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I n t r oduc t i on

The basic idea of Anderson localization [1] and disorder
induced metal-insulator transition has attracted great attention
in recent years [2-6]. This disorder induced transition is due to
a transformation of initially extended electronic states near the
Fermi level of a metal to the spatially localized states of
Anderson insulator at sufficiently large disorder.

Imagine that the initial metal is a superconductor, i.e. that
due to some attractive interaction of electrons near the Fermi
level they form Cooper pairs at low temperatures T < Tc. It 1is
well known that the BCS-like ground state [7] is relatively
insensitive to disordering conserving time-reversal invariance
(normal, nonmagnetic impurities etc.) [8,9]. Then an important
problem arises of the possible interplay of localization
transition and superconductivity in a strongly-disordered metal,
which is essentially a question of the possible coexistence of
apparently opposite kinds of ground states (insulator versus
superconductor). This problem is also very important from the
experimental point of view, because in many cases superconducting
transition is observed close to metal-insulator transition in
highly disordered systems. Apparently high—Tc oxides are dquite
relevant here being very close to metal-insulator transition which
can be induced by only slight disordering.

The general aspects of the interplay of Anderson localization
and superconductivity were analyzed in a number of papers [10-18].
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Here we discuss some of the basic results as applied to high—Tc
systems, where many experimental results were also obtained,
especially for the case of radiation disordering by fast-neutron
irradiation [19-22]. This method is probably the purest way to
investigate the effects of disordering on physical properties of
of high—Tc superconductors due to the absence of any thermo-
chemical effects (in case of 1low temperature irradiation). The
growth of structural disorder leads to a number of drastic changes
in the behaviour of both single-crystalline and ceramic samples
[19-22]:

(a) continuous metal-insulator transition at very slight
disordering;

(b) rapid degradation of T.i

(c) apparent coexistence of hopping conductivity and
superconductivity at intermediate disorder and anomalous (exponen-—
tial) growth of resistivity with defect concentration;

(d) approximate independence of the derivative of the upper-
critical field ch(T) on the degree of disorder.

These anomalies were interpreted using the ideas of possible
coexistence of Anderson localization and superconductivity and
here we shall discuss mainly the theoretical aspects of this
problem.

l. Why Localization Effects are Strong in High-'l‘c Systems?

€42 Two-Dimensionaltity. All the known high-T _ systems (with T >
30 K) are strongly anisotropic or even quasi-two-dimensional
conductors. For such systems it is natural to expect the strong
enhancement of localization effects due to the known role of
spatial dimensionality of d = 2: in purely two-dimensional case
localization appears for infinitely small disorder [3-6].

For isotropic three-dimensional systems the typical conductivity
scale at the Anderson transition is determined by the so called
minimal metallic conductivity [2], which can be estimated just by
the Drude conductivity for pFl/h = 1 (Ioffe-Regel criterion),



where Pp — is Fermi momentum, 1 - the mean free path, which gives

& ezpF/3n2h2 = e2/3ﬂ2ha (1)

c
where the last estimate is valid for Pp = h/a (a - is the intera-
tomic distance). For typical a = 3 A° this gives o = 3 1020hm_l
cm-l. For quasi-two-dimensional system this conductivity scale isg
significantly enhanced. For the in-plane conductivity this scale
can be estimated =g [19,23]:

oo = e’/n%na, 1n(E./w) (2)
where a, is the interplane distance and w is the interplane
transfer integral. The logarithmic factor in (2) grows with dimi-
nishing overlap of electronic states on the nearest-neighbour
pPlanes. Thus for the strongly anisotropic (quasi-two—dimensional)
systems, such as high—Tc oxides, the value of in-plane minimal
metallic conductivity may be larger than the usual estimate given
by (1), and actually can exceed 103 ohm tem™ for typical values
of EF/w 2 10. While due to continuous nature of Anderson
transition [3-6], there is no rigorous meaning of minimal metallic
conductivity, these estimates actually define the scale of
conductivity near the metal-insulator transition caused by
disorder. Then it is clear that most of the real samples of
high—-Tc superconductors are quite close to Anderson transition and
even the very slight disordering is sufficient to transform them
into Anderson insulators.

However, we must stress that the enhancement of localization
effects due to quasi—two—dimensionality is relatively weak [24],
which is reflected by logarithmic only dependence on interplane
transfer integral in (2).

CB> "Marginal” Fermi Liguid. There are serious reasons to believe
that the importance of localization effects in high—Tc oxides is
actually due to much more fundamental cause [25]. These effects
are strongly enhanced if we apply for such systems the concept of



"marginal” Fermi liquid [26]. This concept has been successfully
used to describe the wide range of properties of high-—Tc oxides
both in normal and superconducting state [26,27]. Basically the
idea of "marginal" Fermi liquid is expressed by the following form
of one-particle Green's function [26]:
Z
P
G(Ep) = + G
£ - Ep - lh/TQP

(3)
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where fp is renormalized quasi-particle energy, h/TQP_1= Max[£,T]

is anomalous (linear) decay-rate for these quasi-particles.
The concept of "marginality" arises due to peculiar behaviour of

quasiparticle residue
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where @ is characteristic frequency scale of some kind of
electronic excitations, which is the phenomenological parameter of
the theory. From (4) it is clear that quasiparticle contribution
to Green's function (3) vanishes precisely at the Fermi level,
while exists close to it.

For disordered system we can estimate the impurity contribution
to the scattering rate of quasi-particles in usual Born approxima-
tion as [25]:
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where A represents the appropriate vertex part, V is impurity
potential, n, - impurity concentration, N(EF) = Z_1N0(EF) is the
renormalized density of states at the Fermi Ilevel, NO(EF) =



same for noninteracting quasiparticles, 7, 5 = a scattering rate
for noninteractincg case. To get the last relation in (5) a weak
dependence of vertices and self-energy on momentum was assumed.
Now we can use the Ward identity for A(g+0w=0) vertex of

disordered Fermi-liquid theory [28-30]:
A(gr0w=0) = (1+FO)—1Z—1 (6)

where F is the usual Landau parameter. As a result we can easily
get a 51mple relation between the mean free paths of interacting
and noninteracting quasiparticles [25]:

2,2

1op = (Bp/m")7gp = (Bp/m)T/A%(@0) = 1,(14F,) 2 (7)

* =
Here m = Z 1n is the effective mass of the quasiparticle.

Assuming ¥ = const < 1 and using (4) we get at T = 0:

hwe 12
1QP = ], /[ln——-] (8)
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Then from usual Ioffe-Regel criterion for localization pFl/h =1,

we obtain that all quasiparticle states within the region of the
of

|e | = he, exp(-"pgly/h) (9)

around the Fermi level in high—Tc oxides are localized even for
the case of weak impurity scattering pFlo/h >> 1. For realistic
estimates of hw ~ 0.1-0.2 eV [26] and pFl < 5 the width of this
localized band mav easily be of the order of hundreds of K, while
for ppl,/h = 10 and he = 1000 K we get |8c| = 40 K.
Obviously this band grows with disorder as the mean free path 1o
drops. We can safely neglect this localization for T >> |£c|, but
for low enough temperatures localization effects become important



and all states are localized in the ground state.

The concept of localization of single-particle states in the
ground state leads to a simple conjecture on the temperature
behaviour of resistivity of single-crystalline samples of high—TC
oxides. It is well known that experimentally there are two types
of this behaviour. In ab plane resistivity always shows a
2 Ohm cm ).

However along ¢ axis situation is rather curious: most samples

linear-T behaviour in good samples ( with e_ < 10~

produce semiconductor-like behaviour P ™ 1/T, though some rare
samples (more pure?) show metallic-like By & T (with strong
anisotropy remaining: pc/pab = 102).

In case of localized states at the Fermi level and for finite

temperatures it is important to compare localization length Ry e

with diffusion lergth due to inelastic scattering L, = DT¢ ’
where D 1is classical diffusion coefficient and Td is phase
coherence time determined by inelastic processes (typically T¢2T_p

where p 1is an integer) [6]. In case of L, <R electrons do

loc
not "feel" being localized and conductivity at high T may show
metallic-like behaviour if R;oc is large enough. For

localization to be important we must go to low enough

temperatures, so that L, > Rloc' In strongly anisotropic case we
ab c

apparently have F loc >> R loc and both 1localization 1lengths
diminish with disorder growth. Then we can have three types of

behaviour:

ab _ 1/ ab . _
Low T or L &5 = DabT¢ >> R 1oc Semiconductor
5 c .. ./ C . .
strong disorder L D = Dc'!'¢ >> R Jae like behaviour.



High T or L Metallic behaviour in

D loc

low disorder L both directions.

So in principle we can explain (at least qualitatively) all types
of temperature behaviour of resistivity of high—Tc oxides, though
further analysis and quantitative estimates will strongly depend
on the assumed mechanisms of inelastic scattering determining T

2. Localization and Superconductivity: Anomalies in Normal
and Superconducting State.

Let us consider now the problem of possible superconductivity in
case of localized states at the Fermi 1level. Exact electronic
states ¢u(r) in a disordered system are defined as eigenvectors
of Hamiltonian with random potential field. These states may be
both extended or localized. Cooper pairing can be realized between
the time-reversed partners ¢,(r) and ¢*u(r) (with opposite spins)
[9]. For the case of self-averaging order parameter (gap) it was
shown by Anderson [9] that for the given value of pairing interac-
tion Tc is essentially independent of the nature of these states:
either extended or localized. However it is clear [10,11] that
Cooper pairing can be achieved in the localized phase only for the
electrons with centers of 1localization within the volume of

characteristic size of the order of R , because only these

states have overlapping wave functionslggd can interact with each
other. These states are splitted in energy on the scale of the
order of [N(EF)Rlocsl_l [2]. Obviously, to observe superconducti-
vity we must demand that this splitting be smaller than the value
of superconducting energy gap at T = 0 [10,11]:

A >> [N(Ep)R 2 (10)

loc

or for strongly anisotropic high—Tc systems:



A >> [N(EF)Ra P - =

loc locR loc]

(11)

where we introduced localization lengths along the axes of
orthorhombic lattice. These inequalities are equivalent to
condition of rather large localization length, for isotropic case:

=1/3 .

>> [N(Eg)4] = (*’fohz/pl;,z)l/3 =

R (7;‘0a2)1/3 (12)

loc
where Eo = th/& is the coherence length of BCS theory (v, —Fermi
velocity). For high—Tc oxides with rather large values of & and
small Eo this condition can be realized rather easily. Actually
the physical meaning of (12) is very simple: Rloc must be much
larger than the characteristic size of Cooper pair in strongly
disordered system [10,11]. The physical picture of superconducti-
vity in the region of localized phase can be illustrated by the
following estimates. Consider two neighbouring regions of the size

of the order of each. Transition probability of the

R
loc
electron transfer between these regions is given by:

2 3
= ¥
Bes N(ER)Ry . (13)
where % is the amplitude of such transition. Anderson
localization takes place if Y o< [N(EF)R10c3]_1, i.e. for
PT < [N(EF)Rloca]—l, when there is no tunneling. However Cooper

pairs can tunnel between these regions via Josephson-like coupling
which gives the following estimate for transition probability:

5 3,242
E; = [N(Ep)Ry 17774 (14)

Then we can see that
3

= A
EJ/PT N(EF)Rloc >> 1 (15)

in case inequality (10) is valid, so that Cooper pairs can tunnel



between regions of 1localized states and we can readily have
3...

EJ>>[N(EF)R1oc ]

fact of the absence of 1localization for Cooper pairs, while

1. So superconductivity is possible due to the

single-particle states are localized.

The existence of Meissner-like response to a vector—-potential
was explicitly demonstrated for localization region in [10,11]
within the framewcork of microscopic derivation of Ginzburg-Landau
(GL) theory for the system close to mobility edge (Cf. also
[12,13]). For T = 0 the same result was obtained later in [14].

It is important to stress here that in the vicinity of Anderson
transition the superconducting order parameter A actually
becomes non self-averaging [15,17,18]. This leads to the important
role of "statistical" (non-thermodynamic) fluctuations, leading to
the incipient inhcmogeneities of order parameter near Tc for
system close to mcbility edge ("superconducting drops" [17,18]).
Roughly speaking this 1leads to a substantial smearing of
superconducting transition. This problem deserves further studies,
especially for quasi-two—-dimensional systems.

GL coefficients, and most importantly that of the gradient term
are significantly changed close to the Anderson transition, these
changes are basically due to anomalous frequency dependence of
diffusion coefficient close to the mobility edge [10,11]. We
present here some results for quasi-two-dimensional case [19]. For
the gradient term coefficient we have:

- 2
Cp,. = NER)Ey | (18]

where &, and & define in-plane and out-of-plane coherence
lengths (size of a Cooper pair). Two important 1limits are

determined by the condition:

2 . A
W ?/ZﬂTch >< 1 i.e. 5 = Eo;l; >< a, (17)

where Eo” = th/& and Eo; = wa, /A are BCS values of coherence



lengths, 1, = VpTr 1 =wa* /h - are longitudinal and transverse

mean free paths. Eq. (17) defines either anisotropic three-dimen-

sional or "nearly two-dimensional" behaviour of superconductivity
[19]. Real high—TC systems are somewhere in the middle.
We can define characteristic conductivity scale as:

* Il

g = & ¥

c ol [TC/EFW] e (18)

For w = EF (18) reduces to isotropic result of Refs. 10,11:

ot = o (pgt /)3 = o [n /)3 (19)

The importance of o is due to the fact that for ¢ > o* we have
the usual behaviour of GL-coefficients , upper critical field ch
etc., as in theory of "dirty superconductors" [8], while for o<¢
we have "localization regime" [15,16], where for example does not
hold Gorkov's relation for ch'(T). Here the characteristic sizes

*

of Cooper pairs are estimated as:
5 2 1/3

For isotropic case when w = E these expressions transform into
that of Refs. 10,11, where close to the Anderson transition (a<a )
we obtained (Cf. (12)):

t s g1 = 2 2,1/3 (21)

For high—-Tc oxides Eo” = 1, Tc =w = 0.1 En and actually 0*=¢c“
so that these systems are close to Anderson transition also in
their superconducting behaviour.

The derivatives of the upper critical field in quasi-two-dimen-
sional case are determined by (¢0 = nch/e 1is the magnetic flux

quantum) :



al
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c2 Tc 2”EH2TC

(22)
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with f” 5 given above in (20), which leads to behaviour similar
r

to that of Refs. 10,11. For 2 <” i* there 1is no explicit
dependence of derivatives of ch ~{T) on conductivity and
Gorkov's relation breaks down. The most important relation is
given by:
Il L Il £
(H,, )'/(H, )'|Tc =&, /8, = hvy/wa, = v, /vg (23)

Thus, the anisotropy of ch'(T) is determined by the anisotropy of
the Fermi velocity irrespective of the regime of superconductivity
from the "pure" limit, through the usual "dirty" case, up to the
vicinity of Anderson transition. Note also that for the system
close to Anderson transition characteristic upward curvature of
ch(T) dependence was theoretically demonstrated [10,11], which
may well correlate with the known problem of similar behaviour in
high—Tc systems.

Experimental data obtained on radiationally disordered single-
crystals of high—Tc oxides [19-22] show the absence of direct
correlation of resistivity and ch'(T) characteristic of "dirty
superconductors (Gorkov's relation) which can be interpreted as
due to the closeness to Anderson transition. The observed isotro-
pisation of ch under disordering [21,22], i.e. isotropisation
of Cooper pairs, may be interpreted wvia (23) as due to
isotropisation of Fermi velocity. The remanent anisotropy of
resistivities may be due to anisotropy of scattering mechanisms.



In the absence of any accepted microscopic theory for T, in
high—Tc oxides it is rather difficult to discuss mechanisms of its
degradation under disordering. However we can mention several
general reasons for Tc drop apparently important for any
BCS-l1like model of high-temperature superconductivity, all
connected with the growth of disorder:

(a) growth of Coulomb repulsion within Cooper pairs [11,32];

(b) formation of correlation gap in the normal state electronic
density of states [33,34];

(c) growth of spin scattering effects due to the appearance of
disorder induced local moments [19,33];

(d) incipient inhomogeneites due to "statistical fluctuations"
near Anderson transition [17,18].

The general discussion of these mechanisms can be found in the
references given above. We should like only to stress now that
correlation gap of Ref.32 is apparently not very much important
here, because as it was shown in Ref.ll3cl§se to a mobility edge

1

its value is of the order of [N(EF)R (due to a divergent

loc
= R 2 behaviour of dielectric constant), so that in case of our

basiﬁcinequality {(10), its effects can be safely neglected.

The experimentally observed peculiar exponential growth of
electrical resistivity with defect concentration in radiationally
disordered high—Tc oxides was interpreted [19-22] as a
manifestation of hopping-like conduction due to localization,
which is probably present even in initial samples. From these data
it is possible to analyze [19-22] the fluence dependence of Rloc.
Then using the estimated values of N(EF) and &4 it can be shown
that the basic inequality (10) determining the critical value of
Rloc for the observation of superconductivity becomes invalid for
fluences of fast neutrons & > (5-7) 1018 cm_z. This is in
surprisingly good agreement with experimental data. The Tc
dependence on fluence (resistivity) can be satisfactorily
described by theoretical relations [11], obtained for the
localized phase as due to the growth of Coulomb repulsion within

Cooper pairs.



C oncl us i on

Extreme sensitivity of high-Tc oxides to disordering may have
several explanations, among them based upon the idea of exotic
types of pairing. However here we presented the point of view,
that this instability and other anomalies can be explained by
Anderson localization. Quasi-two-dimensional nature of high—Tc
systems leads to significant enhancement of localization effects
at relatively weak disorder. These effects become even more
important if the concept of "marginal" Fermi-liquid applies for
high—Tc oxides: the states at the Fermi level are localized for
smallest possible disorder. This may help to realize rather exotic
situation of superconducting transition in Anderson insulator.
High—'l‘c oxides are especially promising in this respect due to
small size of Cooper pairs, so that there may be a wide region of
parameters where localization length is larger than the Cooper
pair. There is serious evidence that such situation is actually
realized in radiationally disordered high—Tc superconductors.
Obviously much more work is needed to detalize specific
predictions of the theory, as well as further experimental
studies. In this respect especially important may be experiments
on radiation disordering of isotropic oxides like Bal_xKxBiO3
where different behaviour can be expected due to the absence of

quasi-two-dimensionality.
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