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Commutation relations for fifteen Hubbard operators:

[XH_.)\?X;LU}:F _ Xh;})()‘)\“ T X;L}\(SM/

Both Fermi-like and Hubbard-like operators form a superalgebra for Spl(2,1) group

Zaitsev (22), Wiegmann(88), Foerster & Karowski (92)...

so what ?

Neither of two generic models (Anderson model and Hubbard model, AM & HM ) possess
true supersymmetry, so one has to look for alternative closed algebra for these 15 operators.
15 is a good number from the point of view of the Lie algebras. There are at least two such
group formed by 15 generators: SO(6) and SU(4). These groups may be reduced to

SO0(5) and SU(3) under special physical limitations. Zhang (‘88) tried to apply the

former group to 7~/ model in a context of the theory of HiTc (without great benefit).

Here I will try to convince you that SU(4) is the generic symmetry of the AM. What about
benefits? Let’s see.



Symmetry of the Hamiltonian and dynamical symmetry of the energy spectrum

Any Hamiltonian H is characterized by some symmetry. Operations leaving H invariant generate
corresponding symmetry group G .
Wigner theorem

The wave functions belonging to a given eigen energy E transform along a representation of the
group G of the Schroedinger equation

Secular matrix for Schroedinger equation .
Each diagonal block corresponds to some eigenstate EA.

The right hand side of this relation turns into zero provided the states A
I - and A" belong to the same irreducible representation of the group Gg.
Off-diagonal operators X** belonging to different IRs complement
algebra of generators of the symmetry group of Schroedinger equation to
a set of generators of a dynamical symmetry group characterizing a
“supermultiplet” of eigenstates, provided these operators form a closed
algebra.

(XA H) = (BEy — Ex)H

Off-diagonal operators X** generate the spectrum starting from any given state A.

Off-diagonal operators X**" will be used below for construction of irreducible tensor operators

describing observables (scalars, vectors, tensor .. _
g ( (.f};;":l — Zj—

AN
Dynamical symmetry is not a universal characteristic: it depends on the number of
off-diagonal blocks included into consideration and on the actual energy scale.

Examples: dipole transitions with 4/ =1, spin-flip transitions with 45=1, etc.
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General view on emergence of dynamical symmetries in nanoobjects
possessing RG invariance.
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Hubbard atom as a seed of SCES: H; = ¢y Z d!
o=1.1

where A = 0,0, 2 and the energy levels Ey are

T d +Un

(2o amniel

Eq =0, E| = El =F| =€, Eo=2¢;+U.

Hubbard parabolas for quantum dots:

\J\./\/

|
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Useful tool for visualization of dynamical symmetries is the energy level diagrams
arranged in accordance with relevant variables (F. Onufrieva, 1981).
In our case these variables are spin and charge (occupation number).

charge charge

I A - - === == e — e e e —- e - E— U‘z — DDIZ

/

— = —— 1 e - - = - - — ]

0 ! ¢ 0 o0
spin spin

SU(4) (a) (b) SU(3)

Florogrammes for Hubbard atom with variable charge and spin

. ’ - a4 AF
Arrows connecting the levels Ey and Ex: correspond to Hubbard operators X AL

The Bose-like transitions with even N = 0.4+2 are
marked by the dashed arrows, the Fermi-like transitions with
odd 4N = £1 are marked by the solid arrows.
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From the point of view of dynamical symmetry, one deals with a 4-level system in case of
full Hubbard Hamiltonian, with a 3-level system in case when zero- or two-electron states

are suppressed and with a 2-level system, when only spin degrees of freedom survive. The
corresponding Fock spaces are @4, @3 and d2, respectively.

Everybody knows that 2-level systems possess SU(2) symmetry with the basic matrices

A 10 X 1 0 A 01 . 0 —z
0o = y Oz = , Oz = s Oy =
01 0 —1 10 i 0
or the ladder operators
o1 00 o 01
g = Z ( Op + 1Oy ) — ., 0 = j ( Op — 30;@;) — )
' 10 < 0 0

Pauli operators form closed su(2) algebra with commutation relations .
(oi, 01 = 2icijpor (1,7, k =x,y, 2)

These operators generate SU(2) Lie group of infinitesimal rotations in a space ®2.

Our idea is to use the generators of SU(3) and SU(4) groups for representing the Hubbard and
Anderson models. These generators are the Gell-Mann matrices of 3" and 4 rank.
These generators will be constructed from our beloved Hubbard operators.



Mathematical interlude: basic information about Gell-Mann matrices.

The number of group generators is n*> -1 =15 or 8 (because of normalization condition).

SUG): ®3=(1 | 0) or (1 | 2)

010 0 —i 0 1 00

M=l100], x=]io00]., a=]0=10
000 00 0 00 0
001 00 —i 000

M=looo], s=]o000 ]|, =]001
100 i 00 010
00 0 /10 0

M=lo0 i, A= l_ 01 0
07 0 o\ oo -2
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SU) :
0100
A = 1 0o IEI
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0000
( 0010
o
1000
\ 0000
( 00 0 0
| O q i 0
0i 0 0
\ 00 0 0
(000 —i
000 0
N —

10 000 0
\i 00 0
{0000

0000
Nya —

13 0001

\n 010

Oy=(1 | O

00
0 0

2)

1 0 00
0 —-100

, Az =

0 0
0 0

0
0
0
0

10 0

1L 1o1 0

)0 =2
00 0
0000 )
0001
0000
0100)
000 0
000 0
000 —i
00idi 0 )

0O 0 00
0O 0 00
0000
0010
0100
0000

0 0001
] 00 ]
P I
) 0000
{0 1 000
000 0
000
000 0
0+ 0 0

o
=
Il

}‘12 -

100 0
010 0
001 0
000 -3

}\15 — =

The traceless GM matrices describe all transitions between the levels 1,2,3,4 or 1,2,3. In other
words, the Gell-Mann matrices generate the dynamical symmetry of 4-level or 3-level systems.
Unit matrix A, should be added in order to describe Hamiltonian and other physical operators.
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The groups SU(n) with n>2 are semisimple, which means that their matrix representations are direct
sums of simple SU(2) groups. It is convenient to use this fact explicitly, 1.e. to introduce combinations
of GM matrices (triads) with spin-like commutation relations. In case of SU(3) group

these combinations are

T+ = é/\lzl:u\z T.= )3
1 1

U+ E(/\e,:lzz\y U. =~ (- — A3+ V3Xs)
1 1

Vj: E /\4:&1/\ V —) )\3"‘ \/3/\}4

The operators belonging to the same triad commute like Pauli operators:
[0.,0%] = £20%, [0T,07]=0..

The rest commutators are

U, VF] = £TF, [UE,V,] = FU*, [U..VE] = 2VE (U, V. ]=0.

The matrix form of these operators 1s - (j) 1 0) U (j) (j)\

Only eight of these operators are 001 000
linearly independent. vi—loool. v =1«

—_ —_—
p—
—
()
—



The same trick for SU(4) groups results in appearance of 6 triades.

First three are the same matrices T, U, V, and the rest are W, Y, Z with the components:

1 4
Wt = —-f} +iMo), Wo == Aa+ A_ I Y
9\ g 1A10) : 9 (i 3 ¥-3 2 N I 15 )
Yi = = '::)'-11 + .i:.}l.lgjl . YZ = — ( )\3 + ,.—)\S + ..—}'-15)
2 2 Vo v O
+ 1 1 o
2= =5 (MhaEidy), Z: = 73 ( Ag +V -)ud) . [A3)

Of course, only 15 operators of them are linearly independent. The choice of these 15 depend on the

physics of the problem, you are interested in.

These triads ara matrices containing units and zeros as matrix elements.

In the Fock spaces ®,, with n=3,4 each unit element may be represented by some Hubbard operator

TH=xT, T-=x1, T.=x1T_xH
V"- _ X T 1}. V- = X 07 . V. — X "o }{0“
Ut = X1 y-=x% y, =xt _x
Wt =X"2 wo =X w, =X x>
Yt — j{lﬁ‘ Y- — }{QL‘ \;2 _ J{jj___ J{QQ
Z—|— _ }{02‘ 7 — }{'2(]" 7 — }{{I'U o J{QQ (

=
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Non-zero commutation relations for the operators belonging to different triads:
including those from SU(4) group:

WE YF] = £T%, WE )Y, = FWE, Y., WE] = +%,
W=, ZF] = £VE [WE Z,] = FWE, [W,, 25 = £7*
Y=, 27 = £UF, Y5, Z,] = FY7F, Y., 2] = +7*

£ TF]) = FY*E, (WE T, = FWH, (W, TH) = £TF,

[
[
[
[
VEWTF] = FZF, [VE W, ] = FVE, [V.,WH] = £WE,
[
[
[
[

=

| =4+W [VE Z,] =+VE V., 7% = 577,
Ut 75 = +YE, [UF,Z,] =+U%, (U, 25 = 777,

| =W [YE T,] =Y [V T =577,
Y+, UT) = 574, [YE, U] = 7Y, [Y.,Ut] = +U*,

Thus instead of original superalgebra Sp/(2,1) we get Pauli like algebras, which are more

suitable for discussing the properties of SCES. There are some attempts to find supersymmetric
SCES models involving Hubbard atom (e.g., Essler, ‘95; Coleman et al, °01,°03), but they are not
too realistic and in fact Bose-Fermi duality merely reveals internal SU(n) dynamical symmetry
of the Hubbard atom (K. K., private communication)

Kourovka2012 12



Now the last step: expressing the diagonal Hubbard operators entering the Hamiltonian of
a Hubbard atom H, = Z B XA
A

*)
where A = 0, 0,2 and the energy levels E\ are
Ey=0, By =E| =L =¢4, Eys =24+ U viathe GM operators.

Following operators are involved in case of SU(4) symmetry (full Hubbard Hamiltonian)

Q, = Vo+ U, =X —2x%

P, = W,+Y,=X"1—2x% X00 oy w22 _ gyl _ E,"{"‘"’
27. = Q. —P.=2(X% - X" -’r
Hubbard operators via GM operators Fermi operators via GM operators
. 11
X0 =1 -506Q. P, di =Vt +Y", dj=U"—-W",
oy 11 1
23 o T - i ) ;
X —i—i—g(Qz—SPJ ??.-d:)ill ‘|‘JX'H—|—2)§22:l+§(Qz—Pz):l+Zz+
.11
11 . — -
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Then

26, + Fy+ E ] Ey Fis Eo
HEUH) = l+_1D+ E'GI:I+%.T3+ %'Qz—l_ _i Pzt -lj.EE

Thus the op erators P“’“J‘ Q“’“J‘ z“’-l 5111:]. TH’Z
describe both Fermi-like and Bose-like excitations shown at “Florogrammes” .

Since the set of triads 1s overcomplete, only three of these diagonal operators
correspond to some observables. Below some examples will be presented.

GM operators enter also the perturbation terms in SCES models. E.g. in Anderson model this
perturbation describes hybridization/tunneling coupling with Fermi sea of conduction electrons:

de_} — Z{f;l(fir{ﬂﬂ' —|_ HJ?*:J

ko

In terms of GM operators it reads

db

Hy '@ =3t (VI+Y e +(UT =Wy +Hee.
k:

Unlike standard representation (*), the GM representation contains excitation energies, and thus
can be directly used for construction of Green functions and concomitant diagrammatic techniques.



In case of reduced SU(3) model the same procedure gives

2F; + FE Eqo o
Hf[’['gj — 1;_ 0 GD—I—%{U;—FV;J‘FE?T;

(?br ) ZTI\ CFL'.'|' + U+f'f"ﬂ.|.) + H.C.} .

Thus we rewrote the Anderson Hamiltonian in really invariant form. The eigenstates of operators
U, and V., correspond to excitations of charge states with AN=1,-1 in the same sense as the
eigenstates of spin operator S =T /2 with AS=1,-1. Below we will find corresponding quantum
numbers.

Due to the commutation rule V™>V7/ = +T7 the spin sector 1s also involved in effective interaction
(cf. Schrieffer ~-Wolff transformation which describe effective exchange between two subsystems.
Thus the interaction with the bath (i) activates dynamical SU(3) symmetry.



Green functions:

There are Bose-like Green functions and Fermi-like Green functions for charge excitations.
The question: how do these functions look in terms of GM operators?

There is nothing new about propagators for spin excitations: S = T/2,
G. = ((S™(t)-S7(0)),
“Atomic” spin propagator is
1 {S.)

Gy = 22
 2rw—h

Charge propagators are
G, = ((VT(t)VF(0))), G = ((UT()U*(0)))

To calculate them one needs anticommutation relations for operators V,U.
24+V. —2U, 24+ U, — 2V,
3 3

Using these anticommutators, one gets the bare atomic propagators:

{Um, U7} =

Vi,V =

(2 V. — 2 . -' o 0
G,lw) = ji 2+ (Vo) \Ux)), 3’~ But the averages in the numerators are nothing but
2T w — €4 .
. i (24 (U,) —2(V,))/3 (X0 4 (XTTY and (X99) 4 (X,
llr—"’-:r.[*"*"":l = ? - . .
= M g

so everybody recognizes familiar Hubbard atomic propagators!



Historical Interlude

Eight-fold way offered in 1964 by Gell-Mann - Ne’eman and Zweig

Baryonic octet in QCD

=0 1321 =-,1315

A°%1315
)
20,1189

Z+,1189 2,1197

p, 9383 n, 939,6

This octet includes neutral and charged particles with integer and half-integer spin.
Quark model offered in order to explain the origin of this multiplet as well as other
baryonic and mesonic multiplet 1s nothing but realization of dynamical SU(3)
symmetry .

Baryonic octet realizes the irreducible representation DY of the group SU(3) .
Other multiplets transform along other D™ representations.



The baryonic octet consists of two doublets, one singlet and one triplet. It is described in

terms of so called strong interaction. The levels are split because of brocken symmetry

due to electro-weak interaction, so the “elementary” particles are unstable. Particle transformation
is in fact an inter-level transition within the multiplet.

Dynamical symmetry of baryon octet: “interlevel” transitions

mass,
MeV

A%1315
n,939,6
p, 9383

2t—»p +a, X*—> n +71°
A—-p +m, A—>n +7a

n—p +e +v

L AL,

v¢ ]‘

vy

True elementary particles behind this symmetry are “colored” quarks u,d,s possessing SU(3) symmetry

“‘Elementary” particles /
energy levels

Kourovka2012
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Hadron states are described by spin, charge, isospin and hypercharge

Unlike the case of SU(2) group, not one but two matrices representing generators of SU(3) group
may be diagonalized simultaneously. It is natural to choose for diagonalization the matrices T, and Q

1 0 0 | 10 0
T.=10-10 ~Q=§ 01 0
0 0 0 00 -2

Their eigenvalues are
Mp=1,-1,0; Mg=1/3,1/3,-2/3

for the states | 1), |}, |0), respectively.

Thus the set of eigenstates is defined by two sets of quantum numbers. Conventional representation
uses two sets of integer numbers

1

M i Mz Mg [A
Then the eigenvalues of infinite U Hubbard atom L0} 1 13 u
are represented as Of-1] -1 (1/3|d

1] o |-2/3|n

Kourovka2012 19
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Quantum numbers for Hadron supermultiplet

spin s

Iz

iz

iz
iz
iz
iz
iz
iz

charge e

0

isospin T

%2

4

O R R R

MT

Iz

-7

%2
iz

hypercharge Q

-1

-1

L r O O O O

J \




What does the hexagon ordering mean?

Octet of light hadrons contains elementary particles with spin %2, charge -1,0,1 plus isospin and
hypercharge. The two last variables are described by quantum numbers M. and M, .,
which are the eigenstates of operators 1= and Q introduced above:

1 0 0 ] 10 0
T.=10 —-10 ~Q=§ 01 0
0 0 0 00 -2

Thus the set of eigenstates is defined by two sets of quantum numbers.
Conventional representation uses two sets of integers

1

Then the members of the hadron family can be arranged as the points on a triangular lattice in the
plane (M, , M,,).



The set of basic vectors classifies the irreducible representations of SU(3) group.
In Ap classification the corresponding irreducible representation for baryon multiplet is DUV .

1 Ma © O
@ © o
o ® ©

0,-2 > > M,
A e Mz [ Mg [A
L{0] 1 |1/3]|u
0[-1]-1]1/31]d
D, 938,3 n, 939,6 -111| 0 |-2/3|h
-1,-1 -1,1
h—s

Looking at mass values, we see that the SU(3) symmetry of strong interaction is conserved only
approximately due to contribution of electroweak interactions. Real elementary particles are quarks
and real symmetries are SU(3n) with SU(3) subgroups of quark triplets (u,d,s) with charge -1/3, 2/3.

Kourovka2012 22



Let us return to our Hubbard atom treated as a 3-level system.
The Gell-Mann procedure gives in this case the lowest irreducible representation D?? .

Horizontal arrows

correspond to My
Bose like excitations . . °
(spln-.ﬂlps with spin 1), 11 N [Nz Mg A
Slanting arrows stand for (—1.1/3) — 1) 1[0l 1 1/3]u
Fermi-like excitations ‘ q;—*--j -4 0]-1| -1 [1/3|d
1 1 | Y L | 11} 0 [-2/3]1
(add1ng/rem0v1ng electron — v 2T — M, /3|h
with spin %2). Ut TV~
¢ i(@.—}*.%) *
-1 B
& @

- Irreducible representation D' for the set ds

The generic algebra is neither Bose, nor Fermi, it is Pauli-like!

In our case the number 1/3 is nothing but the normalization factor, because we deal only with
charge and spin and there is no analogs of hypercharge and isospin in non-degenerate Hubbard model



The above procedure can be generalized for the full Hubbard model treated as a 4-level system:

Generalization of this description for the SU(4) group
is straightforward. In this case the phase space for the
irreducible representations is defined by the eigenvalues
of the operators P.. Q.. T., and the lowest irreducible
representation of this group D% is represented by a v | My ﬂlf@ Mp | Mz|A
triangular pyramid in this 3D space. Three indices of 1{ojo|1/2|1/4]1/4 0 |7
the representation D) determine the eigenvalues My, ol-1l0 1' /9 1’;.- A 1:,.- 11 0
M. My of the operators T, /2, Q./4. P./4: B It a A | l

' 1{0]-1] 0 |-1/2| 0 |-1/4|h

Of1(1] 0 | O |-1/2|1/4|d

e

Ap—v A—p+v
:f. J-[szn

=

A—p—v

M; ]

The quartet of Hubbard states form a triangle in the 3D space constituted by z-projections
of group generators. In the conventional Hubbard atom with U > 0 the relevant operators
are P,Q,T. In the model with negative U another triad is relevant, namely P,Q,Z (see below).
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Physical applications: multistage Kondo screening
in metals with magnetic impurities and quantum dots.

In the process of RG transformation, the symmetry reduces as
SU(4) — SU(3) — SU(2)

following the reduction of the energy scale from 4-level system to 2-level

0 1 2 system at low energy. At the first two stages the excitation energy states are
renormalized logarithmically (Haldane ‘78).

Scaling equation

r [P de |
ca=FEwt | p—"  e— déa T
fJ00 H10 7 E dD D

the scaling invariant

c 2 . r 7D
Hgw = JS-s o — Ed:Ed—F'ﬂ'hl(F)‘
D® D- d; J, ®J +d,
Scaling equations
dJ, | B J
dInD =-eaJd, JET) = 1 —2poJIn(D/max{E,T})
k

\

TK — /rDe—.‘.'ﬂE‘d_;’fzr
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Experimental realizations of Hubbard parabolas in quantum dots

5 08 i i

5 d

Su@4) — SuU@) —» MV — SO(4)

TYTINY

0 odd even odd even

NACXON

ol

The case N=2 in QD needs another approach involving
spin singlet - spin triplet excitations within the same
charge sector, but this is a separate story about

SO(n) dynamical symmetries with z7 > 3.

(K.K., Y. Avishai, M. Kiselev ‘98 — ‘08)
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Anderson model with negative U. Two-electron tunneling
Phonon-mediated attractive interaction change the

sign of Hubbard parameter
U' =U —2)%Q .

Due to this “disproportionation” bipolaronic effect
0 1 2 o L 2 the lowest excitation energy is the energy of two-

‘ ) electron transition £, and the spin flip processes
E“ are frozen out. In this physical reality the SU(4)
€ — PP e [ group is formed by the vectors

ZU,V,W.Y
’ i This model is dual to SU(4) model with positive U!

The same 3-stage RG procedure results in the following strongly anisotropic SW Hamiltonian

. J i
HL‘.Dt.Lll'l — *\—‘—j_ (Z+ B~ —+ Z_B+) —+ N ,T“Zz Bz .

The components of the vector B defined in the space of two-particle itinerant

excitations are

+ _ a1 N — _ ar—1 L J1L _ialny - o—2(A/82)?
BT = N E Cp1Crrpy BT =N E Cr|Ch1 7= (2)0) ~ ¢ o)”
kk’' Kk’ I
_ -1 i . N ) VD v
B. = A E ("—-Az'rfa-.f'r - fa-.f_|_“--a:_|,) (A/Qp)" =8 > 1

kE’ Kourovka2012 27



Instead of spin SU(2) space we arrive at holon-doublon SU(2) space Py = (0,2).
and the anisotropic Kondo problem is mapped on the two-electron tunneling model

J J

Scaling equations:

(Aleksandrov, Bratkovskii ’03;
Cornaglia et al ‘05)

This mapping is a bright manifestation of intrinsic SU(4) symmetry of Anderson model.

Kourovka2012
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One more realization of SU(3) symmetry in nanoobjects: (M. Kiselev and K.K., 2009)

Double well traps in optical lattices

87 Rb cold atoms in a bichromatic tetragonal

Experiment: (P. Cheinet et al, PRL, 2008) optical lattice with a beam splitter
Vi(z) = Vicos®(dmz /N — @) + Vicos?(2mz /N;)

where ¢ is the relative phase between the short and
long period lattices. V;;+ denote the lattice depths of the

short. long and transverse lattices.

(a)
\@/ ek
(b) A<2U 2U<A<D 0<A<2U -
\‘@/\@/\@/\@/ g
=

Kourovka2012
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Model: double-well trap with tunneling between two wells with total occypation N = 2.

i

Hyw = Z (r:?j-n.j + L"n?) — &D{CI c, + H.c.).

To describe a doubly occupied DW trap in pseu-

dospin representation we introduce notation [1),]0), 1)

for eigenstates FEy

2*‘(] — 5:] 4+ U? ED = Q.ED,ET =

29 + dg + U of the Hamiltonian (1) with N = 2 and
Ag = 0 in configurations (2,0), (1,1), (0,2), respectively.
Evolution of these levels as a function of the ratio dg/U

i2 shown in Fig. 1

i (LD
/(02) @\)
B — 2

The effective pgeudospin Hamiltonian for this 3-level
system in this basis is

H]l::)%azlr = E,-T,Sff — 50 ,‘_-J‘Z + .-"'_"'\1[5"" + q- :I o r{iﬂl::;“"s"_ B 2]

S, = I, st =210+ [0)(1

)

1){1|—

This is spin 1 Hamiltonian with single-site anisotropy,
which allows transitions with AS, =2.
As a result we have a three-level system with a dynamical
symmetry SU(3).
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In the first example of Hubbard atom we combined 8 Gell-Mann matrices
in two vectors V, U and two scalars T,, Q . In this case another representation is used,

namely irreducible vector T and and irreducible tensor Q@ of the second rank with components

| 01 0 X 000
Qi = 2(T —UNH=100-11].Q.y= §(U— —T)=1| =100
00 0 0 10
| 1 00 .
Quz) = V¥, Qo) =V7. Q) = 3020 =3(T=U). (592)
“\0 0 1
or in terms of Hubbard operators
QU=X"n (52 QY =X~ (57)
Oy = (X" + .‘LHJ —2/3~ 82 _2/3, (Onufrieva ’81)

{gfll — ‘1{1[] — _H”I - |.r S: -5I+ + E.'-"',Sltt:l.
Q¥ = X1 — X" ~ (8.5 +575.).

This representation allows one to avoid square operators in the Hamiltonian and describe
repopulation dynamics in generic variables of SU(3) group.



Florogrammes for double quantum dots with even number of electrons

In this case the relevant dynamical symmetry groups are semisimple SO(n) Lie groups

E;
., E,
] T T T
} m\\\\‘ e i t
W S \ i ‘Sr ‘\ S
SO(6) SO(5) SO(4)
1 1

] === = =
<------>
€ —— - - -
e ——
£ - — =
- —
-

SO(7) : SO(8)
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To summarize the survey of possible SO(n) symmetries in spin systems described
in the following chapters we present a table of representations of semisimple groups

SO(n) with » from 4 to 8 via scalar and vector irreducible operators (2.8):

n{rank| V| A

41 6 |20 S,T
510 |3]1]2S8,T
6] 15 |4 |3(3S,T
7021 |6]3|S.2T
8| 28 | 8| 412S.2T

In the third and fourth columns the number of vector (V) and scalar (A) operators
1s shown, the last column explains the structure of energy spectrum, namely the
number of spin singlets (S) and spin triplets (T) entering the corresponding super-

multiplet.
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TTOKONEHHUA BONXBOB

Koraa 3axxetca Haa Mockeow
BeuepHss 3Be3agq,

Bonxebl MpUnomMHAT aapec TBOM,
W asatcsa croaa.

OHU NpUAYT U3 AGNBHUX CTPGH,
N3 6nnXHUX NanecTuH:

Bonxs Muxaun, sonxs AnekcaHap,
N Tpetuii - KOHCTaHTUH.

OHu oTNOXAT Ha NOTOM
Tekywwme pena,

Yr06b1 CObpaTLCA 30 CTONOM
Tam, roe 3se3na B3owna.

OHW BepHYyTCS B TeNJIbIN Xnes,
ae Hayuunu ux,

Y70 UepcTe NOPOU HayuHbIN Xneb
M nyTb HayYHLIN NUX.

OHU He BBILWWU U3 UTPbL

CBouXx yunTenew,

OHU HecyT cBou Aapbl

Ha ckpomHbIN Fobunew.

A TOT, KOTOPbIN UX yuun,

lne x..a roe nepea,

OTHroAb Ha Naspax He nouun,
Coscem HaobopoT -

Bce Tax xe monoa, xoTb u cea,

N myap 3eno Ha suA,

B cBou ocbmHaauaTh ¢ Yem-TO neT

Bornixsbr 3abyayT aapec TBOM
W. Bpoackuii
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