ГЕНЕРАЦИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ВНУТРЕННИМИ ДЖОЗЕФСОНОВСКИМИ КОНТАКТАМИ В ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКАХ

Theory: A. Koshelev, *Materials Science Division, Argonne National Laboratory, USA* S. Lin and L. Bulaevskii, *Los Alamos National Laboratory, USA*

Experiment: U. Welp, T. Benseman, C. Kurter[¶], K. Gray, W. Kwok Materials Science Division, Argonne National Laboratory, USA
L. Ozyuzer
Department of Physics, Izmir Institute of Technology, Turkey
H. Yamaguchi, T. Yamamoto[§], H. Minami, K. Kadowaki Institute for Materials Science, University of Tsukuba, Japan

> [¶]Current: University of Illinois at Urbana-Champaign, USA [§]Current: Beam Science Directorate, Japan Atomic Energy Agency

AnotherR. Kleiner, Universität Tübingen, GermanyexperimentalH. Wang, National Institute for Materials Science, Tsukuba , Japangroup:+ coworkers

Международная зимняя школа физиков-теоретиков «Коуровка - XXXV» «Гранатовая бухта», Верхняя Сысерть, 23 февраля — 1 марта 2014 года

Outline

- History
 - Josephson effects and generation of *em* waves
 - Josephson junctions arrays, synchronization
 - Intrinsic JJ stacks in layered superconductors (Bi₂Sr₂CaCu₂O_{8+δ})
- Terahertz radiation from high-temperature superconductors
 Review of experiments
- Synchronization by internal resonance mode
 - Mechanisms of coupling & structure of coherent state
 - Radiated power, mode damping, features in IV
 - Synchronization in inhomogeneous junction stacks
 - Mechanism of line width
- Mesa arrays

Josephson effects in superconducting tunneling junctions

B. D. Josephson, Phys. Lett. 1, 251 (1962)

• phase difference
$$\theta = \phi_2 - \phi_1 - \frac{2e}{\hbar c} \int_1^2 A dl$$

- dc Josephson effect $I \propto \sin \theta$
- ac Josephson effect $V \propto d\theta/dt$
- alternating tunnel current $I \propto \sin(2\pi f t)$
 - *f* = 2*eV/h f*/V = 0.483 THz/mV

Nobel prize 1973 (with Giaever and Esaki)

Phase dynamics in a single junction

Resistively Shunted Junction Model

Sine-Gordon equation

$$\frac{1}{\omega_p^2} \frac{\partial^2 \theta}{\partial t^2} + \frac{v}{\omega_p} \frac{\partial \theta}{\partial t} - \lambda_J^2 \frac{\partial^2 \theta}{\partial x^2} + \sin \theta = \frac{j_{ext}}{j_J}$$

Parameters:

- λ_J Josephson length
- ω_p plasma frequency
- $c_s = \lambda_J \omega_p$ Swihart velocity
- v damping parameter
 - $\beta = 1/v^2$ McCumber parameter

underdamped (v \Box 1) vs overdamped (v 1)

First observations of radiation out of Josephson junctions

EXPERIMENTAL OBSERVATION OF THE TUNNEL EFFECT FOR COOPER PAIRS WITH THE EMISSION OF PHOTONS

I. K. YANSON, V. M. SVISTUNOV, and I. M. DMITRENKO

Physico-technical Institute for Low Temperatures, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor December 9, 1964

J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 976-979 (March, 1965)

FIG. 2. Initial part of the volt-ampere characteristic (above) and output signal of the detector (below), synchronized in time. The tunnel structure is Sn_SnO_2-Sn , $T = 1.57^{\circ}K$, H = 1.5 Oe. The resonant frequency of the tuned detector is $\omega_p = 9800$ Mc.

Also: D. N. Langenberg et al., PRL 15, 294 (1965)

Dynamic Josephson effects: Shapiro steps

JOSEPHSON CURRENTS IN SUPERCONDUCTING TUNNELING: THE EFFECT OF MICROWAVES AND OTHER OBSERVATIONS*

Sidney Shapiro

Arthur D. Little, Inc., Cambridge, Massachusetts Phys. Rev. Letters 11, 80 (1963) (Received 13 June 1963)

Irradiate Jos. junction \rightarrow steps at V_m = mhf_{ext}/2e

current

FIG. 3. Microwave power at 9300 Mc/sec (A) and 24850 Mc/sec (B) produces many zero-slope regions spaced at $h\nu/2e$ or $h\nu/e$. For A, $h\nu/e = 38.5 \ \mu\text{V}$, and for B, 103 μV . For A, vertical scale is 58.8 $\mu\text{V/cm}$, horizontal scale is 67 nA/cm; for B, vertical scale is 50 $\mu\text{V/cm}$, horizontal scale is 50 $\mu\text{A/cm}$.

Dynamic Josephson effects: Fiske resonances

= cavity modes excited by oscillating Josephson current

Coon and Fiske, Phys. Rev., **138**, A744 (1965) Kulik, Pis'ma ZhETF, **2**, 134 (1965)

ω

adjusting the magnitude of H_0 , a greater portion of

higher modes.

each mode could be observed as well as several other

Coupling can be tuned by magnetic field

Josephson junction arrays

T. D. Clark, Phys. Lett. A 27, 585 (1968)

One-dimensional array

Achievement:

S. Han *et al.*, APL **64**, 1425 (1994): 500 Nb/AlO_x/Nb junctions, 47 μ W at 394 GHz

Reviews:

A. K. Jain *et al.*, Phys. Rep. **109**, 309 (1984) M. Darula *et al.*, Sup. Sci. Tech. **12**, R1 (1999)

Synchronized oscillations: P $\propto N^2$

Synchronization

adjustment of rhythms of oscillating objects due to their weak interaction

Christiaan Huygens, 1665

Large Number of oscillators: Synchronization transition Kuramoto, 1975

Synchronization problem

Linear array of point junctions

Wiesenfeld, Colet, Strogatz, Phys. Rev. Lett., 76, 404 (1996)

$$\frac{\hbar}{2er_i}\dot{\phi}_j + I_j\sin\phi_j + \dot{Q} = I_B, \quad j = 1, \dots, N \tag{1}$$

$$L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = \frac{\hbar}{2e}\sum_{k=1}^{N} \dot{\phi}_k, \qquad (2)$$

$$\dot{\theta}_{j} = \omega_{j} - \frac{K}{N} \sum_{k=1}^{N} \sin(\theta_{j} - \theta_{k} + \alpha),$$

Synchronization order parameter

$$\sigma e^{i\psi} = \frac{1}{N} \sum_{k=1}^{N} e^{i\theta_k}$$

 $0 \leq \sigma \leq l$

Self-consistent analysis:

E.g., for
$$\alpha = 0$$
 and $g(\omega_j) = \frac{\gamma / \pi}{(\omega_j - \overline{\omega})^2 + \gamma^2}$

Synchronization transition at
$$K_c = 2\gamma$$

$$\sigma = \sqrt{1 - 2\gamma / K} \quad \text{for } K > K_c$$

Coherent emission from large arrays of discrete Josephson junctions

F. Song (宋凤斌),^{1,2} F. Müller,³ R. Behr,³ and A. M. Klushin^{1,a)}

¹Institute of Bio- and Nanosystems and JARA-Fundamentals of Future Information Technology,

Forschungszentrum Jülich, D-52425 Jülich, Germany

²Department of Electronics, Nankai University, 300017 Tianjin, People's Republic of China

³Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

FIG. 1. (Color online) Schematic diagram of the measurement setup. Right side shows schematically a large series array of N=7500 SINIS Josephson junctions, equally divided into six subarrays on the substrate. Above it, the enlarged view is a photo of a small part of the meandering structure.

Frequency is limited by the superconducting gap: ~ 0.7 THz for Nb

Layered High-T_c superconductors

 $Bi_2Sr_2CaCu_2O_{8+\delta}$ (BSCCO) T_c up to 90 K H. Maeda *et al.* 1988

anisotropy 400-1000

s =1.56 nm 640 junctions/ μ m

∆ = 30-60 meV f < 15 THz

Potential applications

- new spectroscopy
- medical imaging
- security screening
- quality control

No commercial efficient compact continuous coherent THz sources

QCL: Quantum Cascade Lasers DFG: Difference-Frequency Generation IMPATT: impact ionization avalanche transit-time diode MMIC: microwave monolithic integrated circuit TUNNET: tunnel injection transit-time diode RTD: resonant tunnel diode

Tonouchi, "*Cutting-edge THz technology*", Nature Photonics **1**, 97 (2007)

Intrinsic Josephson effect

- Multiple branches Kleiner *et al.*, 1992 ...
- Fiske resonances
 Irie et al., 1998; ... Kim et al., 2005
- Shapiro steps
 Wang *et al.*, 2000, 2001;
 Latyshev *et al.*, 2001 ...
- Detection of Josephson radiation Hechtfischer *et al.*, 1997 (6-120GHz); Batov *et al.*, 2006 (0.5THz)...

Challenge:

Synchronize oscillations in all junctions

Concept: Using <u>internal</u> resonance as a synchronizator

BSCCO

Phase dynamics in stacks

Maxwell equations + material relations for superconductor

 $- - - E + i \sin \alpha$

$$j_{z} = \sigma_{c} \mathbf{L}_{z} + j_{J} \sin \phi_{n}$$

$$j_{x} = \sigma_{ab} \mathbf{E}_{x} + \frac{c \Phi_{0}}{8\pi^{2} \lambda_{ab}^{2}} \mathbf{p}_{n}$$

$$\mathbf{E}_{z} \approx \frac{\Phi_{0}}{2\pi cs} \frac{\partial \phi_{n}}{\partial t}; \mathbf{E}_{x} \approx \frac{\Phi_{0}}{2\pi c} \frac{\partial \mathbf{p}_{n}}{\partial t}$$
Parameters:

$$\frac{\partial^{2} \phi_{n}}{\partial t^{2}} + v_{c} \frac{\partial \phi_{n}}{\partial t} + \sin \phi_{n} - l^{2} \frac{\partial h_{n}}{\partial x} = 0$$
$$\left(l^{2} \nabla_{n}^{2} - 1\right) h_{n} + \frac{\partial \phi_{n}}{\partial x} + v_{ab} \frac{\partial}{\partial t} \left(\frac{\partial \phi_{n}}{\partial x} - h_{n}\right) = 0$$

φn

Sakai *et. al.*, 1993; Bulaevskii *et. al.*, 1994 <u>Reduced parameters</u>:

$$h = \frac{2\pi\gamma s^{2}B}{\Phi_{0}} \quad t \to \omega_{p}t \quad x \to \frac{x}{\lambda_{J}}$$

$$v_{c} = \frac{4\pi\sigma_{c}}{\varepsilon_{c}\omega_{p}} (\Box \ 0.002)$$

$$4\pi\sigma_{ab} \quad (= 0.1)$$

 $v_{ab} = \frac{4\pi \sigma_{ab}}{\varepsilon_c \gamma^2 \omega_p} (\Box \ 0.1) \quad I = \frac{\lambda_{ab}}{s}$

 $\lambda_{ab}, \lambda_{c} \text{ London penetration depths}$ $\gamma = \lambda_{c}/\lambda_{ab} \text{ anisotropy}$ $\omega_{p} = \frac{c}{\sqrt{\epsilon_{c}}\lambda_{c}} \text{ plasma frequency}$ $\sigma_{ab}, \sigma_{c} \text{ quasiparticle conductivities}$ s interlayer spacing $\lambda_{J} = \gamma s \text{ Josephson length}$

Generates outgoing radiation

Homogeneous oscillations at $H=0 \rightarrow$ no direct coupling

Coherent THz radiation from *Bi*₂*Sr*₂*CaCu*₂*O*₈ mesas

Ozyuzer, *et al.*, Science **318**, 1291 (2007) Recent Review: Welp, Kadowaki and Kleiner, NATURE PHOTONICS **7**, 702(2013)

Ar-ion milling, photolithography; $w = 40-100 \ \mu m$, ~1 μm high, 300 μm long

Transport and radiation (bolometer)

Radiation frequency

Parallel-plate filters:

TE: cut-off for waves

with $f < f_{cut} = c/2d$

Frequency:

1. Satisfies Josephson relation

2. Increases with decreasing width, roughly $\sim 1/w$:

cavity resonance $f = c_0/2nw$;

f = 0.52 THz for w = 80 $\mu m,\,n\approx 3.5$

Emitted power: Initial: ~0.5 μW Now: up to 50 μW

linewidth ~ 9 GHz, instrument resolution is 7.5 GHz

TM: no cut-off

Coherent emission

Variable number of emitters *n* (= resistive junctions)

Radiation frequency does not depend on *n*

Direct observation of standing waves in mesas

PRL 102, 017006 (2009)

PHYSICAL REVIEW LETTERS

week ending 9 JANUARY 2009

Hot Spots and Waves in Bi₂Sr₂CaCu₂O₈ Intrinsic Josephson Junction Stacks: A Study by Low Temperature Scanning Laser Microscopy

H. B. Wang,¹ S. Guénon,² J. Yuan,¹ A. Iishi,¹ S. Arisawa,¹ T. Hatano,¹ T. Yamashita,¹ D. Koelle,² and R. Kleiner² ¹National Institute for Materials Science, Tsukuba 3050047, Japan

²Physikalisches Institut – Experimentalphysik II and Center for Collective Quantum Phenomena, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Emissions in low-bias and high-bias regimes

PRL 105, 057002 (2010)

PHYSICAL REVIEW LETTERS

week ending 30 JULY 2010

Coherent Terahertz Emission of Intrinsic Josephson Junction Stacks in the Hot Spot Regime

H. B. Wang,¹ S. Guénon,² B. Gross,² J. Yuan,¹ Z. G. Jiang,³ Y. Y. Zhong,³ M. Grünzweig,² A. Iishi,¹ P. H. Wu,³ T. Hatano,¹ D. Koelle,² and R. Kleiner²

Hot-spot instability

SOVIET PHYSICS JETP VOLUME 25, NUMBER 6 DECEMBER, 1967 NONUNIFORM CURRENT DISTRIBUTION IN SEMICONDUCTORS WITH NEGATIVE DIFFERENTIAL CONDUCTIVITY

A. F. VOLKOV and Sh. M. KOGAN

Institute of Radio Engineering and Electronics, Academy of Sciences, U.S.S.R.

Measurements of line shape

PHYSICAL REVIEW B 86, 060505(R) (2012)

Ś

Linewidth dependence of coherent terahertz emission from Bi₂Sr₂CaCu₂O₈ intrinsic Josephson junction stacks in the hot-spot regime

Mengyue Li,^{1,2} Jie Yuan,^{2,3,*} Nickolay Kinev,⁴ Jun Li,^{2,5} Boris Gross,⁶ Stefan Guénon,⁶ Akira Ishii,² Kazuto Hirata,² Takeshi Hatano,² Dieter Koelle,⁶ Reinhold Kleiner,⁶ Valery P. Koshelets,⁴ Huabing Wang,^{1,2,†} and Peiheng Wu¹

Scientific issues

- Coupling to the resonance mode
- Structure and stability of coherent states
- Mechanisms of damping of cavity mode
- Limits of radiation power
- Mechanisms of line width

Excitation of in-phase cavity mode

Homogeneous state + External modulation, AEK and L. Bulaevskii, PR B 77, 014530 (2008)

Alternating kink state

S.-Z. Lin and X. Hu, PRL 100, 247006 (2008); AEK, Phys. Rev. B 78, 174509 (2008)

$$\varphi_n(x,t) \approx \omega t + (-1)^n \varphi_{kink}(x) + \operatorname{Re}[\psi \exp(-i\omega t)]\cos(\pi x/L) + \dots$$

Static soliton (kink) at x = L/2

$$\varphi_{kink}(0) \approx 0; \varphi_{kink}(L) \approx \pi$$

kink width $l_s \approx \left(\frac{L\lambda_J^2}{16}\frac{\omega_1^2 - \omega^2}{\omega_p^2}\right)^{1/3} \Box L_x$

Effective modulation

$$g(x) = \cos[\varphi_{kink}(x)] \approx -sign(x - L/2)$$

$$\psi = \frac{ig_1}{\omega^2 - \omega_1^2 + i\nu\omega} \qquad g_1 = \frac{2}{L} \int_0^L \cos(\pi x/L) \cos(\varphi_{kink}) dx \approx 4 / \pi$$

Maximum possible coupling

- exists without external modulations
- provides efficient pumping of energy into the cavity mode

Short-scale instability

A.E.K., Phys. Rev. B 82, 174512 2010

Local plasma frequency $\omega_p(x) \propto \sqrt{g(x)}\overline{C}(x)$

$$\overline{C}(x) = \left\langle \cos\left(\omega t + \theta(x,t)\right) \right\rangle_t \approx \frac{g_1(\omega_1^2 - \omega^2)}{(\omega_1^2 - \omega^2)^2 + v^2 \omega^2} \frac{\cos(\pi x/L)}{2}$$

For decreasing positive g(x) $g(x)\overline{C}(x) < 0$ at x > L/2 \rightarrow source of instability !!

Homogeneous state is only stable if g(x) = 0 at x > L/2

For alternating-kink state $g(x) \approx -sgn(x - L/2)$ and

$$g(x)\overline{C}(x) = \frac{(\omega_1^2 - \omega^2)}{(\omega_1^2 - \omega^2)^2 + v^2 \omega^2} \frac{|\cos(\pi x/L)|}{2} \ge 0 \quad \rightarrow \text{ stable}$$

Radiative boundary conditions for oscillating phase A.E.K. and Bulaevskii, Phys. Rev. B 77, 014530 (2008)

Phase in resistive state

 $\varphi_n(x,t) \approx \omega t + \mathsf{Re}[\theta_{n,\omega}(x) \mathsf{exp}(-i\omega t)]$

Boundary conditions for homogeneous oscillating phase $\theta_{\omega}(x) = \langle \theta_{\omega,n}(x) \rangle_n$ Long symmetric mesa

$$\frac{\partial \theta_{\omega}(L)}{\partial x} = i\zeta \theta_{\omega}(L) + i\tilde{\zeta} \theta_{\omega}(0)$$
$$\frac{\partial \theta_{\omega}(0)}{\partial x} = -i\zeta \theta_{\omega}(0) - i\tilde{\zeta} \theta_{\omega}(L)$$

For isolated mesa on metallic plate with thin metallic contact on the top

$$\zeta \approx \frac{k_{\omega}^2 L_z}{2} \left[1 - \frac{2i}{\pi} \ln \frac{C}{k_{\omega} L_x} \right]$$
$$\tilde{\zeta} \approx -\frac{k_{\omega}^2 L_z}{2} H_0^{(1)}(k_{\omega} L)$$

Argonne

Radiation dampings

1. Radiation into free space (sensitive to mode and geometry)

$$v_r = \frac{4\omega_p \lambda_c^2}{\omega L} \operatorname{Re}\left[\zeta - \tilde{\zeta}\right] = \frac{2\omega L_z}{\varepsilon_c \omega_p L} \left[1 + J_0(k_\omega L)\right] \propto \frac{L_z}{\lambda_\omega}$$

2. Radiation into crystal

Journ. of Phys., 150, 052124 (2009)

Power flow to the crystal:

$$P_{bottom} = \frac{C_{ab} \Phi_0^2 \lambda_{ab} \omega}{64\pi s^2 L} |\psi|^2$$
$$v_b = \frac{\lambda_{ab} \lambda_c}{L_x L_z} \Box 0.5$$
$$\frac{V_r}{V_b} \Box \frac{L_z^2}{\varepsilon_c \lambda_{ab} L_x} \Box 0.06$$

Dominating mechanism of damping!

Stand alone mesa Kashiwagi *et al. JJAP, 2012* An *et al.* APL, 2013

Stand-alone mesa

Japanese Journal of Applied Physics 51 (2012) 010113

SELECTED TOPICS IN APPLIED PHYSICS

DOI: 10.1143/JJAP.51.010113

Centennial Anniversary of Superconductivity

High Temperature Superconductor Terahertz Emitters:

Fundamental Physics and Its Applications

Transport and radiation near resonance

Excess current
$$\delta j = \frac{1}{4} \frac{g_1^2 v \omega}{[\omega^2 - \omega_1^2]^2 + v^2 \omega^2}$$

Similar to: M. Russo and R. Vaglio, Phys. Rev. B 17, 2171 (1978)
(single junction, no radiation)
Energy balance $IV = V^2/R + \langle \tilde{E}^2 \rangle L_z^2/R + P$
 δIV
Radiated power $P_{edge} = AL_y \frac{\Phi_0^2 \omega^3 N^2}{32\pi^3 c^2} |\psi|^2 A \sim I$ $P_{edge} = \frac{v_r}{v} \delta IV$
In resonance, for $v_r \ll v$ $P_{edge} \propto N^2$
for $v \approx v_r$ $P_{max} \approx \frac{\pi L_y L^2 g_1^2 j_j^2}{2\omega}$ Does not depend on $N!$
 $g_1 = 0.3, j_j = 500 A/cm^2, L_y = 300 \mu m$ \rightarrow P = 1.5 mW

achieved ~ 50 μ W

Synchronization in inhomogeneous mesas

Visualization of electric field

Line width of Josephson radiation

Line width of Josephson radiation

Single junction:

Line width due to quasiparticle-current fluctuations, $k_B T > \hbar \omega$

Larkin and Ovchinnikov, Zh. Eksp. Teor. Fiz., 1967 Dahm et al., Phys. Rev. Lett., 1969

$$D_{\theta} \propto \frac{\left\langle j_{f}^{2} \right\rangle}{\nu^{2}} \quad \left\langle j_{f}^{2} \right\rangle \propto \frac{k_{B}T}{R} \quad R = V/I \qquad \Delta f = \frac{1}{\pi} \left(\frac{2e}{\hbar}\right)^{2} \frac{R_{d}^{2}}{R} k_{B}T$$

$$\nu \propto 1/R_{d} \quad R_{d} = dV/dI$$

Line shrinking near cavity resonance

Lin and AEK, Phys. Rev. B, 2013

Line width of synchronized stack

Dominating quasiparticle current dissipation

Effective noise current

$$\tilde{J} = \frac{1}{N} \sum_{n=1}^{N} \tilde{j}_n \qquad \left\langle \left| \tilde{J} \right|^2 \right\rangle = \frac{\left\langle \left| \tilde{j}_n \right|^2 \right\rangle}{N} \longrightarrow 1/N \text{ narrowing}$$

Line width
$$\Delta f_0 = \frac{T}{\pi N L_x L_y v_c \ell^2} \rightarrow \frac{4}{\pi} \frac{R}{N} \left(\frac{e}{\hbar}\right)^2 k_B T$$
 $R = \frac{s\rho_c}{L_x L_y}$

Estimate

 ρ_{c} = 50 ohm cm, L_x=80 $\mu m,$ L_y=200 $\mu m,$ N=600, T=60K $\rightarrow \Delta f_{0}$ =0.2 MHz

Much smaller than best experimental observation ($\Delta f_0 \sim 20 \text{ MHz}$)

Mesa arrays

Synchronized mesa arrays \rightarrow Route to enhance power

Synchronization via base crystal

Radiation field: Lin and AEK Physica C **491** 24 (2013)

Two resonances

Uniform cavity mode in mesa \rightarrow uniform standing wave in crystal

$$\omega^{2} = C^{2} (\pi / L)^{2} = \omega_{p}^{2} + C^{2} (2\pi / a)^{2}$$
$$a = \frac{2L}{\sqrt{1 - \frac{\omega_{p}^{2}}{(c\pi / L)^{2}}}}$$

Strongest interaction between the mesas

Mesa arrays, experiment

Tim Benseman et al., Appl. Phys. Lett. 103, 022602 (2013): 3 mesas synchronized

Total power up to 610 μ W

 E_z

Summary

- Artificial and intrinsic Jos. junction arrays
- Resonant emission from BSCCO mesas
 - Frequency and polarization \rightarrow Josephson origin
 - Frequency \propto 1/width, from 0.4 to 0.85 THz, power up to 50 μW
 - Line width ~ 20 MHz
- Scientific issues and properties
 - radiation losses, radiation power in ideal case
 - external and self-generated modulation of Josephson current
 - alternating kink state
 - synchronization in inhomogeneous mesas
 - partial synchronization
 - intrinsic line width
- Mesa arrays

Potential for powerful, efficient and compact THz source!

