

Angle-resolved photoemission spectroscopy (ARPES)

Daniil Evtushinsky

Kourovka, 1st of March 2012

Momentum conservation

$$\begin{split} H &= \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i} V(\mathbf{r}_{i}) \\ u_{i}e^{-i\mathbf{k}_{i}\mathbf{r}} & u_{f}e^{-i\mathbf{k}_{f}\mathbf{r}} \\ \Delta &= \frac{e}{mc}\mathbf{A}\mathbf{p} \\ w \propto |\langle\psi_{f}|\Delta|\psi_{i}\rangle|^{2}\delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) \propto \left[\int\psi_{f}^{*}\mathbf{A}\cdot\nabla\psi_{i}d^{3}\mathbf{r}\right]^{2}\delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) \\ \int\psi_{f}^{*}\mathbf{A}\cdot\nabla\psi_{i}d^{3}\mathbf{r} \ \delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) = \mathbf{A}\cdot\int u_{f}^{*}e^{-i\mathbf{k}_{f}\mathbf{r}}\nabla(u_{i}e^{i\mathbf{k}_{i}\mathbf{r}})d^{3}\mathbf{r} \ \delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) = \\ &= \mathbf{A}\cdot\int u_{f}^{*}e^{-i\mathbf{k}_{f}\mathbf{r}}(e^{i\mathbf{k}_{i}\mathbf{r}}\nabla u_{i} + u_{i}i\mathbf{k}_{i}e^{i\mathbf{k}_{i}\mathbf{r}})d^{3}\mathbf{r} \ \delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) = \\ &= \mathbf{A}\cdot\int u_{f}^{*}(\nabla u_{i} + u_{i}i\mathbf{k}_{i})e^{i(\mathbf{k}_{i} - \mathbf{k}_{f})\mathbf{r}}d^{3}\mathbf{r} \ \delta(\varepsilon_{f} - \varepsilon_{i} - h\nu) \\ \mathbf{k}_{i} - \mathbf{k}_{f} = \mathbf{G} \end{split}$$

Momentum conservation for semi-infinite case

$$\varepsilon_i = \varepsilon_f - h\nu, \qquad \mathbf{k}_i^{\parallel} = \mathbf{k}_f^{\parallel} + \mathbf{G}$$

Angle-resolved photoemission spectroscopy (ARPES)

BESSY 1³ station

Scienta electron analyzer

Sample preparation

Sample preparation

BESSY 1³ station

Unitary ARPES image

Electronic band dispersion

Unitary ARPES image S 106eV -Kinetic energy (eV) 102 -101 -0.2 0.0 0.2 0.6 -0.8ky, 1/E -0.6 -0.4 0.4 Momentum (1/A) Stöwe et al. В Y D G G

Band dispersion from ARPES

2H-TaSe₂

Another typical experimental data set: 1T-TiSe₂

Another typical experimental data set: 1T-TiSe₂

Beamline

Excitation energy range

hv=200

Fermi surface

Aebi et al. (1996)

Borisenko et al. (1999)

Effects of interaction with bosonic mode

Kondo *et al., Nature* (2009)

ARPES data analysis

Nodal Direction of cuprates

Voigt fit of energy-momentum cut

Evtushinsky et al., PRB (2006)

Spectral Function Extraction from ARPES Data

$l(k, \omega) \propto A(k, \omega) \otimes R(k, \omega)$

We measure $I(k, \omega)$ We are interested in $A(k, \omega)$ We need to remove $R(k, \omega)$

Spectral line shape

Linewidth from Voigt Fit

Evtushinsky et al., PRB (2006)

Comparison to the low-energy highresolution data

Temperature dependence of scattering rate $\Sigma''(\omega=0,T)$

Temperature dependence of scattering rate

ARPES on charge-density-wave compounds

Phase diagram

Morosan et al., Nat. Phys. (2006); PRB (2008)

Electronic structure modification by modulating potential

$$H = \sum_{k} \{\epsilon(k)c_{k}^{+}c_{k} + \sum_{q} [V(q)c_{k+q}^{+}c_{k} + H.c]\} \quad V(\mathbf{x}) \quad V\cos(\frac{\pi}{a}\mathbf{x})$$

$$\hat{H} = \sum_{\mathbf{q} \in \text{RBZ} \atop m,n} (\delta_{m,n}\hat{c}_{\mathbf{q}+\mathbf{g}_{m}} + V_{m,n})\hat{c}_{\mathbf{q}+\mathbf{g}_{m}}^{\dagger}\hat{c}_{\mathbf{q}+\mathbf{g}_{n}}, \quad V_{n,m}(\mathbf{q}) = \begin{pmatrix} 0 & V_{c} \\ V_{c} & 0 \end{pmatrix}$$

$$A_{\mathbf{k}}^{<}(\omega) = \sum_{\mathbf{q} \in \text{RBZ} \atop i,m} \left| D_{m,i}^{*}(\mathbf{k}-\mathbf{g}_{m}) \right|^{2} \delta(E_{i}(\mathbf{k}-\mathbf{g}_{m})-\omega).$$

$$\hat{H} = \sum_{\mathbf{q} \in \text{RBZ} \atop i,m,n} D_{m,i}^{*}(\mathbf{q}) E_{i}(\mathbf{q}) D_{i,n}(\mathbf{q}) \hat{c}_{\mathbf{q}+\mathbf{g}_{n}}^{\dagger} \hat{c}_{\mathbf{q}+\mathbf{g}_{n}} = \sum_{\mathbf{q} \in \text{RBZ} \atop i} E_{i}(\mathbf{q}) \hat{a}_{\mathbf{q},i}^{\dagger} \hat{a}_{\mathbf{q},i}$$
normal state, $V=0$

$$\int_{\mathbf{q} \in \mathbf{q} \in \mathbf{q} \atop i,m,n} \int_{\mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} \in \mathbf{q} = \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} = \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf{q} \in \mathbf{q} = \mathbf$$

-π/a

0

π/a

Band dispersion of 2H-TMDs

$$2H-TaSe_2$$

CDW-induced Change in Electronic Structure

180K

30K

New Parts of Fermi surface

Fermi surface nesting and superstructure formation

 $\varepsilon(\mathbf{k}) \rightarrow \chi(\mathbf{q})$

nesting vector in the momentum space $\widehat{\mathfrak{V}}$ periodicity of the superstructure in the coordinate space

Charge ordering in 2H-TaSe₂ and NbSe₂

2H-TaSe₂

S. V. Borisenko et al., PRL (2008)

2H-NbSe₂

S. V. Borisenko *et al., PRL* (2009)

D. S. Inosov *et al.*, *NJP* (2008)

2H-NbSe₂

Davis *et al*.

Magnetic ordering in Gd_2PdSi_3 and Tb_2PdSi_3

D. S. Inosov et al., PRL (2009)

Charge-orbital ordering in $La_{0.5}Sr_{1.5}MnO_4$

D. V. Evtushinsky et al., PRL (2010)

Comparison to complementary measurements of electronic structure

ARPES

Electron transport, thermodynamics, etc.

 $\epsilon(\mathbf{k})$

 $\int \Phi[\varepsilon(\mathbf{k})] d\mathbf{k}$

Bloch wave packet <u>Electron</u> dynamics in applied field

$$\begin{aligned} \hbar \frac{d\mathbf{k}}{dt} &= -e\mathbf{E} - e\mathbf{v} \times \mathbf{B} \\ \frac{\partial f(\mathbf{k})}{\partial \mathbf{k}} \cdot \frac{d\mathbf{k}}{dt} &= -\frac{f(\mathbf{k}) - f_0(\mathbf{k})}{\tau(\mathbf{k})} \end{aligned}$$

$$\sigma_{ij} = \frac{e^2}{4\pi^3} \int_{\text{all } \mathbf{k}} \left[-\frac{df_0}{d\varepsilon} \right] \tau(\mathbf{k}) v_i(\mathbf{k}) v_j(\mathbf{k}) d^3 \mathbf{k}$$

$$\sigma_{ij} = \frac{e^2}{4\pi^3} \int_{\{\mathbf{k}| \ \varepsilon(\mathbf{k}) = \varepsilon_{\mathbf{F}}\}} \tau(\mathbf{k}) v_i(\mathbf{k}) v_j(\mathbf{k}) \frac{1}{|\mathbf{v}(\mathbf{k})|} d^2 \mathbf{k}$$

Electronic response to the weak external field

Resistivity ρ , Hall coefficient $R_{\rm H}$, and magnetoresistance $\delta \rho / \rho$

$$\sigma_{xx} = \frac{\tau e^2}{2\pi L_c h} \int v_{\rm F}(\mathbf{k}) dk \qquad \qquad \sigma_{xy} = \frac{\tau^2 B e^3}{L_c h^2} \int \frac{v_{\rm F}^2(\mathbf{k})}{\rho_{\rm F}(\mathbf{k})} dk$$
$$\delta\sigma_{xx} = -\frac{4\pi \tau^3 B^2 e^4}{L_c h^3} \int \left\{ v_{\rm F}(\mathbf{k}) \left[\frac{\mathrm{d}v_{\rm F}(\mathbf{k})}{\mathrm{d}k} \right]^2 + \frac{v_{\rm F}^3(\mathbf{k})}{2\rho^2(\mathbf{k})} \right\} dk$$
$$\rho = \frac{1}{\sigma_{xx}}, \ R_{\rm H} = \frac{\sigma_{xy}}{B \cdot \sigma_{xx}^2}, \ \text{and} \ \frac{\delta\rho}{\rho} = -\frac{\delta\sigma_{xx}}{\sigma_{xx}} - \frac{\sigma_{xy}^2}{\sigma_{xx}^2}$$

where

$$v_{\rm F}(\mathbf{k}) \equiv \frac{1}{\hbar} |\nabla \varepsilon(\mathbf{k})| \qquad \frac{1}{\rho_{\rm F}(\mathbf{k})} \equiv \frac{\nabla \varepsilon(\mathbf{k})}{\hbar v_{\rm F}(\mathbf{k})} - \frac{(\nabla v_{\rm F}(\mathbf{k}), \nabla \varepsilon(\mathbf{k}))}{\hbar v_{\rm F}^2(\mathbf{k})} \qquad \int \equiv \int_{\{\varepsilon(\mathbf{k})=0\}} \frac{\nabla \varepsilon(\mathbf{k})}{\langle \varepsilon(\mathbf{k}) \rangle \langle \varepsilon(\mathbf{k}) \rangle} d\mathbf{k}$$

Seebeck coefficient (thermopower) Nernst effect Electronic specific heat Electronic heat conductivity

Calculated and measured $R_{\rm H}$ for simple metals

	Na	К	Rb	Cu	Nb
Calculation	-2.38	-4.49	-5.4	-0.530	+0.752
Experiment	-2.50	-4.20	-5.0	-0.517	+0.875

 $R_{\rm H} (10^{-10} \, {\rm m}^3/{\rm C})$

T. P. Beaulac, *PRB* (1981) http://www.phys.ufl.edu/fermisurface/

Hall effect in 2H-TaSe₂ and NbS₂

Evtushinsky et al., PRL (2008)

Hall effect in 2H-TaSe₂ and NbS₂

Evtushinsky et al., PRL (2008)

Band dispersion of 2H-TMDs

2H-18552, 2H-NbS2

ARPES on iron-based superconductors

Iron-based superconductors

Fermi surfaces of iron-based superconductors

Fermi surfaces of iron-based superconductors

Electronic bands at Fermi level

Fermi surface of Ba_{1-x}K_xFe₂As₂

Evtushinsky *et al., JPSJ* (2011) Zabolotnyy *et al.,* Nature (2009)

Zabolotnyy *et al., Nature* (2009);*Physica C* (2009) Evtushinsky *et al., NJP* (2009);*JPSJ* (2011)

Propellers again

Hall and FS in parent

LiFeAs: no nesting, no magnetism, superconductivity

Borisenko et al., PRL (2009)

LiFeAs map

Band renormalization in LiFeAs

~3

Superconducting gap extraction from ARPES spectra

Opening of the superconducting gap in electronic dispersion

Superconducting gap in ARPES spectra

Superconducting gap in ARPES spectra

Gap extraction from ARPES data Fit of IEDC

$$A(k,\omega) = 2\pi [u_{\nu}^{2}\delta(\omega - E_{k}) + v_{\nu}^{2}\delta(\omega + E_{k})],$$

where

$$\begin{split} u_k^2 &= \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right), \quad v_k^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right), \\ E_k &= \sqrt{\xi_k^2 + \Delta^2} \end{split}$$

Dynes *et al., PRL* (1978) Evtushinsky *et al., PRB* (2009)

Gap extraction from ARPES data

Fit vs. Symmetrization

Superconducting gap in $Ba_{1-x}K_xFe_2As_2$

Fermi surfaces of iron-based superconductors

Hole-doped BaFe₂As₂

Superconducting gap distribution for $Ba_{1-x}K_xFe_2As_2$ (Γ FS sheets)

Hole-doped BaFe₂As₂

Gap on propeller-like structure

Hole-doped BaFe₂As₂

Gap on propeller-like structure

Gap anisotropy

Anisotropy of gap for Γ -barrels

Momentum dependence of the superconducting gap in $Ba_{1-x}K_xFe_2As_2$

Fermi surface and gap distribution in cuprate superconductors

Superconducting gap in LiFeAs from fit of ARPES spectra

Superconducting gap of 1.7meV in underdoped Ba_{1-x}Na_xFe₂As₂ with T_c =10K

Evtushinsky et al., NJP (2009)

Comparison to complementary measurements of electronic structure in superconducting state

ARPES

μSR, H_{c1}, specific heat, etc.

 $\varepsilon(\mathbf{k}), \Delta(\mathbf{k})$

 $\int \Phi[\varepsilon(\mathbf{k}), \Delta(\mathbf{k})] d\mathbf{k}$

Superfluid density in Ba_{1-x}K_xFe₂As₂ from ARPES

Khasanov *et al., PRL* (2009) Evtushinsky *et al., NJP* (2009)

Inosov et al., PRL (2010)

$$\frac{1}{\lambda^2(T)} = \frac{e^2}{2\pi\varepsilon_0 c^2 h L_c} \cdot \int_{\mathrm{FS}} v_{\mathrm{F}}(\mathbf{k}) \left[1 - \int_{-\infty}^{+\infty} \left(-\frac{\partial f_T(\omega)}{\partial \omega} \right) \left| \operatorname{Re} \frac{\omega}{\sqrt{\omega^2 - \Delta_{\mathbf{k}}^2(T)}} \right| \mathrm{d}\omega \right] \mathrm{d}k$$

Chandrasekhar and Einzel, Ann. Physik (1993)

3D

Sensitivity to 3D electronic structure via scanning hv

$$E_{\rm kin} = (p_{\perp}^2 + p_{\parallel}^2)/2m = hv - E_{\rm bind} - \Phi$$

$$k_{\perp} + n_{\perp}G_{\perp} = \sqrt{\frac{2m}{\hbar^2} (E_{\rm kin} + V_0) - (k_{\parallel} + n_{\parallel}G_{\parallel})^2}$$
$$= \sqrt{0.262 \frac{\text{\AA}^{-2}}{\text{eV}} (hv - E_{\rm bind} + V_0 - \Phi) - (k_{\parallel} + n_{\parallel}G_{\parallel})^2}$$

Inosov et al., PRB (2008)

k_z -dispersion in iron arsenides

k_z -dispersion in iron arsenides

k_z -dependence of the superconducting gap in BKFA

k_z -dependence of the superconducting gap in BKFA

3D band structure

Comparison of calculated and measured band dispersions

Yaresko (2011)

Comparison of calculated and measured band dispersions

Comparison of calculated and measured band dispersions

 $T_{c} = 38 \text{K}$

Hole-doped BaFe₂As₂

Comparison of calculated and measured band dispersions

Zeroing matrix element due to symmetry reasons

Zeroing matrix element due to symmetry reasons

Comparison between of and measured band dispersions

Special role of iron $3d_{xz,yz}$ orbitals in magnetism

Yi et al., PNAS (2011)

Node-like behavior in BFAP

al. et Feng (2011)

$Ba_{1-x}Na_xFe_2As_2$

Fermi surface

 $Ba_{1-x}Na_xFe_2As_2$ *hv*=80eV

Gap on the inner Γ -barrel in Ba_{1-x}Na_xFe₂As₂

Gap on the electron-like pocket in $Ba_{1-x}Na_xFe_2As_2$

Gap on the outer Γ -barrel in Ba_{1-x}Na_xFe₂As₂

Surface sensitivity

Surface component of photoemission signal in YBCO

Absence of surface states in LiFeAs

Absence of surface states in LiFeAs

Lankau et al., PRB (2011)

Surface sensitivity:

•no surface states at the Fermi level observed in 111 and 122 iron arsenides

• surface layer may be non-superconducting, but band dispersion doesn't differ from the bulk

SrPd₂Ge₂

Kim et. al., PRB (2012)

• Likely conventional superconductivity

Kim et. al., PRB (2012)

Mode

DOS of strongly coupled superconductor

FIG. 2. The effective tunneling density of states $N_T(\omega)/N(0)$ vs $(\omega - \Delta_0)/\omega_1^t$ (solid) and the density of states of the simplified BCS model $\omega/(\omega^2 - \Delta_0^2)^{1/2}$ (short dash). The ratio of the differential conductance of Pb in the superconducting to that in the normal state,

$$\frac{\frac{dI_s(\omega)}{d\omega}}{\frac{dI_n(\omega)}{d\omega}},$$

is plotted (long dash) as a function of $(\omega - \Delta_0)/\omega_1^t$ for $T = 1.3^{\circ}$ K. These data were obtained from the tunneling experiments reported by Rowell, Anderson, and Thomas.

kink_energy = 23 meV $\Delta = 10$ meV

Christianson et al., Nature (2008)

Kink in $Ba_{1-x}Na_xFe_2As_2$

Mode effect at X-pocket in $Ba_{1-x}K_xFe_2As_2$

Fusion of bogoliubons

Fusion of bogoliubons

Fusion of bogoliubons

Fine structure of electronic spectrum below $T_{\rm c}$

Temperature dependence: faster saturation for the larger gap

Relation between energy scales of band structure and superconductivity

Conclusions for iron-based

- Various Fermi surface shape for different iron-based superconductors
- Large and small superconducting gaps in $Ba_{1-x}K_xFe_2As_2$ and other materials, large $2\Delta/kT_c$
- Correlation of superconducting gap magnitude with orbital composition: importance of iron $3d_{xz,yz}$

Acknowledgements

V. B. Zabolotnyy A. A. Kordyuk T. K. Kim J. Maletz

S. Aswartham I. Morozov S. Wurmhel G. Behr C. Hess R. Hübel A. Koitzsch M. Knupfer

B. Büchner

S. V. Borisenko

D. S. Inosov A. N. Yaresko A. V. Boris G. L. Sun D. L. Sun V. Hinkov C. T. Lin B. Keimer

A. Varykhalov E. Rienks R. Follath

H.	Q.	Luo
Z.	S. 1	Wang
H.	H.	Wen

DFG Research Unit 538

Acknowledgements

S. V. Borisenko

A. A. Kordyuk

V. B. Zabolotnyy

R. Follath

B. Büchner

thank you for your attention

blank

slide