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Abstract

We present a brief review of some recent work on the problem of highest achievable temperature of superconducting
transition 7 in electron — phonon systems. The discovery of record — breaking values of 7, in quite a number of hydrides
under high pressure was an impressive demonstration of capabilities of electron — phonon mechanism of Cooper pairing.
This lead to an increased interest on possible limitations of Eliashberg — McMillan theory as the main theory of super-
conductivity in a system of electrons and phonons. We shall consider some basic conclusions following from this theory
and present some remarks on the limit of very strong electron — phonon coupling. We shall discuss possible limitations
on the value of the coupling constant related to possible lattice and specific heat instability and conclude that within the
stable metallic phase the effective pairing constant may acquire very large values. We discuss some bounds for 7, derived
in the strong coupling limit and propose an elementary estimate of an upper limit for 7., expressed via combination of
fundamental physical constants. Finally we also briefly discuss some pessimistic estimates for 7, of metallic hydrogen

obtained in “jellium” model

Keywords Eliashberg — McMillan theory - Electron — phonon interaction - Very strong coupling - Transition

temperature

1 Introduction

First ideas to enhance superconducting critical temperature
T, were introduced soon after the formulation of BCS the-
ory. In 1964 Little [1] and Ginzburg [2] proposed an idea
of an “excitonic” mechanism — the replacement of phonons
as a “glue” leading to Cooper pairing by some other Boson
— type excitations with higher energies, thus changing the
Debye frequency wp in the preexponential factor of BCS
expression for 7T, by some we, (With we, > wp), which
leads to the increase of T, (probably in some lucky case up
to room temperatures). These ideas were further developed
in many papers reviewed in the famous book [3]. Unfortu-
nately, up to now this “excitonic” mechanism was never and
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nowhere realized experimentally. The discoveries of high —
temperature in copper oxides (1986) and iron pnictides and
chalcogenides (2008) were more or less unrelated to these
theoretical proposals and will not be discussed here.

The similar idea of the use of much larger values of wp
in the case of the usual electron — phonon pairing mecha-
nism was introduced later by Ashcroft [4], who proposed to
study the metallic hydrogen (with apparently larger wp due
to a small mass of hydrogen ion) and different hydrides [5],
which can be stable under extremely high pressures. It is
important to stress that all of these works used basically the
standard weak (or intermediate) coupling approximation of
BCS (McMillan) theory.

These proposals were criticized in the notorious paper
by Cohen and Anderson [6], where rather elegant argu-
ments were given, seemingly quite convincing, that char-
acteristic scale of 7, values due to electron — phonon or
“excitonic” mechanism (based on exchange of Bose — like
excitations in metals) can be of the order of about 10 K
only. This paper was immediately seriously criticized in
Refs. [3, 7], with the conclusion that in reality there are no
such limitations. However, the point of view expressed in
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Cohen — Anderson paper became popular in physics com-
munity (Anderson himself till the end of his life adhered
to the view expressed in Ref. [6], though Cohen [8] has
acknowledged the validity of arguments expressed in Dol-
gov et al. [7]), so that at the time of discovery of high —
temperature superconductivity in cuprates (1986 — 1987),
the common belief was that the “usual” electron — phonon
mechanism does not allow values of T, higher, that 30 — 40
K. Because of this after the discovery of superconductivity
in cuprates the “great race” has started for new theoretical
models and mechanisms of superconductivity, which may
explain the high values of 7. It is most probable, that in
these compounds 7. is determined by some kind of non —
phonon pairing mechanism (e.g. due to antiferromagnetic
fluctuations). Thus the problems of superconductivity in
cuprates (as well as in iron pnictides and chalcogenides)
are outside the scope of this work, which will discuss only
the electron — phonon pairing.

The remarkable discovery by Mikhail Eremets group of
superconductivity in H3S with T, ~200 K and further rapid
development of experimental studies of high — temperature
superconductivity in different hydrides [10-13] (to quote
only some of the review papers) has opened the new path
to almost room — temperatures superconductivity (though
at extremely high (megabar) pressures) and stimulated an
active theoretical work [14, 15]. There was no doubt from
the very beginning, that high — 7. superconductivity in
hydrides is due to the usual electron — phonon coupling. So
from theoretical point of view probably the most important
result of discovery of record 7T, values in hydrides under
high pressures, in our opinion, is the final (and experimen-
tal!) rebuttal of the point of view expressed in Ref. [6],
explicitly demonstrating the possibility of achieving high
- T, values (of the order of 102 K) with the common elec-
tron — phonon mechanism. Most pressing now becomes the
question of the upper limit of ¢, which can be achieved due
to this pairing mechanism. Below we shall try to discuss this
problem once again within the standard approach, based on
Eliashberg — McMillan equations, as most successful the-
ory, describing superconductivity in the system of electrons
and phonons in metals.

2 Electron - Phonon Interaction and
Eliashberg - McMillan theory: Strong
Coupling Limit

2.1 Some General Expressions and Definitions

Frohlich Hamiltonian which is commonly used to describe
electron — phonon interaction is written as:
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where ¢}, is the conduction electron energy (counted from
the Fermi level), Qo is the “bare” phonon spectrum in the
absence of electron — phonon interaction (which is actually
rather poorly defined in the case of a real metal), and we
have introduced the standard notations for creation ai)" and

annihilation a;, operators of electrons and phonons — b}f and

by, N is the number of atoms in crystal.

The matrix element of electron — phonon interaction is
usually written as:

(ple(q)VVei(r)|p + a)
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where V,; is electron — ion interaction potential, M is the
ion mass, and e(q) is polarization vector of a phonon with
frequency oq.

McMillan [19] has derived a simple, but very general,
expression for the dimensionless electron — phonon coupling
in Eliashberg theory. The so called Eliashberg — McMillan
function is defined [19, 23] as:

a}(W)F(w) =
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where €)p_ps is the phonon frequency and
F(w) =), 6(w — §q) is the phonon density of states. As

phonons typically scatter electrons in metals only in some
narrow region close to the Fermi surface we introduce the
matrix element of the gradient of electron —ion potential
averaged over Fermi surface:

(I*) = m Z Z 1I(p — p/)|2 5(ep)0(en) =
- ﬁ S S IV ) )o(p)de) = @
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Then we immediately get:
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Dimensionless electron — phonon coupling constant is
expressed now via this Fermi — surface average as [19, 23]:

A= 2/0OO d?woﬂ(w)F(w) =
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where the mean square phonon frequency is defined as:
P dwo (W) F(w)w 2 [
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From this expression we can immediately see that:
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This expression gives very useful representation for A, which
is often used in the literature and in practical calculations.
Migdal’s theorem [16] allows us to neglect vertex cor-
rections in all calculations of Feynman diagrams related to
electron — phonon interaction in typical metals The actual
small parameter of perturbation theory is )\ o<1 where

A is the dimensionless constant of electron — phonon inter-
action and Qg is characteristic phonon frequency (e.g. of
the order of Debye frequency wp), while E is the Fermi
energy of electrons, which in typical metals is of the order of
conduction band width. In particular this leads to a common
belief, that vertex corrections in this theory can be neglected
& > 1), as
> < 1 holds in typical metals. Th1s fact is the

cornerstone of Eliashberg — McMillan theory for supercon-
ductors which allows the description of the so called strong
coupling superconductivity outside the usual weak coupling
limit of BCS theory [17-23].

even in case of A > 1 (up to the values of A ~

1nequa11ty

2.2 Lower Bound for T in Eliashberg —- McMillan
Theory and Strong Coupling Limit

Limitations on the value of T, in Eliashberg — McMillan
theory in the limit of very strong coupling can be derived
analytically [20, 23]. In the following we shall not consider
the role of direct Coulomb repulsion of electrons within the
Cooper pair, which is accounted for in the complete Eliash-
berg — McMillan theory, limiting ourselves only to electron
— phonon interaction. The accounting for Coulomb contri-
butions is not especially difficult [19] and reduces at the end

to introduction of the usual Coulomb pseudopotential p*,
which in typical metals is rather small and not so important
in the limit of very strong coupling with phonons, which
will be of the main interest for us in the following.

From the general system of Eliashberg — McMillan equa-
tions directly follows the linearized equation for the gap
A(wy,) [23], determining T

n’ (9)

where wy, = (2n 4 1)7T are usual Matsubara frequencies
of electrons. The renormalization factor Z(w,,) is deter-
mined from:

1— Z(wp) = g Z/_Oo d¢ /OOO dwo (w) F(w)x

’ (10)
X D(wp — wprjw) n
|wn]
and phonon Green’s function is expressed as:
2w
D(wy — wpr;w) = (11)

(wn — wp)? 4+ w?

Actually, Eq. (9) represents the system of linear equations
for A(wy,). Let us consider here first the term with n = 0.
Then, leaving in the sum in Eq. (10) only the contribution
from n’ = 0, we obtain:
Z(0)=1+ A\ (12)
which represents the usual electron mass — renormaliztion
factor due to electron —phonon interaction: m* = m(1 + A).

Its substitution into Eq. (9) for n = 0 just cancels the similar
(corresponding to n’ = 0) term in the r.h.s., so that the equa-

tion for A(0) = A(nT) takes the form:

A(0) =

_ > 2w Alwn)  (13)
= WTT%:O/ « (M)F(w) (ﬂ'T — wn/)Q n w2 |w"/‘

All terms in the r.h.s. here are positive. Let us leave only the
contribution from n’ = —1, then after simple algebra with

the account of A(0) = A(nT) = A(—7T) = A(-1) we
immediately obtain the inequality [20, 23]:
( )w
1 dw
> / 27rT (14)
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Putting T' = T, in (14) we obtain the /ower bound for 7.
In particular, in the model with Einstein spectrum of pho-
nons F(w) = 6(w — o) and this inequality is immediately
rewritten as:

2
1> 20%(Q) (%T?iu i A(27TT£))20+ 02 (15)
so that for T, we get:

T, > %\/ﬁgo (16)
which for A > 1 reduces to:

T, > %fmo ~ 0.16V/\Q (17)

For the model of phonon spectrum consisting of discrete set
of Einstein phonons:

Za 0(w — ;)

, (18)
In this case from (7) we simply obtain:
2y = 1 Z A Q2
- )\ - 125 (19)

where A = ). A;. In this case the inequality (14) reduces
to:

Tgv.' Qo
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Fig. 1 Temperature of superconducting transition in Einstein model of
phonon spectrum in units of Tt /g as a function of pairing constant A
[20]: 1 — lower bound (16), 2 — numerically exact solution of the full
system of equations [20]. McMillan expression for 7¢ [19] is shown by
dashed line (for the case of 1*=0)
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which in the limit of very strong coupling immediately
gives the natural generalization of (17):

T. > L AQ2) (21)
2m

Numerically exact solution of the full system of Eq. (9), per-
formed in Ref. [20] leads to the final expression for 7 in the
strong coupling limit of A > 1 with replacement of 1/27 =
0.16 in (17) or (21) by 0.182:

T. = 0.182/X(Q?) (22)
It is obvious, that even the simplest solution (16) is quite
sufficient for qualitative estimates of 7 in the limit of very
strong coupling. The general situation is illustrated in Fig.
1. From this figure it can be seen, in particular, that asymp-
totic behavior of T, for A >1 (22) with coefficient 0.182,
approximates the values of critical temperature rather well
already starting from the values of A >1.5-2.0. The remark-
able result here is the replacement of exponential depen-
dence of T, on the coupling constant, typical for the weak
coupling BCS or intermediate coupling McMillan approxi-
mations, by the square root dependence, leading to monoto-
nous and seemingly unlimited growth of 7. with increasing
A. Then an important question arises — are there any limita-
tions to the growth of A ?

3 Possible Limitations for Electron - Phonon
Coupling

3.1 Frohlih Instability

The general expression for phonon Green’s function, tak-
ing into account the interaction with electrons, is given by
Dyson equation shown in Fig. 2. Then such “dressed” pho-
non Green’s function can be written as:

2Q0k

D(kw) = —— =0
(kw) w279ﬁ+i5

(23)

where the renormalized phonon spectrum is determined
from the equation:

2|gi|?
Ok

02 =02 |1 TI(k, ) (24)
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Fig.2 Dyson equation for the full (“dressed”) phonon Green’s function

In adiabatic approximation, taking into account Migdal
theorem, polarization operator here can be taken as a sim-
ple loop. With rather high accuracy in polarization opera-
tor here we can put w =0, k = 0 so that it reduces to
I1(0,0) = —2N(0) [23].

Then the phonon spectrum, renormalized by interaction
with electrons, is determined by:

2| gic|?
(0)%3

Q=03 |1+ I1(0,0) | = Qi [1 — 2)§] (25)

where we have introduced the usual definition of dimension-
less coupling constant of electron — phonon interaction [23]:

(26)

In this (rough enough) approximation the relatively small
damping of phonons due to electron — phonon interaction is
just neglected. It can be taken into account by more accu-
rate treatment of the imaginary part of polarization operator
which is just zero in the approximation used here.

The spectrum given by Eq. (25) signifies the lattice
instability for A% > 1/2, when the square of the phonon
frequency becomes negative. This instability was correctly
interpreted already in the early paper by Frohlich [24],
where it was observed for the first time. Let us rewrite the
“dressed” Green’s function (23) identically as:

20 Qox

D(kw) = ———k 0k
k)= oz 76 o
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Then it becomes clear that during diagram calculations
using from the very beginning this renormalized Green’s
function of phonons, the physical coupling constant of elec-
tron — phonon interaction takes the form (instead of (26)):

\F = 2|9k *N(0) Qox _ 29> N(0) Q5 Ak&?)k 28)
Qe Qo 2 0@
or, using (25):
)\k
E _ 0
120 29)

We see, that for A} — 1/2 the renormalized coupling con-
stant \¥ monotonously grows and finally diverges. It is this
constant that determines the “true” value of electron — pho-
non interaction (with “dressed” phonons) and there are no
limitations for its value at all. This physical picture was dis-
cussed in detail in already in Ref. [3].

In the model with single Einstein phonon, which is a
reasonable approximation for an optical phonon, we have
Qi = Qo and we can forget about dependence of the cou-
pling constant on phonon momentum, so that:

292N
Qo
02 = Q31 — 2] (31)
2
)\ = 29(2)N(0) & _ Ao (32)
QO Q 1 - QAO
Equation (29) can be reversed and we can write:
/\k
k _ 33
M= T (33)

expressing nonphysical “bare” constant of electron — pho-
non coupling A% via the “true” physical coupling constant
AF. Using this relation in the equation for renormalized pho-
non spectrum (25), we can write it as:

(34

2NF 1
Q=0 |1-——| =02, ———
Ok{ 1—1—2)\’“} Ok1 4 2)\k

so that in this representation there is no instability of spec-
trum (lattice), and the growth of A¥ just leads to continuous
“softening” of spectrum due to the growth of electron — pho-
non coupling.

In a model of Einstein phonon all relations simplify and
we get:

A

A= 1793 (33)
Qo
Q=0 _
NSE)) (36)

In Eliashberg — McMillan formalism, where we perform
the averaging over the momenta of electrons over the Fermi
surface, Eliashberg — McMillan function o (w) F'(w), natu-
rally should be determined bu the physical (renormalized)
spectrum of phonons. In particular case of Einstein phonon
it immediately reduces to (32) and there are no limitations
on the value of \.
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In self — consistent derivation of Eliashberg equa-
tions we have to use the the phonon Green’s function a
“dressed”’form (23) or (27), which corresponds to the physi-
cal (renormalized) phonon spectrum. In this case we do not
have to include corrections to this function due to electron
— phonon interaction, as they are already taken into account
in the renormalized phonon spectrum (25).

It should be noted that the value of critical coupling
constant obtained above, at which Frohlich instability of
phonon spectrum appears, is obviously directly related to
the use of the simplest expression for polarization operator
of the gas of free electrons, which was calculated neglect-
ing vertex corrections and self — consistent “dressing” of
electron Green’s functions entering the loop. Naturally,
even in the simplest cases like the problem with Einstein
spectrum accounting for these higher corrections, as well as
more realistic structure of electron spectrum in a lattice, can
somehow change the value of \g, corresponding to instabil-
ity of the “bare” phonon spectrum, so that it will differ from
1/2. In this sense it is better to speak about instability at
some “critical” value A§ ~ 1/2.

This analysis can be significantly improved within the
simplified Holstein model, where the electron — phonon
interaction is considered to be local (single site), which
allows solving this model using the dynamical mean field
theory (DMFT) approach [25], which becomes (numeri-
cally) exact in the limit of lattice of infinite dimensions
(infinite number of nearest neighbors). Such analysis was
performed e.g. in Ref. [26], using as quantum Monte — Carlo
(QMC) as impurity solver of DMFT. The usual behavior of
Frohlich theory is nicely reproduced with slightly changed
A6=0.464. Behavior similar to Eq. (36) was obtained also
for the renormalized phonon frequency (2.,

The instability appearing at A\g = A§ in Holstein model
with half — filled bare band, was convincingly interpreted
in Ref. [27] as transition into the state of bipolaron insu-
lator. Until this transition the system remains metallic and
is nicely described by Eliashberg theory (with insignificant
numerical corrections).

It should be stressed here, that all conclusions on instabil-
ity of metallic phase were done above in the framework of
purely model approach and in terms of “bare” parameters of
Ao and €2g, which, as was often noted in the literature, are
not so well defined physically. The problem here is that the
phonon spectrum in a metal, considered as system of ions
and electrons, is usually calculated in adiabatic approxima-
tion [28]. This spectrum is relatively weakly renormalized
due to nonadiabatic effects, which are small over the param-
eter /7F [28, 29]. In this respect, it is drastically differ-
ent from the “bare” spectra of Frohlich or Holstein models,
which, as we have seen above, is significantly renormalized

@ Springer

by electron — phonon interaction. The physical meaning
of the “bare” spectrum )¢ in these models remains not so
clear, in contrast to phonon spectrum in metals, calculated
in adiabatic approximation.

3.2 Specific Heat Instability?

Recently Semenok et al. [30] proposed a possible limita-
tion for A due a certain electronic specific heat instabil-
ity previously derived in Yuzbashyan and Altshuler [31]
within Eliashberg — McMillan theory . It was claimed that
electronic specific heat in Eliashberg — McMillan theory
becomes negative for the values of A > A, in a certain tem-
perature interval, signifying thermodynamic instability of
electron — phonon system. For Einstein model it was shown
that A, =3.69 (for Debye model of phonon spectrum A, =
4.72). The use of this value in Allen — Dynes expression
for T, (22), immediately leads to T, ~ 0.35¢2 as an upper
limit for superconducting transition temperature (for Ein-
stein model).

However the authors of Ref. [32] disagreed and explicitly
shown that the total specific heat in Eliashberg — McMil-
lan theory remains positive for all parameters of the model,
at least until adiabatic approximation is valid. i.e. A < g—g

The essence of argumentation is as follows. The free energy
per unit volume in Eliashberg — McMillan theory can be
shown [32] to be determined as:

T
F=Fpeet g 3 log[-D ! (k, iwyn)]

mk

(37

where Flfr.. is the free energy of free electrons and
D(k,iw,y,) is the renormalized phonon Green’s function
(23), (27) in Matsubara representation, calculated in the
simplest approximation used above. Actually electron —
phonon interaction enters here only through this “dressed”
function.
After the detailed calculations an explicit expressions for
F and specific heat C.,(T) = —T'd?F/d*T can be derived
[32] of which we quote only the limiting forms for Ce,(T")
for the case of Einstein phonons, using our notations. For
21T < § (with Q given by Eq. (31)):
_ 272

Cor="g

(38)

7T2
()T (1+ I_A;AO) = 27 (0)T(1 4 A)

which is the standard result for low — temperature con-
tribution to specific heat with the account of electronic
mass renormalization due to interaction with phonons:
m* = m(1 + A). For high temperatures 277" >
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272 6Er 3, Q3
Cep = —5-N(0) (T+ — 7r2)\0T(’> (39)

Consider now this last expression. The first term here is just
the usual contribution from free electrons, the second is the
contribution from free phonons with effective frequency,
renormalized by the interaction with electrons, and the third
term is the contribution from electron — phonon interaction.
Without the middle term, the specific heat becomes negative
below T ~ 0.39v/A0Q = 0.39v/AQ which is higher that
superconducting transition temperature in the strong cou-
pling limit. However, with the account of the middle term
the full C,,(T') is never negative.

The authors of Ref. [31] argued that the negative con-
tribution from the third term in (39) indicates the normal
state instability below a certain T, despite the total C,,(T")
remains positive, as the contribution from free phonons has
nothing to do with electrons. However, both positive and
negative contributions here come from the free energy term
L3 o log[~D71(k, iw,,)], so that both terms should be
treated equally. Thus, the electron — phonon coupling gener-
ates the negative contribution to C.,,(T") and simultaneously
gives the rise to much larger positive T— independent contri-
bution. The detailed numerical calculations of specific heat
for all temperatures and different values of parameters of the
model, performed in Ref. [32], has shown that specific heat
remains always positive. In our opinion this clearly shows,
that there is no specific heat instability discussed in Refs.
[30, 31], at least within the standard formalism of equilib-
rium statistical mechanics.

However, the situation may be more complicated. It
was shown in Ref. [33] using the standard kinetic equation
approach, that thermal equilibrium between electrons and
phonons can actually become unstable for large values of
electron — phonon coupling constant. It was claimed that the
negative values of electronic specific heat only are sufficient
for such instability, leading to the difference between the
temperatures of electrons and phonons. These results stress
the importance of further studies of possible specific heat
instabily in electron — phonon system at large couplings.

4 Upper Bound for T, in the Very Strong
Coupling Limit

As we have seen above in the limit of very strong coupling
A > 1 solution of Eliashberg — McMillan equations gives
the following expression for 7:

T.=0.18

MO (40)

It may seem now, that there is no limit for 7, growth due
to electron — phonon pairing mechanism in the limit of
very strong coupling. The only more or less obvious limit
is related to the limits of adiabatic approximation, which
is usually considered to be the cornerstone of Eliashberg
theory.

In the model with Einstein spectrum of phonons we sim-
ply have: (Q22)1/2 = Q, where § is assumed to be the renor-
malized phonon frequency. Then (40) reduces to:
T, = 0.18V\Q (41)
so that seemingly for A > 1 we can, in principle, obtain
even T, > ). However, if we remember the renormaliza-
tion of phonon spectrum and take into account Eq. (36), we
immediately obtain from Eq. (41):

A
T.=0.18VAQ = 0.18Qp4/ ———— 42
va V1+2x 42)

which in the limit of A > 1 gives
T ~ 0.13€, (43)

because of significant softening of phonon spectrum. At the
same time, as noted above, the physical meaning of “bare”
frequency €2 in a metal is rather poorly defined, and in par-
ticular it can not be determined from any experiments.

If we just forget about “bare” spectrum of phonons and
consider parameters ) and \ independent, we can obtain
from Eq. (41) very high values of T;.. A certain , though
rather artificial model, leading precisely to this kind of
behavior was recently introduced in Ref. [34]. It consid-
ered the interaction of N—component electrons with N x N
—component system of Einstein phonons in the limit of
N — oo. It was shown that in this model the renormaliza-
tion of phonon spectrum due to interaction with conduction
electrons is suppressed, so that in the limit of very strong
coupling with 1< A < N we always obtain Allen — Dynes
estimate (41) with 2 = Q.

However, the problem here is, that in real situation we
never can consider {2 and A as independent parameters
simply because of the general relations (6) and (7), which
express A and (Q?) via integrals of Eliashberg — McMillan
function o (w) F'(w). In fact, we may rewrite the expression
for T in the region of very strong coupling as:

1/2

T. = 0.18/\(Q2) = 0.25 {/000 dwo? (W) F(w)w (44)

We see, that this expression for 7 is completely determined
by the integral of a*(w)F(w) over the phonon spectrum,
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while there is no explicit dependence of 7. on A and (Q?)
separately.

Experimental discovery of high — temperature super-
conductivity in hydrides under high (megabar) pressures
[9] stimulated the search for the ways to achieve supercon-
ductivity at room temperature [10-13]. At the moment the
common view [14, 15] is that the high — temperature super-
conductivity in hydrides can be described in the framework
of the standard Eliashberg — McMillan theory. Within this
theory many attempts were undertaken to estimate the max-
imal achievable superconducting transition temperature and
the discussion of some of these attempts can be found in the
reviews [14, 15, 23].

In Ref. [35] a another simple inequality for 7, was pro-
posed, limiting its value by the square 4 under a(w)F(w):

T. < 0.2309 / dwa? (w)F(w) = 0.23094 (45)
0

For the case of Einstein spectrum of phonons this can be
rewritten as:

T. < 0.115)\Q (46)
This inequality is relatively often used in the literature.

In Ref. [37] a semi empirical limit for 7, was proposed
for conventional semiconductors, which can be written in a
very simple form:

kT < Apmae©Op = Amaa D 47)
where A4, = 0.10,and © p = hf)p is Debye temperature,
which may be determined e.g. from standard measurements
of specific heat. This inequality obviously correlates with
T’ obtained above in the limit of A — oo in Eq. (42), if
we identify Qg with Qp. It is seen from Fig. 3 this limitation
is satisfied for most of conventional superconductors [37].
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Fig. 3 Experimental values of the temperature of superconduct-
ing transition for conventional superconductors dependence on their
Debye temperature © p [37]
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In the recent paper [36] a new upper limit for 7T, was
proposed, expressed via certain combination of fundamen-
tal constants. Below we show that with minor modifications
such T¢ limit follows directly from Eliashberg — McMil-
lan theory. The relation of A and (©2?) is clearly expressed
by McMillan’s formula for A (8). Equation (8) gives very
useful representation for the coupling constant A\, which is
routinely used in the literature and in practical (first — prin-
ciples) calculations [15, 39].

Using Eq. (8) in Eq. (40) we immediately obtain:

« N(0)(I?)
Tr =0.18 — (48)
where (I?) was defined in Eq. (4). Both ) and (©2?) just drop
out from the expression for 77}, which is now expressed via
Fermi surface averaged matrix element of the gradient of
electron — ion potential, ion mass and electronic density of
states at the Fermi level.

As was already noted, all parameters entering this expres-
sion can be rather simply obtained during the first — prin-
ciples calculations of T, for specific materials (compounds)
[15, 39]. Let us also stress that the value of 17 defined in
Eq. (48), calculated for any specific material does not have
any direct relation to real value of T, but just defines pre-
cisely the upper limit of 7¢, which “would be achieved”
in the limit of strong enough electron — phonon coupling.
Below we shall present some rough heuristic (dimensional)
estimates of its value [38].

In the following we assume to be dealing with three —
dimensional metal with cubic symmetry with an elementary
cell with lattice constant @ and just one conduction electron
per atom. Then we can estimate the density of states at the
Fermi level as for free electrons: N(0) = 52554, where
pr ~ h/a is the Fermi momentum, m is the mass of free
(band) electron. Electron — ion potential (single — charged
ion, e is electron charge) can be estimated as:

2

Ve~ = ~ ®pre/h (49)
so that its gradient is:

2
VVei ~ =5 ~ €*pip /1 (50)
Then we easily obtain the following estimate of (4):

2\’
P (G) ~ @y 5D
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which is probably too optimistic, as we neglected all the
fine details, which were analyzed e.g. in Pickett [39]. Here
we also dropped different numerical factors of the order of
unity, which are obviously not so important for our order
of magnitude estimates. Now we obtain an estimate for 7*
from Eq. (48) as:

2
m e
Tr ~02y/——F
c A[th F

where Er = p2/2m is Fermi energy, vy = pr/m is elec-

(52)

tron velocity at the Fermi surface. The value of %, as is
well known, represents the dimensionless coupling for Cou-
lomb interaction and for typical metals it is of the order of
or greater than unity. The factor of \/% determines isotopic
effect.

Let us measure length in units of Bohr radius ap intro-
ducing the standard dimensionless parameter 7 by the rela-

tion a® = 47 (r;ap)®. Then we have:
h? h
a~Tsap =Ts—s =75 (53)
me mea

where we have introduced the fine structure constant
a= g—i Correspondingly the Fermi momentum is given by:

h me? mc
pbr rsaB hr hrs (54)
Then T7¥ (48) can be rewritten as:
e 02 Im oo 5 0 02 [m met _02 /m
T~ ™ 2=\ e o Vart (55)

where Ry = me*/2h% ~ 13.6 eV is the Rydberg constant.
Here we have obtained the same combination of fundamen-
tal (atomic) constants, which was actually suggested in Ref.
[36], by some quite different reasoning, as determining the
upper limit of superconducting critical temperature. How-
ever, our expression contains an extra factor of r; !, which
necessarily reflects the specifics of a material under consid-
eration (density of conduction electrons), so that the value
of T)X is in no sense universal. Apparently in Ref. [36] it was
somehow implicitly assumed the value of s = 1.

For metallic hydrogen M is equal to proton mass and we

have , /- ~ 0.02, so that for ry = 1 we get an estimate
P

of T} ~ 650 K. This is in nice agreement with the result of
T. = 600 K, obtained in Ref. [40, 41] solving Eliashberg
equations for FCC lattice of metallic hydrogen with 4 = 1,
taking into account the calculated softening of the phonon
spectrum, leading to realizations of very strong coupling
(A =6.1).

5 Metallic Hydrogen and the “jellium”
Model: Insufficiency of the Weak - Coupling

In the recent paper [42] an elegant study of superconductiv-
ity of metallic hydrogen was performed within the “jellium”
model [3, 43]. In this model it is rather easy to calculate all
the relevant parameters to calculate 7, (cf. section Methods
of Ref. [42]) in weak — coupling BCS approach or for the
general case of Eliashberg — McMillan theory .

The upper boundary for the phonon frequency in this
model is just given by the ion plasma frequency (we again
consider the single — charged ions):

4ne? 3m 1
o=\ T e

where 7 is conduction electron density. Note that the com-
bination of fundamental constants here is the same as in Eq.
(55), but ry — dependence is different.

Electron — phonon and Coulomb dimensionless coupling
constants are given by van der Marel and Berthod [42]:

(56)

1
= —7I
"= Smprao/h

1/3 (57
L+ (T) r;ll

Coulomb pseudopotential p* is given by the usual
expression:

A= n(l+ mprao/h) =

Ts 1
= —F——=-1In
2 (2)1/3

o _ K
1+uln€—§ (58)
where
x\2/3
ﬁ:}(%) 172 5
w2 Jam (59)
M

In principle the “jellium” model is more or less valid if we
assume that perturbation theory in Coulomb interaction can
be applied, that is only for s <1. However, we shall use all
these expressions for rather wide region of 7 as it was done
in van der Marel and Berthod [42].

Now consider metallic hydrogen and take M = m,,.
Then the characteristic phonon frequency wy given by Eq.
(56) is pretty large and changes between circa 12000 K and
2000 K as 4 changes between typical values of 1.0 and 3.5
(as in usual metals). As this frequency enters as a preex-
ponential factor in BCS — like expressions for 7, we can
expect for it rather large values [2—4].

@ Springer
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Fig.4 Superconducting transition
temperature of metallic hydrogen
in “jellium” model calculated
from the weak — coupling BCS 3
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However, these expectations are not realized when we
calculate coupling constants. Direct calculations show that
A = p < 1/2 for all values of r4 and change between 0.17
— 0.3 for most relevant values of s =1.0 — 3.5, signifying
the weak coupling regime. For the same interval of 74 the
Coulomb pseudopotential p* changes between 0.1 and 0.15,
as is usually assumed.

Then calculating 7. for the wide range of 7, using Eqgs.
(56), (57), (58), (59) in the standard weak — coupling BCS
expression (v = 1.78 is Euler constant):

2 1
T, = le exp (— )
m A —p*

we obtain the results shown in Fig. 4. We can see the charac-
teristic maximum of T at r; ~7, but the value of T at this
maximum only slightly exceeds 3K.

Even more pessimistic results are obtained if we calcu-
late 7T, taking into account intermediate coupling correc-
tions and using McMillan formula [42]:

(60)

L0+
A — p*(1+0.62))

¢~ 745 P 1)

which are shown at the insert in Fig. 4. Here we again
observe the characteristic maximum of T, but it is less than
25 mK only! We must stress the great sensitivity of these

@ Springer

results to rather small change of the values of main param-
eters, even such as the relatively weak r; — dependence of
the Coulomb pseudopotential as given by Eq. (58).
However, we clearly see that in the weak (or intermedi-
ate) coupling approximations the “jellium” model can not
produce high values of T, for metallic hydrogen [42].
Somewhat better results were obtained in Ref. [42] by
numerical solution of BCS integral gap equation with the
explicit use of the screened “jellium” — like interaction ker-
nel. Still, only the values of T, not exceeding 30K were
found at ry ~ 3, which is also much lower than the opti-
mistic estimates of Refs. [2—4]. Actually the great difference
obtained in Ref. [42] between the results of direct solution
of the integral gap equation and more or less obvious use
of the standard BCS — like of McMillan approximations is
somehow obscure. We can only note, that the authors of Ref.
[42] used the “jellium” model interaction as direct input into
BCS gap (integral) equation, though it is known since the
famous KMK paper [44], that it should be actually replaced
by some effective (smoothed) integral kernel. This remains
to be done for the correct analysis and we just leave the use
of KMK formalism in “jellium” model for the future work.
As to real metallic hydrogen, we must stress that the
“jellium” model is only an oversimplified approximation,
strictly valid for r; < 1 and neglecting all the crystal struc-
ture effects in solid metallic hydrogen. At present there is
no consensus on the stable crystal structures of metallic
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hydrogen at all. It is clear from our discussion above that
the strong coupling regime can be actually achieved, e.g.
due to some lattice (phonon spectrum) softening effects, as
was demonstrated in Refs. [40, 41]

6 Conclusion

Eliashberg theory remains the main theory, which com-
pletely explains the values of the critical temperature in
superconductors with electron — phonon mechanism of pair-
ing. This theory is also applicable in the region of strong
electron — phonon coupling, limited only by the applicabil-
ity of adiabatic approximation, based on Migdal theorem,
which is valid in the vast majority of metals, including the
new superhydrides with record values of 7;.. The values of
(renormalized, physical) pairing coupling constant A can
surely exceed unity until the system possess the metallic
ground state.

A number of simple expressions can be derived to esti-
mate the maximal value of 7, in terms of experimentally
measurable or calculable parameters like characteristic
(average) values of phonon frequencies and pairing cou-
pling constant. Actually this maximal value of T, is just
determined by some “game” of atomic constants. These
estimates of the maximal possible 7, are rather optimis-
tic, and the perspective for the experimental search for its
higher values, e.g. in hydrides, seems still very interesting.
However, all the present day data on superhydrides strongly
indicate that all these systems are actually very close to the
strong coupling region of Eliashberg theory, which indicate
that the maximal values of 7, for metals are probably more
or less already achieved in these experiments. In this respect
the metallic hydrogen remains in our opinion probably the
most promising candidate system [40, 41].
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