

For the case of Einstein spectrum of phonons this can be 
rewritten as:

Tc ≤ 0.115λΩ0� (46)

This inequality is relatively often used in the literature.
In Ref. [37] a semi empirical limit for Tc was proposed 

for conventional semiconductors, which can be written in a 
very simple form:

kBTc ≤ AmaxΘD = AmaxℏΩD� (47)

where Amax ≈ 0.10, and ΘD = ℏΩD is Debye temperature, 
which may be determined e.g. from standard measurements 
of specific heat. This inequality obviously correlates with 
T max

c , obtained above in the limit of λ → ∞ in Eq. (42), if 
we identify Ω0 with ΩD. It is seen from Fig. 3 this limitation 
is satisfied for most of conventional superconductors [37].

Fig. 3  Experimental values of the temperature of superconduct-
ing transition for conventional superconductors dependence on their 
Debye temperature ΘD  [37]
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5  Metallic Hydrogen and the “jellium” 
Model: Insufficiency of the Weak – Coupling

In the recent paper [42] an elegant study of superconductiv-
ity of metallic hydrogen was performed within the “jellium” 
model [3, 43]. In this model it is rather easy to calculate all 
the relevant parameters to calculate Tc (cf. section Methods 
of Ref. [42]) in weak – coupling BCS approach or for the 
general case of Eliashberg – McMillan theory .

The upper boundary for the phonon frequency in this 
model is just given by the ion plasma frequency (we again 
consider the single – charged ions):

ω0 =
√

4πne2

M
= 2Ry

√
3m

M

1
r

3/2
s

� (56)

where n is conduction electron density. Note that the com-
bination of fundamental constants here is the same as in Eq. 
(55), but rs – dependence is different.

Electron – phonon and Coulomb dimensionless coupling 
constants are given by van der Marel and Berthod [42]:

λ = µ = 1
2πpF a0/ℏ

ln(1 + πpF a0/ℏ) =

= rs

2π( 9π
4 )1/3 ln

[
1 + π

(
9π

4

)1/3

r−1
s

]� (57)

Coulomb pseudopotential µ⋆ is given by the usual 
expression:

µ⋆ = µ

1 + µ ln EF

ω0

� (58)

where

EF

ω0
= 1

2

( 9π
4

)2/3

√
3m
M

r−1/2
s � (59)

In principle the “jellium” model is more or less valid if we 
assume that perturbation theory in Coulomb interaction can 
be applied, that is only for rs <1. However, we shall use all 
these expressions for rather wide region of rs as it was done 
in van der Marel and Berthod [42].

Now consider metallic hydrogen and take M = mp. 
Then the characteristic phonon frequency ω0 given by Eq. 
(56) is pretty large and changes between circa 12000 K and 
2000 K as rs changes between typical values of 1.0 and 3.5 
(as in usual metals). As this frequency enters as a preex-
ponential factor in BCS – like expressions for Tc we can 
expect for it rather large values [2–4].

which is probably too optimistic, as we neglected all the 
fine details, which were analyzed e.g. in Pickett [39]. Here 
we also dropped different numerical factors of the order of 
unity, which are obviously not so important for our order 
of magnitude estimates. Now we obtain an estimate for T ⋆

c  
from Eq. (48) as:

T ⋆
c ∼ 0.2

√
m

M

e2

ℏvF
EF � (52)

where EF = p2
F /2m is Fermi energy, vF = pF /m is elec-

tron velocity at the Fermi surface. The value of e2

ℏvF
, as is 

well known, represents the dimensionless coupling for Cou-
lomb interaction and for typical metals it is of the order of 
or greater than unity. The factor of 

√
m
M  determines isotopic 

effect.
Let us measure length in units of Bohr radius aB  intro-

ducing the standard dimensionless parameter rs by the rela-
tion a3 = 4π

3 (rsaB)3. Then we have:

a ∼ rsaB = rs
ℏ2

me2 = rs
ℏ

mcα
� (53)

where we have introduced the fine structure constant 
α = e2

ℏc . Correspondingly the Fermi momentum is given by:

pF ∼ ℏ
rsaB

= me2

ℏrs
= mc

ℏrs
α� (54)

Then T ⋆
c  (48) can be rewritten as:

T ⋆
c ∼ 0.2

rs

√
m

M
α2mc2/2 = 0.2

rs

√
m

M

me4

2ℏ2 = 0.2
rs

√
m

M
Ry� (55)

where Ry = me4/2ℏ2 ≈ 13.6 eV is the Rydberg constant. 
Here we have obtained the same combination of fundamen-
tal (atomic) constants, which was actually suggested in Ref. 
[36], by some quite different reasoning, as determining the 
upper limit of superconducting critical temperature. How-
ever, our expression contains an extra factor of r−1

s , which 
necessarily reflects the specifics of a material under consid-
eration (density of conduction electrons), so that the value 
of T ⋆

c  is in no sense universal. Apparently in Ref. [36] it was 
somehow implicitly assumed the value of rs = 1.

For metallic hydrogen M is equal to proton mass and we 
have 

√
m

mp
∼ 0.02, so that for rs = 1 we get an estimate 

of T ⋆
c ∼ 650 K. This is in nice agreement with the result of 

Tc = 600 K, obtained in Ref. [40, 41] solving Eliashberg 
equations for FCC lattice of metallic hydrogen with rs = 1, 
taking into account the calculated softening of the phonon 
spectrum, leading to realizations of very strong coupling 
(λ = 6.1).
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results to rather small change of the values of main param-
eters, even such as the relatively weak rs – dependence of 
the Coulomb pseudopotential as given by Eq. (58).

However, we clearly see that in the weak (or intermedi-
ate) coupling approximations the “jellium” model can not 
produce high values of Tc for metallic hydrogen [42].

 Somewhat better results were obtained in Ref. [42] by 
numerical solution of BCS integral gap equation with the 
explicit use of the screened “jellium” – like interaction ker-
nel. Still, only the values of Tc not exceeding 30K were 
found at rs ∼ 3, which is also much lower than the opti-
mistic estimates of Refs. [2–4]. Actually the great difference 
obtained in Ref. [42] between the results of direct solution 
of the integral gap equation and more or less obvious use 
of the standard BCS – like of McMillan approximations is 
somehow obscure. We can only note, that the authors of Ref. 
[42] used the “jellium” model interaction as direct input into 
BCS gap (integral) equation, though it is known since the 
famous KMK paper [44], that it should be actually replaced 
by some effective (smoothed) integral kernel. This remains 
to be done for the correct analysis and we just leave the use 
of KMK formalism in “jellium” model for the future work.

As to real metallic hydrogen, we must stress that the 
“jellium” model is only an oversimplified approximation, 
strictly valid for rs < 1 and neglecting all the crystal struc-
ture effects in solid metallic hydrogen. At present there is 
no consensus on the stable crystal structures of metallic 

However, these expectations are not realized when we 
calculate coupling constants. Direct calculations show that 
λ = µ < 1/2 for all values of rs and change between 0.17 
– 0.3 for most relevant values of rs =1.0 – 3.5, signifying 
the weak coupling regime. For the same interval of rs the 
Coulomb pseudopotential µ⋆ changes between 0.1 and 0.15, 
as is usually assumed.

Then calculating Tc for the wide range of rs, using Eqs. 
(56), (57), (58), (59) in the standard weak – coupling BCS 
expression (γ = 1.78 is Euler constant):

Tc = 2γ

π
ω0 exp

(
− 1

λ − µ⋆

)
� (60)

we obtain the results shown in Fig. 4. We can see the charac-
teristic maximum of Tc at rs ∼7, but the value of Tc at this 
maximum only slightly exceeds 3K.

Even more pessimistic results are obtained if we calcu-
late Tc taking into account intermediate coupling correc-
tions and using McMillan formula [42]:

Tc = ω0

1.45
exp

[
− 1.04(1 + λ)

λ − µ⋆(1 + 0.62λ)

]
� (61)

which are shown at the insert in Fig. 4. Here we again 
observe the characteristic maximum of Tc, but it is less than 
25 mK only! We must stress the great sensitivity of these 

Fig. 4  Superconducting transition 
temperature of metallic hydrogen 
in “jellium” model calculated 
from the weak – coupling BCS 
expression. At the insert: the same 
calculated from McMillan formula 
for intermediate coupling
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hydrogen at all. It is clear from our discussion above that 
the strong coupling regime can be actually achieved, e.g. 
due to some lattice (phonon spectrum) softening effects, as 
was demonstrated in Refs. [40, 41]

6  Conclusion

Eliashberg theory remains the main theory, which com-
pletely explains the values of the critical temperature in 
superconductors with electron – phonon mechanism of pair-
ing. This theory is also applicable in the region of strong 
electron – phonon coupling, limited only by the applicabil-
ity of adiabatic approximation, based on Migdal theorem, 
which is valid in the vast majority of metals, including the 
new superhydrides with record values of Tc. The values of 
(renormalized, physical) pairing coupling constant λ can 
surely exceed unity until the system possess the metallic 
ground state.

A number of simple expressions can be derived to esti-
mate the maximal value of Tc in terms of experimentally 
measurable or calculable parameters like characteristic 
(average) values of phonon frequencies and pairing cou-
pling constant. Actually this maximal value of Tc is just 
determined by some “game” of atomic constants. These 
estimates of the maximal possible Tc are rather optimis-
tic, and the perspective for the experimental search for its 
higher values, e.g. in hydrides, seems still very interesting. 
However, all the present day data on superhydrides strongly 
indicate that all these systems are actually very close to the 
strong coupling region of Eliashberg theory, which indicate 
that the maximal values of Tc for metals are probably more 
or less already achieved in these experiments. In this respect 
the metallic hydrogen remains in our opinion probably the 
most promising candidate system [40, 41].
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