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The self-consistent theory of electron localization in a random system in the form pro-
posed by Vollhardt and Wolfle is generalized for the analysis of localization in the
Anderson model. We derive the general equations appropriate for the system with rath-
er general form of the electronic spectrum. Explicit calculations are restricted to the
lattices of cubic symmetry and use the effective mass approximation to obtain the final
results. Anderson’s critical ratio for the localization of all the electronic states in the
tight-binding band is evaluated and found to be in surprisingly good agreement with
the results of numerical analysis of localization in the Anderson model.

1. Introduction

The phenomenon of electron localization in disor-
dered systems, which is actively studied in recent
years [1], usually is described within the framework
of the well-known Anderson model [2, 3]. In most
of the papers published up to now, either quite non-
traditional methods, originating from the classic pa-
per by Anderson [2], or numerical analysis were
used. But the few attempts to derive localization via
more or less standard formalism of the modern ma-
ny-particle theory, involving the averaged Green
functions, were mostly unsuccesful. Because of this
situation we believe, that the development of the
socalled self-consistent theory of localization, in the
form proposed by Vollhardt and Wolfle [4], de-
serves a great attention. This approach allows to get
rather reasonable description of localization of elec-
tronic states in a two-dimensional system (d=2), and
also at least qualitatively describes the Anderson
transition for d>2 [5, 6], in close correspondence
with the scaling picture of this transition, proposed
in the famous paper by Abrahams, Anderson, Lic-
ciardello and Ramakrishnan [7]. In papers [4-6]
the model of clectrons scattered by the randomly
distributed point-like scatterers was considered.
Thus, due to the existence of rather large number of
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references, devoted to the study of localization in the
Anderson model (cl. the reviews [1, 8]), it seems to
be interesting to generalize the self-consistent theory
for the description of localization in this model. The
first attempt of this kind was undertaken by Prelov-
Sck [9]. in the framework of sell-consistent approach
proposed by Gotze [10]. In this paper we shall con-
centrate on the study of localization in the Anderson
model within the theory of Vollhardt and Wolfle

[4].

2. General Equations

The Hamiltonian of the Anderson model in a re-
gular lattice has the form:

L]

H=Y E,af a;+) V,,a} a; (1
J V]

where a; and a; are the usual destruction and crea-

tion operators of the electron at a site j. The energy

levels E; are considered to be independently distrib-

uted on different sites of the lattice. The distribution

at the given site is usually defined as [2]:

1 .
W’
L] |Ej|>%W

Ej|<3W

P(E,) = 2)



18 E.A. Kotovand M.V. Sadovskii: Self-Consistent Theory of Localization for the Anderson Model

corresponding to the homogeneous distribution of
energies in the energy interval of the width W. But
in the main part of this work we shall assume the
Gaussian distribution

E?
D{—ﬁz} (3)

which considerably simplifies the Lorresponding dia-
gram technique. The transfer integral V;; is assumed
to be different from zero and equal to a constant V
only for the transitions between the sites which are
nearest neighbours in the lattice.

After the Fourier transformation (1) can be written
as:

1
P(Ej) _—
V2n

H=3 ¢(p)ay a +qu prap 4)
p
where
e(p)=V) &*h (5)
h

is the standard electronic spectrum in a tight-bind-
ing approximation [11], and the vector h;;=R,—R;
defines the positions of the neighboring sites in the
lattice (the summation in (5) i1s assumed over the
nearest neighbours). The Gaussian random field U,
entering the second term in (4) (N - is the number
of sites in lattice):

1 :
U=+ ZEje”l“f (6)
N5

has in the momentum space the correlation function
of the following form:

372

LA =W, (7)

a.—q

corresponding to the assumed form of correlation of
energy levels E; in the lattice:

(EED=W?5,;. (8)

In (7) Q, is just the volume per single site of the
lattice. In the following we are considering the lat-
tices of cubic symmetry and put the total volume of
the system equal to unity, which gives I/N =@, (thc
volume of primitive cell of the crystal). The higher-
order correlation functions in case of the Gaussian
random field are factorizable in terms of the pair
correlators (7), (8), so that the form of diagram tech-
nique for the calculation of the averaged Green
functions, corresponding to the Hamiltonian (4), is
quite obvious [12].

The derivation of the main equations of the self-con-
sistent theory follows the main steps of [4]. The

only complication is connected with the necessity to
take rather general form of the electronic spectrum
(5) into account. The formalism is based upon the
Bethe-Salpeter equation for the averaged two-par-
ticle Green function qb '(Ewq), which 1s used to de-
fine the function

Ppploq)=Y P(Ewg)

pp’

=5 ~ Y (G (. P E+ ) GApLp ED
TC pp’

p.=pPL3q. (9

The Bethe-Salpeter equation takes the form (for
small g)

{a—g-%, ’ZR {E+w]+ZA (E)} R4 (Emq)
P

=AG {—o Zb Aqw) ¢ Fcuq)} (10)

where v, =de(p)/cp is the group velocity of the elec-
tron, and

G,=GE+wp,)—G*(Ep_) (11)

while the averaged one-clectron Green functions are
taken in the standard form:

GRYEp)=— (12)

1
E—o(p)—Z5M(E)  E—&(@)£iy(E)

where the last expression in (12) is obtained through
the ordinary summation ol simplest diagrams [12]
(without intersecting interaction lines) and

WE)=nW?*Q,N(E) (13)

is just the scattering rate of the electron on the ran-
dom levels and N(E) - is the one-electron density of
states. In Eq. (10) Uy .(qw) is the irreducible (in two-
particle R—A channel] vertex.

Summing both sides of (10) over p and p’ and using
the Ward identity derived in [4], we get the equa-
tion for ¢p(wq):

—N(E) (14)

wpwq)—qdiwq)=

where we have introduced the function:

Z[v ) QRA(Ewq) (15)

where § is the unit vector in the direction of q. To
obtain the equation for ¢¥(wq) we multiply (10) by
v,q and sum again over p and p". Then to “close up”
the system of equations in terms of the functions
¢p(wq) and ¢¥(wq) we use the following approxi-



E.A. Kotov and M.V. Sadovskii: Self-Consistent Theory of Localization for the Anderson Model 19

mate relation:*

Z(/)“(Euq)fv—[?.mN (E)]~'4G,
> {H( q)z(vf"'q)} Pt (Ewq) (16)
p'p’ U.L?'(q
where
1

)= — o ZAG
vi(q) 27iN(E) %(Vp q) B (17)
is just the “averaged in the vicinity of the isoener-

getic surface £(p)=E" square of the projection of the
velocity v, on the direction of §. In the lattices of
cubic symmetry (which are the only lattices consid-
ered below), due to the isotropy of their physical
properties we have:

"lu

1
I

)2 = e A('
d’E= 2mN(E}dzv

V(@)

1 L
v Y va 0(E—¢(p)) (18)
P

where the last equality 1s approximately valid in the
limit of small disorder.
Then for ¢F(wq) we get the following equation:

1
(0 +M4qo)} $f(©0)— 17 ¢p(0q) =0 (19)

where the so called “relaxation kernel”

lakes the form:

M (q )

1
1'\4}5((](!)}:ng AG
= (25§ E+w] Z2 (E]

2mN(F 5 2 (Vo QAG, US (qo) 4G, (v, - §)

Epp
~2iy(E 4G, Ub i
iy(E)— 2mN(F)v§[§ ) (qw)
-AGD,(VP.-q) (20)

where the last equality is valid in the limit of small g
and o, taking (12) into account.
Solving the system of (14) and (19) we obtain:

W+ M (qo)

—N(E) (21)

¢ (wq)= I
w’+w Mglqw)—a vig>

so that the corresponding density-density response
function (cf. Ref. 4) is given by:

* This relation is the natural generalization of (25) in [4] for the
case of electrons with the arbitrary spectrum &(p)

7eqo)=w ¢ (wq)+N(E)

1
pi N(E)viq*
=———— T (22)
w*+oMg(qo)—— vig’

d

Neglecting the w? term in the denominator of (22)
we can rewrite y.(qw) in the form:

iD,(qw)g*

w+iD,(qo) g* (23)

Ye(qw)=N(E)

where we have introduced the generalized diflusion
coefficient:

i
Dy(qe P
40)=5 s 24
The electrical conductivity is given by (cf. Ref. 4):
i
cp(w)=e* lim (——2) 7Ep(qo)
q—0 q
Jl r
=— N(E) v’
d Bl o w+ ML{O w)’ (25)

The localization 1s signalled by the appearance (in
the corresponding energy range) of the finite limit
for the following expression [3, 6, 13]:

Ar(q)
1
=——1j G " E4+id)GAp p E—id
IAN(E) m EK (p.p, E+id)Gp_p_ E—id))
1 Uzqz -1
= I lim{1———22—4 .
" N(E) (,mlwp (wg)= m]?}){ JME(qco)w}
(26)
For g—0 we have [14]:
Ag(@)x1—¢*R} (E) (27)
where the localization length is defined by:
R2 (E)=—"E__.
e dwi(E)”
wi(E)=—1lim @M ;(0w)>0. (28)

w—0

It can be seen, that in this formalism the localization
phenomenon is connected to the divergence of the
“relaxation kernel” M (0w) for w—0, which leads
to the appearance of the non-zero limit for w7 >0 in
(28).

In the self-consistent theory of Vollhardt and Walfle
the irreducible kernel Ulfp,, (ge) is taken as a sum of
the so called Langer-Neal (or maximally crossed) di-
agrams [15], which for the model under conside-
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ration reduces to:

29(E)W2Q,
—iw+D5(p+p)’

U;"p. (qw)~ (29)

12

1 vg
where Df= ——-L

Z(E)

ficient, and we assume that |p+p’| is small with re-
spect to the characteristic sizes of the Fermi surface.
The main idea of the self-consistent approach of the
Ref. 4 was the substitution of D in (29) by the “re-
normalized” diffusion coefficient defined according
to (24). Then Eq. (20) defines the self-consistent equa-
tion for M, (Ow), which after some transformations
can be written as:

is the classical diffusion coef-

i = 1
M (0w)=——2W2Q,0.) —
500) T . E%‘w—kzDﬁfME(Ow)t (30)
where
2W2Q
0= )"2 2[Im G, (E)]? (31)

Uk

and we have denoted 27(E)=1/t. Equation (30) ge-
neralizes (42) of [4] for the case of general electronic
spectrum &(p) in the lattices of cubic symmetry. It s
not difficult to write the similar expressions for the
lattices of some general symmetry, when the depen-
dence on the direction of the vector q appears €x-
plicitly (cf. (16), (17)).

For w=0 we get from (25) and (30):
0=5 N(E '

ox0)=" N(E) 3 L(00)
2 2d W? 1

_% N(E)u2 {1__‘. Qog.y - } (32)
d L‘E k Kk

defining mobility edge by the relation g, (0)=0 we
get the equation determining its position E_:

2d T/V2
1= 2Ly 0,
)2 Z 2 (33)

Ec

In the energy range corresponding to localized states
we have [4, 6]: lim & ImM (0w)=0, ReM (0w)=

w—0
—w2(E)/w, so that from (28) and (30) we can easily

find the following equation for w3 (E):
- 1
1=2W2Q,0;y ———. (34)

- 1
. cuf)(E)+-l; vik?
G

For w}(E=E_)=0 it obviously reduces to (33).
Remembering that the expression (29) is valid for
rather small values of |p+p’|, we see that the sum-

mation over k in (30), (32)-(34) should be restricted
to the values of k lying inside of some isoenergetic
surface in the momentum space with the characteristic
dimensions of the order of “doubled” Fermi surface.
In fact it follows automatically from (20), because of
two factors of 4G, and 4G, under the sum over p
and p’ in it, because these lactors are rather sharply
peaked in the vicinity of the Fermi surface.

3. The Effective Mass Approximation

The above relations are rather general and are valid
for the arbitrary electronic spectrum &(p), with the
only limitation to the lattices of cubic symmetry,
which allows not to deal with the anisotropy of
physical properties. The actual calculations will be
performed with the use of the effective mass app10x1—
mation, which allows to evaluate all the integrals in
momentum space by elementary means. Near the
“left” band-edge we have from (5):

p2

(p)x —ZV+
&(p) 2m*

(35)

where Z is the number of nearest neighbours, and
the effective mass can be easily evaluated from the
known expressions [11] for the electronic tight-bind-
ing spectra to be m*=1/2 Va? for SC, BCC and
FCC lattices (a - is the lattice constant). Using (35)
it is shown by direct calculation that 0, defined in
(31) is equal to unity in this approximation. We
choose the upper cut-off for the momentum space
integration in (30), (32)-(34) equal to ko =%0 Ppo
where pF:]/2m* ¢ (e=E+ZV is the energy distance
from the band edge) is the Fermi momentum, x,~1
+2 (cf. the discussion of the cut-off in Ref. 6). Then,
evaluating the integral in (32) for the d-dimensional
space we obtain:

e’ d |
UP(O):T]\‘( ) {l—d—_?_&x‘éz}

2 Z

e*  Up 4 o oq3

= — =<1 —- ;o 2<d<4
2nd WZQO{ . } -

where

1 (m )“”2 w2Q, B

== 7
mer \2x) TER)E’ (37

is the dimensionless “coupling constant” of this
theory [6], vpy=pp/m*.

Similarly from (33) we get:

d
(‘VE)Z_d;zF(d) (m*)’i xg— 4 18
v) =4 ) \2x) vie,t 8
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For the fixed disorder W/V this equation defines &
=¢, — the position of the mobility edge inside the
band. For the fixed ¢ (Fermi energy!) (38) defines the
critical ratio (W/V),, sufficient to localize all the
electronic states on the Fermi surface. For the half-
filled band ¢=ZV (i.e. E=0, corresponding to the
standard problem of the localization of the whole
band in the Anderson model [2, 3]), and we get:

—d

d
W\2 d—2 _ /d\ im*V\ 2 geot b=
—) = - 8w
(V)r d F(Z)(2n) Q, &)

For W/V<(W/V), we obtain the following ex-
pression for the mobility edge

2
[ d e 7 0 J_;i :dE i
S T—E TR ()
where

" 4
d 2 4 FE——ir

— = = W Ne—d
E“:(,n*ﬁ_d(go]«ud V4-d (7)
o 4
¥ [

V) D

is the energy defining the strong-coupling region [1,
6, 13] for the problem under consideration. When
the Fermi energy lowers in the band below this en-
ergy, we get A~ 1, and the perturbation theory clear-
ly breaks down.

While comparing our result with the literature on
the Anderson model it should be taken into account,
that our parameter W2 is just the dispersion of the
Gaussian distribution (3). For the homogeneous law
(2) dispersion is equal to W?/12. Thus, for the
“Anderson’s critical ratio” we obtain*: (W/V)?
=12(W/V)2. In Table 1 we give the numerical values
of the critical disorder for the localization of the
whole band calculated from (39) for the different
three-dimensional cubic lattices, for two different
values of the dimensionless cut-off. Despite the ob-
vious crudeness of the theory we get the amazingly
good correspondence of these values with the results
of numerical calculation for the SC lattice:
(W/V).=15 [16], (W/V),=194+0.5 [17], (W/V).=16
+0.5 [18], for the “Anderson’s type of disorder”,
and also with the results of the most accurate analy-
sis of localization within the Anderson approach
given by Licciardello and Economou: (W/V),~14.5
[19]. Also quite reasonable is the agreement with
the only known to us result of numerical analysis of

* It is certain, that such a procedure gives only the approximate
description of the Anderson’s type of disorder (2), because we ac-
tually neglect all the perturbation theory diagrams connected with
the higher-order cumulants of the random field E;, which are
clearly not equal to zero for the distribution law (2)

Table 1. Critical disorder, corresponding to the localization of the
whole band for the Gaussian distribution of energy levels (W;V]r
and for the Anderson’s type of distribution of levels (W/F)., for
the lattices of cubic symmetry

Lattice Z @, (W/v), (W/v), (W/V) (W),
Xo=1 x4=2 Xo=1 Xq=2
SE 6 a 5.67 4.01 19.67 1391
BCC 8 a2 8.63 6.10 29.88 21.13
FCC 12 d%4 13.50 9.55 46.78 33.08

the Gaussian disorder: (W,f’V}C:',’ [20]. We are not
aware of any numerical calculations for the BCC
and FCC lattices.

In the following we quote only the results for the d-
dimensional hypercubic lattices. In particular, for the
static conductivity in the half-filled band case we get
from (36) (2<d<4):

(W/V)—(W/V) |

HHHW »
W2 W\ d—2 iy 33 et adb
pA A AL (o BN i e B SR i
(V)S(V)‘. d F(z) 7 (8m) ™ @)

22
where we have introduced:

e

-2 \Ww /.

] 3
nd a'~? (43)

which practically coincides with the Mott’s “mini-
mal metallic conductivity” [20]. For d=3 and the
Anderson’s type of disorder we get:

o2
Gnlm:O'OlB ;7"2]-029—[ Clnil fOI' (123./40.
1d

d—2 o

nm

It is curious to note that for

~ ;;{[Ti-d—i-aoc, because of (W/V),—0 (39), which
reflects the crossover to the complete localization
of the band by the infinitesimal disorder in the two-
dimensional system [1,4-7].

Similarly, for the vicinity of some mobility edge in-
side the band we obtain:

4—d je—e, .
T=00— ( . ); ERE, (44)
where

Do 2

e vy ne
= N(g)t=—
%o d (€) m* £ (3)

is the ordinary Drude-like conductivity of a metal (n
- is the total electron density). This result coincides
with that obtained in Ref. 6.

Let us now consider the results, following from (34),
limiting ourselves only to the case of the half-filled
band and (W;"'V)Z(W,-’V)C, which corresponds to the



22 E.A. Kotov and M.V. Sadovskii: Self-Consistent Theory of Localization for the Anderson Model

localized phase*. In dimensionless variables this
equation takes the form (use also (35)):

=t s duo E)

1
0 ¥ E

l=dAxi? :
 2m*evixd

All the calculations are similar to that done in
Ref. 6, so that using e=ZV, m*=(2Va*)~" and v}

=4ZVa*, we obtain: (2<d<4)
wi(e=ZV)
2
4 d d d\] a-2
— i N e 1 Zz Vzﬂz
d{d—zr(2)1 ( 2)} e
N 2
) (W/V) |52
(W/vy?
4( d d\) i-2
~4 {d—z’ G)r 2>}
)
o W) =WV, a2
, Z2Prg2lnl . e
A i )\O{ V), (47)

From (28) and (47) we get the following expression
for the localization length in the center of the band:
1
(W/V)— (W/’V)‘_ iz
),

so that the critical exponent for the localization
length in the self-consistent theory is:

R,.(c AZV)NLI{ (48)

V=— (49)

also for the Andcrson transition in the center of the
band (Cf. Refs. 5, 6). From (49) and (42) it is seen
that Wegner’s scalmg law s=(d—2)v for the conduc-
tivity exponent is also satisfied.

Thus, the critical behaviour at the mobility edge in
the self-consistent approach to the Anderson model
is the same, as in the model of [ree electrons, scat-
tered by the random impurities [6]. Also valid are all
the remarks concerning the inapplicability of pertur-
bation theory in the vicinity of the mobility edge
made in Ref 6. Thus, the results obtained may give
at best only the qualitative description of the Ander-
son transition (this is especially so for the critical
exponents).

Finally, let us briefly analyze the two-dimensional
case, when there is a total localization of the band,
even for small disorder [1, 4-7]. Dealing again only
with the localization in the middle of the band
(e=ZV) and solving the (46), we find:

* For ¢>s, Le in the vicinity of some mobility edge inside the
band (34) essentially gives the same results, as obtained in [6],
because of effective mass approximation (35)

V\2
wi(e=ZV)=2ZV?xjexp {—22 (VN?) } (50)

so that for the localization length in the center of
the band of a square (Z =4) lattice we get:

R, (e=ZV)=aVV2Z 05'(e=2ZV)

:%D exp {4 (V;)Z} (51)

De-Broglie wave length for the electron in this case
is ~a/2 and from (51) it is clearly seen, that R,
grows exponentially, starting with the value of a/2
with W/V diminishing from (W/V)2=4/Inx,, which
gives (W/V),~2.40 for x,=2. Note, that the value of
(W V), defined in this way is rather sensitive 1o the
change of x,, in the interval 1 <x,<2. It is probable,
that such a behaviour “explains™ the results of most
numerical calculations, giving for d=2 the finite val-
ue of Anderson’s critical ratio (W/V),~6 [16, 22-24]
for the square Anderson lattice (Cf. the similar be-
haviour of the frequency dependent conductivity,
discussed in [6], and giving a kind of a “quasitran-
sition™ at a finite “mobility edge”).

The authors appreciate the useful discussions with A.V. Myas-
nikov at the initial stages of this work. One of the authors
(M.V.S.) expresses his deep gratitude to Prof. W. Wonneberger for

the hospitality, extended to him during his stay at the University
of Ulm, where this paper has been completed.

Appendix

The above discussion is slightly inprecise. The rea-
son for this is that the parameter E in the second
equality in (12) is, in fact, a “renormalized” energy,
which includes ReX®*(E), defined in the simplest
approximation, taking into account the diagrams
with no intersecting interaction lines [12]. This leads
to the shift of the band edge, due to the interaction
with radom ficld. We have:

ddp 1

IRAE)=W2Q, j(Zn)d IR AE) ) (32)
where E, denotes the “bare” energy. Defining:
E(E,)=E,—ReZ®4(E,)

we can rewrite (52) in the form:
E,—E(Ey)+iIlmE®4(Ey)

=W20, | dp . (53)

ol 2 E(E))—e(p)—i ImZRA(E,)’

In terms of the “bare” energy the band edge E, is
defined from the obvious condition of the vanishing
density of states:

|

N(E,)= f_f P imGRAE,p) -

(2717) EU"EUC e
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Fig. 1. “Mobility edge trajectory”. Broken line shows the position
of the band edge

which for our model is equivalent to the condition:
E(Ey) > —2ZV; ImI®4E=E,)=0. (54)
We consider here the “left” edge of the band. Then,
from (53) and (54) we obtain the equation deflining
Foe d'p 1
Ey=—ZV-W2Q = ;

Oc Uj‘(z‘f[)d ZV"‘C(]])
Analogous treatment for the free-clectron case was
given in [13]. In the simplest approximation (35) we
get:

(35)

Eo=—zV— W20 [ 20 _ !
Oe— . Diwm
_ 5 2m*pd-2 w? s
=—ZV—-Ww? L RS B O -
2o8a—575 va—z O

where we have introduced the upper cut-off p,=1/a.
and the last equality in (56) is written for hypercubic
lattice, so that Q,=a, m*=(2Va®)~' and &,
=2-W-Ng=d2/P(d/2).

Remember now, that the parameter &, entering (38)
is actually the distance from the physical band edge:
e=kE,—E,. Then, from (38) and (40) we obtain the
equation, defining the mobility edge position Ej in
terms of the “bare™ energy. For hypercubic lattice
we get:

2 4
R d x‘é,"z @ ),% HV (W 4-d =
e S AT _7) L
and for d =3, using (56) we [ind:
ES 1 (W2 3xI\21 W\* N
zv- 1"z (7) i (41’[2) 7 (7) (58)

defining the “mobility edge trajectory”, shown in
Fig. 1 (the picture is just the same near the “right”
band edge), which is similar to that obtained in the
Anderson’s approach to localization [3, 22]. If we
let E2=0 in (58), we get a biquadratic equation, de-
termining the critical ratio (W,/V)C for the complete
localization of the band, taking the shift of the band

edge into account. The elementary solution, for x,
=2 and Z=0 (sc lattice) gives (W,f’V)fzdi.lS. Com-
paring this with the corresponding value in Table |
shows that the influence of the shift of the band edge
is rather small, which justifies the simple approach,
used in the main part of this paper.
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Note Added in Proof

We should like to add two important references which recently
became known to us. The comprehensive survey of self-consistent
diagrammatic theory of localization is given by Wélfle, P.. Voll-
hardt, D.: Anderson localization. In: Springer Series in Solid
State Sciences. Nagaoka, Y., Fukuyama, H. (eds.), Vol. 39, p. 26.
Berlin, Heidelberg, New York: Springer-Verlag 1982. Localization
in Anderson model within the self-consistent approach was also
treated by Gatze. W.: In: Recent developments in condensed
matter. Devreese, J.T. (ed.), Vol.1, p.133. New York, London:
Plenum Press 1981.



