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STM: Quantum Tools for Nanosystems 



STM and magnetic nanostructures 
IBM-Almaden UH-Hamburg 

Co/CuN2 



Single Atom Magnetometry 
R. Wiesendanger (Uni Hamburg) 
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Control of nano-magnetism by STM 

increase of external m
agnetic field 

PdFe/Ir(111) 
T = 8K 

UH-Hamburg (R. Wiesendanger) 



Non-Local correlations: STM 

N. Neél, et al,  PRL. 107, 106804 (2011) CoCunCo on Cu(111) 



Path Integrals for Fermions 

Single Fermion second-quantization operators 

Algebra of  Grassmann anti-commuting numbers: 

Grassmann numbers anticommute with fermionic operators 

from A. Kamenev “Field Theory of  Non-Equilibrium Systems” (Cambridge, 2011)  



Grassmann calculus 

Example: 

Differentiation: 

Integration:                                        equivalent to differetition 

N.B. order: 



Coherent State 

Proof  

Diefinition of  coherent states 

Left Coherent State:        is just another Grassman number  
 
                                

Eigenstate of  annihilation operator 



Unity operator in coherent states 

Proof  

Resolution of  Unity 

Overlap of  Coherent States (non-orthogonal) 



Trace of  Fermionic Operators 

''Minus'' due to commutation Left and Right coherent state  

Trace-formula 

Matrix elements of  normally ordered operators 



Path Integral for Fermions 
Partition function  
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We get for real-time 



Gaussian Path Integrals 

Proof  - '‘det‘‘: expand the exponent only N-th oder is non-zero 

Short notation 

Only one analytical path integral: 

Examples: 

N=1 

N=2 



Correlation Function: U=0 

Single-particle correlation function: 

Using: 

Change of  variables 

Two-particle correlation function: 



Path Integral for Everything 

One- and two-electron matrix elements: 

Euclidean action 

Shot notation: 



One- and Two-particle Green Functions 

Vertex function: 

One-particle Green function 

Two-particle Green function (generalized susceptibilities) 

1 2 



Baym-Kadanoff  functional 

Partition function and Free-energy: 

Source term 

Legendre transforming from J to G: 

Decomposition into the single particle part and correlated part 

= 



Functional Family 

Exact representation of Φ: Vα
ee=α Vee 

Different Functionals and constrained field J: 

G=ρ     J=V=Vh+Vxc  DFT 
G=G(iω)    J=Σloc(iω)   LDA+DMFT 
G=G(k,iω)    J=Σ(k,iω)   GW++ 

G. Kotliar et. al. RMP (2006)   



Path Integral for impurity problem 

Partition function: 

Bath Green-function 

Hybridization  

Local Interactions 



DFT calculations: hybridization 

Relaxed structures 

Ce on Ag 
(111) 

Ce on W 
(110) 

Ce on Rh 
(111) 

Hybridization functions 

Solid: Im Δ.                           Dashed: Re Δ 



Photoemisson spectra: Ce on TM 
Experiment 
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Theory 

S. Gardonio, T. Wehling  et al.,  PRL (2011) 



TM on Ag: PES 
Experiment Theory 

S. Gardonio, M. Karolak  et al.,  PRL (2013) 
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Figure 1. (Color online) Valence band spectra for (top to bot-
tom) Mn, Fe, Co, and Ni. (a) Experimental Spectra obtained
by Photoemission (b) Theoretical spectra obtained from QMC
calculations at β = 20eV−1 with imaginary time resolution of
∆τ = 0.125 via analytical continuation [24]. The 3d shell oc-
cupancies used in the simulations are n = 5.0 for Mn, n = 6.0
for Fe, n = 7.8 for Co, and n = 8.4 for Ni.

sharp diffraction spots on low background. Isolated TM
adatoms were obtained by depositing, Mn, Fe, Co and
Ni atoms at a substrate temperature of 20 K (statistical
growth regime). The TMs coverage were calibrated by
a quartz microbalance and here we conventionally define
the coverage according to mass equivalent of a nominal
monolayer. The sample temperature was maintained at
20 K during the photoemission measurements. The pho-
toemission spectra were measured with a photoenergy of
120eV which corresponds to the Cooper minimum of the
Ag 4d photoionization cross section. Under this experi-
mental condition, there is an enhancement of the signal of
the impuritiy (coverages in the range of 10−2 to 10−3 ML)
with respect to the one of the host surface. The photoe-
mission experiments were performed at the SuperESCA
beamlinebeam line at the ELETTRA Synchrotron Ra-
diation facility, with an overall energy resolution of 40
meV.

Fig. 1 (a) shows the photoelectron energy distribu-
tion curves in the valence band of isolated Mn, Fe, Co
and Ni atoms (top to bottom) on the Ag(100) surface.
The curves are difference spectra between the empty Ag
surface and the surface covered with a few adatoms and
thus correspond to the contribution from 3d impurity
electronic states [25]. We observe a remarkable evolu-
tion of the impurity spectra through this series of TM
adatoms: Mn possess one structure (labelled 1) at bind-
ing energy (BE) of 3.25 eV; Fe has two structures, one

(1) at 2.32 eV BE and the other one (2) near the Fermi
Energy (FE); Co has one (1) broad structure at 2.57 eV
BE, one structure (2) at 0.8 eV BE, and one structure
(3) close to the FE; and Ni has four structures (1,2,3,4)
at 1.52, 0.85, 0.35, 0.08 eV BEs, respectively.

We start with reconceiling these experimental results
in the context of a generalized Kondo description: For
Mn, the spectral peak at −3.25 eV and virtually no quasi-
particle peak at the Fermi level could be well in line with
Mn acting effectively as a spin S = 5/2 Kondo impu-
rity. Indeed, this would be very similar to the situation
found for Mn impurities in bulk Ag, which has been de-
rived from photomession spectroscopy and measurements
of the magnetic susceptibility [5]. The virtually absent
quasiparticle peak would then be well understandable as
the large spin S = 5/2 leads to very small Kondo tem-
peratures [10]. With increasing filling of the 3d shell the
impurity spin should be gradually reduced and the spec-
tral weight of the quasiparticle peak near the Fermi level
should be growing exponentially. Indeed, Fe, Co, and Ni
exhibit spectral weight near the Fermi level but the shape
and weight of these low energy spectral varies very non-
monotonically through the series of Fe, Co and Ni. In
particular, we do not find a monotonous increase of the
quasiparticle spectral weight as might be expected based
on spin-only Kondo model descriptions [10]. Rather, ad-
ditional degrees of freedom must be responsible for the
experimentally observed evolution of the transition metal
adatom spectra, which we adress theoreically by combing
density functional theory (DFT) calculations with quan-
tum many body methods in the following.

We performed density functional theory (DFT) cal-
culations [26] to obtain relaxed geometries and the hy-
bridization functions, which are used as an input pa-
rameters of 5 orbital Anderson impurity models for the
adatoms. These models were then solved using the
Hirsch-Fye Monte Carlo method [27], the Non-Crossing-
and One-Crossing Approximations [11, 28], as well as ex-
act diagonalization in the spirit of the Hubbard I approx-
imation [29].

The DFT calculations show that all transition metal
adatoms adsorb to high symmetry positions continuing
the Ag lattice, i.e. sitting in the center of a square of Ag
atoms. The adsorption height above the surface differs
only little, from Mn at 1.30 Å to Ni at approximately
1.4 Å. In line with the similar adsorption geometries
the hybridization functions, Im∆(ω), of the adatoms are
similar for all adatoms [25]. Most importantly, the hy-
bridization function is rather featureless for all adatoms
in the energy region between −3 eV and +1 eV. Thus, the
complex evolution of the spectra observed experimentally
also cannot be a single particle hybridization effect.

Therefore, we resort to many body calculations of the
spectral functions of Anderson impurity models with the
hybridization functions obtained from the DFT calcula-
tions and Coulomb interactions defined via the Slater in-
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Figure 2. (Color online) Spectral functions for (a) Mn, (b) Fe,
(c) Co and (d) Ni impurities obtained from QMC calculations
at β = 20eV−1 with imaginary time resolution of ∆τ = 0.125
via analytical continuation [24] (thick black lines). The 3d
shell occupancies used in the simulations are n = 5 for Mn,
n = 6 for Fe, n = 7.8 for Co, and n = 8.4 for Ni. Additionally
spectra obtained by exact diagonalization of the bare atom
in the crystal field (Hubbard I approximation) are shown (or-
bitally resolved in a) and b); total spectra for different filling
of the 3d shell in c) and d)).

tegrals F 0 = U , F 2 = 14/(1+0.625)J and F 4 = 0.625F 2

[30] with U = 3 eV for Mn and Fe (U = 5 eV for Co and
Ni) as well as Hund’s exchange J = 1 eV. In the QMC
and NCA calculations we used the so called density-
density part of the full local Coulomb interaction. The
occupancies n of the 3d-impurity orbitals are not exactly
known and are kept as free parameters.

In Fig. 1 (b) and in more detail in Fig. 2 we show the
calculated valence band spectra for the different adatoms.
In agreement with our experiments, the manganese spec-
trum consists mainly of one peak far below the Fermi
level for 3d-shell fillings n ≈ 5. In fact, already a diago-
nalization of the atom in the crystal field of the surface
shows the basic structure found in the experiment (Fig.
2a). Thus, a low energy description of Mn on Ag (100)
in terms of a spin S = 5/2 Kondo model is well in line
with our results. This is indeed similar to the case Mn in
bulk Ag [5] and also in agreement with DFT calculations
for Mn on Ag(100) [31, 32].

Comparison of the QMC calculations to the experi-
mental spectra reveals good agreement also for the Fe,
Co, and Ni adatoms. We thus use the QMC results to
understand the physical mechanisms behind the evolu-
tion of the spectra in the series of 3d adatoms.

Multiplett splittings and Hund’s exchange. For Fe with
n = 6, our calcualtions show a broad peak at −2.5 eV
and a relatively narrow peak right below the Fermi level,
which reproduce the experimental features 1 and 2, re-
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Figure 3. (Color online) Orbitally decomposed spectral func-
tions for Co (n = 7.8 (a) and n = 7.9 (c)) and Fe (n = 6.0
(b) and n = 6.4 (d)) impurities.

spectively. The broad sattelite around −2.5 eV appears
in all orbitals and is found also in the ED calculations
(Fig. 2b). It can be identified as d6 → d5 ionization
peak. Analyzing the orbitally resolved spectral function
shown in Fig.3(b) we see that the experimental feature 2
stems from the dx2−y2 orbital. This orbital has the oc-
cupancy 0.8 in contrast to the other orbitals which are
approximately half filled. Therefore, the feature 2 cannot
be a quasiparticle peak due to spin-only Kondo physics.
Indeed, this peak appears already in a Hubbard-I descrip-
tion of Fe in the crystal field (Fig. 2 (b)) of the surface,
which shows that it corresponds to a d6 → d5 transition.
The spetral features 1 and 2 of Fe, thus, stem both from
ionization processes of the impurity. Our Hubbard 1 cal-
culations further show that the energy separation of these
peaks traces back to different d5 final state multiplets:
S = 5/2, L = 0 for the feature 2 near EF and higher
energy multiplets such as S = 2, L ≥ 0 for the feature
1. The splitting between these multiplets can be under-
stood as an effective exchange splitting ∼ J(n↑−n↓) due
to Hund’s exchange.

The experimental Co spectrum consisting of three
peaks is well reproduced in our QMC simulations for
n = 7.8 (Fig. 2 c). Analyzing the orbitally resolved spec-
tral function shown in Fig.3(a) and the corresponding
occupation matrices we find that the dxz,yz and dx2−y2

orbitals are almost fully occupied and mostly respon-
sible for the peak at −1 eV, which corresponds to the
feature 2 in the experimental spectra. Our NCA cal-
culations [25] further show that this peak stems from
d8, S = 1 → d7, S = 3/2 transitions. Again, the spectral
weight further below the Fermi level (feature 1) traces
also back to an ionization process, here d8 → d7, with
higher energy final state multipletts, e.g. d7, S = 1. As
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in the case of Fe, the splitting between the features 1 and
2 can thus be understood as atomic multiplett effect due
to Hund’s exchange. For Co, the effective exchange split-
ting reduces as compared to the case of Fe by an amount
on the order of J . This explains why the separation of
the peaks 1 and 2 is 0.5 eV smaller for Co than for Fe.

The spectrum of Ni turns out to consist mainly of
a broad peak below the Fermi level without clearly re-
solvable multiplett features. This is qualitatively in line
with an even further reduced effective exchange splitting
∼ J(n↑ − n↓) for Ni. Indeed, in our GGA and GGA+U
calculations, the Ni adatoms turn out to be nonmagnetic
on this surface which is in agreement with calculations
in Ref. [33] and experiments for Ni on Au [34].

Effective charging energies and valence fluctuations.
While the relative position of the features leabelled 1
and 2 could be explained in terms of atomic multiplets,
it remains to be explained why the feature 2 in the Fe
spectrum to and the whole Ni spectral peak are rather
close to the FE and what the nature of the peak 3 near
EF in the Co spectrum is. Therefore, we discuss the is-
sues of valence fluctuations as well as Kondo physics in
the following.

For a full rotationally invariant Coulomb vertex we ob-
tain [25] a pronouced occupancy dependence of the effec-
tive charging energies

Ueff(n) ≈

⎧

⎨

⎩

U + 4J for n = 5
U − (3/2)J for n = 6 and n = 9
U − (1/2)J for n = 7 and n = 8.

(1)

We find the highest Ueff for n = 5 which further corrob-
orates our conclusion of Mn resembling an atomic spin
S = 5/2 with nearly frozen valence and is in line with
the discussion of Kanamori type Coulomb interactions in
Ref. [21, 22]. For Hund’s exchange entering the Coulomb
vertex via the Slater Parameters F 2 and F 4 we find both
for the full vertex as well as for the density-density part a
distinction between the non-half filled cases (n = 6, ..., 9),
which is beyond the Kanamori model [21, 22]. Most im-
portantly, we find that the d6 and d9 atomic configura-
tions yield the smallest Ueff and are most susceptible to
valence fluctuations. This gives a hint towards mixed
valence behavior of the Fe and Ni adatoms, which is sub-
stantiated by our QMC results.

For the Fe d2z orbital, there are no well defined upper
Hubbard bands but only spectral peaks above EF which
extend to or even below the FE (Fig.3(b,d)). We further
find that this overall structure of the spectra remains sta-
ble also at larger fillings, like n = 6.4 shown in Fig.3(d).
In this entire range (6 < n < 6.4) of occupancies [35], the
Fe adatoms are in a mixed valence situation.

The experimental spectrum of Ni consists mainly of a
broad peak below the Fermi level and we find good agree-
ment between the QMC calculations and the measured
3d spectra of Ni adatoms for occupancies 8.3 ! n ! 8.7.
[36] In this range, the Ni spectra obtained from our QMC

simulations and the experiments are qualitatively more
similar to the ”non-interacting” GGA density of states
than to the Hubbard I spectra shown in Fig.2 d). There
are no well defined upper Hubbard bands in any of the
Ni orbitals but only broad spectral weight distributions
above the FE which extend below the FE. This points
towards a mixed valence situation for also for Ni.

In this respect Fe and Ni are very different from Co:
For Co, our experiments (feature 3) and calculations
show a quasi particle peak at the Fermi level, which is
well separated from clearly formed upper and lower Hub-
bard bands. There are, thus, less charge fluctuations for
Co on Ag (100) and so this system comes closer to the
(multiorbital) Kondo limit. Therefore, our results con-
firm the interpretation of low energy resonances in STM
spectroscopy experiments of Co on Ag(100) in terms of
a Kondo effect [37]. The QMC results further show that
all Co orbitals are involved in the quasiparticle resonance
and that excitations of the orbital degree of freedom must
be available at energies on the order of our simulation
temperature 1/β = 0.05 eV. This is similar to the case of
Co on Cu (111) [38].

The filling of the 3d shell of Co on metal substrates
has been a subject of controversy and different occu-
pancies between d7 and d8 have been suggested [38, 39].
Here, we find best agreement of calculted and measrued
spectra at n = 7.8. At higher fillings, the structure at
1eV binding energy shifts to lower energies, as shown in
Fig.3(c) for the case of 7.9 electron filling but remains
otherwise similar. We thus find that the Co occupancy is
closer to d8 rather than d7 which supports recent coupled
cluster calculations[39]. A prediction of the Co valency
based on DFT type approaches turns out to be mislead-
ing: LDA+U calculations with 2 eV< U < 5 eV yield an
occupancy of the 3d shell between n = 7.0 and 7.2.

The spectral function of Mn (a group VII-element)
could be well understood assuming a filling of n ≈ 5 for
the Mn 3d orbitals. However, noble metals like Cu (group
XI-elements having 4 electrons/atom more than the cor-
responding group VII elements) have an almost full d
shell (i.e. n ≈ 10) due to one electron from the s-orbitals
being promoted to the d-orbitals. If this promotion of
one electron from the s to the d orbitals would occur
homogenously, the 3d occupancy should increase by 1.25
electrons between each two atoms of the 3d series under
investigation. Such an increase is in line with our results
and the mixed valence behavior for Fe (6 < n < 6.4) and
Ni (8.3 ! n ! 8.7) but not with Co (n ≈ 7.8) which
comes close to the Kondo limit of frozen valence. The
latter has been attributed to the distinct occpancy de-
pendence of Ueff , Eq. (1).

In summary, our joint experimental and theoretical
study shows that Hund’s exchange controls the physics
of 3d adatoms on the surfaces of Ag (100). It fosters the
formation of multipletts, determines multiplett splittings
and modulates effective charging energies. Our exper-
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Figure 1: Colour intensity map of the ‘degree of correlation’ (as measured by the quasiparticle

weight Z - right scale) for a Hubbard-Kanamori model with 3 orbitals appropriate to the description

of early transition-metal oxides with a partially occupied t2g shell. The vertical axis is the interaction

strength U normalized to the half-bandwidth D, and a finite Hund’s coupling J = 0.15U is taken

into account. The horizontal axis is the number of electrons per site - from 0 (empty shell) to

6 (full shell). Darker regions correspond to good metals and lighter regions to correlated metals.

The black bars signal the Mott-insulating phases for U > Uc. The arrows indicate the evolution of

Uc upon further increasing J , and emphasize the opposite trend between half-filling and a generic

filling. Crosses denote the values of Uc for J = 0. One notes that, among integer fillings, the

case of 2 electrons (2 holes) displays correlated behaviour in an extended range of coupling, with

‘spin-freezing’ above some low coherence scale. Specific materials are schematically placed on the

diagram. The materials denoted in black have been placed according to the experimental value of

�/�LDA. For detailed explanations, see Sec. 6. The DMFT calculations leading to a related plot in

Ref. [22] have been repeated here using a more realistic DOS for t2g states (inset).

Coulomb interactions in the multi-orbital context is provided. In Sec. 3 the influence of Hund’s

coupling on the intra-atomic charge gap and the Mott critical coupling is explained. Sec. 4 reviews

the influence of Hund’s coupling on the Kondo temperature of a multi-orbital impurity atom in

a metallic host. Sec. 5 briefly introduces dynamical mean-field theory, which provides a bridge

between single-atom physics and the full solid. Sec. 6 is the core part of this article, in which the

key e↵ects of the Hund’s rule coupling in the solid-state context are put together. Sec. 7 and Sec. 8

consider ruthenates and iron pnictides/chalcogenides, respectively, in the perspective of Hund’s

metals.

A. Georges et.al,   PRL (2012) 



Quantum Impurity Solver 
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and inter-atomic self-energies Σx, Σy as well as the non-local self-energy Σxy in xy direction,
which defines the local self-energy matrix for our 2× 2 super-site:

ΣI,J (iω) =

⎛
⎜⎜⎜⎝

Σ0 Σx Σxy Σy

Σx Σ0 Σy Σxy

Σxy Σy Σ0 Σx

Σy Σxy Σx Σ0

⎞
⎟⎟⎟⎠

For a generalN ×N super-site impurity model (simp) the partition function can be written as a
functional integral over the 2N-component spin and site-dependent spinor Grassmann fields c∗

and c :
Z =

∫
D[c∗, c]e−Ssimp , (6)

where

Ssimp = −
N∑

I,J=0

∫ β

0

dτ

∫ β

0

dτ ′ c∗Iσ(τ)
[
G−1
σ (τ − τ ′)

]
IJ

cJσ(τ
′)

+
N∑

I=1

∫ β

0

dτUnI,↑(τ)nI,↓(τ),

(7)

where G is the N ×N matrix of effective bath Green’s function for a spin-collinear case.
The main problem of all cluster extension of DMFT is to find an optimal self-consistent way to
obtain the bath Green’s function matrix in imaginary time GIJ(τ − τ ′) or in Matsubara space
GIJ(iω). In the free-cluster version of the CDMFT scheme [6] which is equivalent to the cellular
DMFT method [8] or to the molecular CPA scheme in alloy theory [9] we can use the following
prescription. First, we need to integrate out the superlattice degrees of freedom, similarly to the
standard DMFT approach, and obtain the local Green’s function matrix:

GIJ (iω) =
∑

K

GIJ (K, iω) , (8)

where the summation runs over the reduced Brillouin zone of the plaquette superlattice.
Next we can write the matrix equation for the bath Green function matrix G, which describes the
effective interactions of the plaquette with rest of crystal. We use the impurity DMFT analogy,
which allowed us to account for double-counting corrections for the local self-energy matrix:
the bath Green function is not supposed to have any local self-energy contribution, since it
comes later from the solution of the effective super-impurity problem (7). Therefore one needs
to subtract the local self-energy contribution, which is equivalent to a solution of the following
impurity problem, where all super-cites in Fig. 1 have the self-energy contributions, but not the
”central-cluster”:

G−1 (iω) = G−1 (iω) +Σ (iω) , (9)

One can solve a complicated many-body problem described by super-impurity action Eq. (7).
We can use the numerically exact continuous-time QMC scheme [7] and get the super-impurity

Numerically Exact Solver: 
Quantum Monte Carlo  



Continuous Time Quantum Monte Carlo 

Partition function: 

Continuous Time Quantum Monte Carlo (CT-QMC) 

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011) 
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 Weak coupling QMC: CT-INT 

A. Rubtsov, 2004 



Random walks in the k-space 
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CT-QMC: Hybridization expansion (CT-HYB) 

Hamiltonian: 

Ph. Werner, et al PRL 97, 076405 (2006) 

Bath-a 

Loc-d 
Hyb 



CT-HYB: determinant weght 



Strong-Coupling Expansion: CT-HYB 

P. Werner, et al, 2006 

Hybridization: 

The partition function expansion for the hybridization
algorithm now reads (for time-ordered configurations)

Z ¼ Zbath

X

k

ZZZ
d!1 " " " d!0k

X

j1;...;jk

X

j01;...;j
0
k

Trd½T!e
$"Hloc

% djk ð!kÞd
y
j0k
ð!0kÞ " " " dj1 ð!1Þd

y
j01
ð!01Þ( det!: (93)

If the coupling to the bath is diagonal in the ‘‘flavor’’ (spin,
site, orbital, etc.) indices j, then ! is a block-diagonal matrix
and Eq. (93) simplifies to

Z ¼ Zbath

Y

j

X1

kj¼0

Z "

0
d!j1 " " "

Z "

!0jkj$1

d!0jkj Trd½T!e
$"Hloc

% djð!jkjÞd
y
j ð!0jkjÞ " " " djð!

j
1Þdyj ð!

0j
1 Þ( det!j: (94)

B. Density-density interactions

We first consider (multiorbital) models with density-
density interactions. In this case, the local Hamiltonian Hloc

commutes with the occupation number operator of each
orbital. We may therefore represent the time evolution of
the impurity by collections of ‘‘segments’’ which represent
time intervals in which an electron of a given flavor resides on
the impurity. An example of such a segment configuration for
a single-orbital model (two spin flavors) is shown in Fig. 8.

Since the local Hamiltonian is diagonal in the occupation
number basis, the contribution of the trace factor can be
computed for each segment configuration. For a model with
n orbitals and a total length Lj of segments in orbital j and a
total overlap Oij between segments of flavor i and j, one
obtains (s is a sign depending on the operator sequence)

wlocðxÞ ¼ Trd½" " "( ¼ se#
P

n
j
Lje$

P
n
i<j

ðUijOijÞ; (95)

except in the trivial case where there are no operators
for certain flavors. In the latter case, several segment

configurations, involving ‘‘full’’ and ‘‘empty’’ lines, contrib-
ute to the trace.

C. Formulation for general interactions

If Hloc is not diagonal in the occupation number basis

defined by the dy$, a separation of flavors, as in the segment
formalism, is no longer possible (see Fig. 9) and the calcu-

lation of wlocðxÞ ¼ Trd½T!e
$"Hloc

Q
$d$ð!$k$ Þd

y
$ð!0$k$ Þ " " "

d%ð!$1 Þdy$ð!0$1 Þ( becomes more involved. One strategy, pro-
posed by Werner and Millis (2006), is to represent the

operators d$ and dy$ as matrices in the eigenbasis of Hloc,
because in this representation the time-evolution operators
e$Hloc! become diagonal. The evaluation of the trace factor
thus involves the multiplication of matrices whose size is
equal to the size of the Hilbert space of Hloc. Since the
dimension of the Hilbert space grows exponentially with
the number of flavors, the calculation of the trace factor
becomes the computational bottleneck of the simulation,
and the matrix formalism is therefore restricted to a relatively
small number of flavors ( & 10). The technical part of eval-
uating these traces is described in detail in Sec. X.F.

Haule (2007) observed that conserved quantum numbers
may be exploited to facilitate the calculation of the trace. If
the eigenstates of Hloc are ordered according to conserved
quantum numbers, the evaluation of the trace is reduced to
block-matrix multiplications (see Sec. X.F) of the form

wlocðxÞ ¼
X

contr:m

Trm½" " " ðOÞm00;m0ðe$ð!0$!ÞHloc Þm0

% ðOÞm0 ;mðe$!Hloc Þm(; (96)

where O is either a creation or annihilation operator, m
denotes the index of the matrix block, and the sum runs
over those sectors which are compatible with the operator
sequence. With this technique, 3-orbital models or four-site
clusters can be simulated efficiently (Haule and Kotliar,
2007b; Gull et al., 2008b; Park et al., 2008b; Werner
et al., 2008; Chan, 2009). However, since the matrix blocks

FIG. 8 (color online). Segment configuration of a k ¼ 6 order term in hybridization expansion of the single-orbital Anderson model. Upper
line: spin-up orbital; lower line: spin-down orbital; heavy line: orbital occupied; light line: orbital empty. For each orbital, the length of the
black line (occupied orbitals) determines the chemical potential contribution to the weight factor (95). Shaded areas: Regions where both up
and down orbitals are filled, so the impurity is doubly occupied. The length of the shaded area enters into an overall weighting factor for the
potential energy (Hubbard U).

FIG. 9 (color online). A typical term in the expansion (93): Three ‘‘flavors’’ of fermionic creation and annihilation operators (denoted by
filled and empty diamonds, squares, and circles) are placed at times between 0 and ". In the general case, orbital occupation is not conserved
by the local Hamiltonian, so two operators of the same type may follow each other.

364 Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . .
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CT-HYB: Monte Carlo 
sampling 



CT-HYB: segment scheme 



CT-HYB: multi-orbital segment picture 
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CT-HYB: General Interaction 



CT-HYB: matrix code 



CT-HYB: Krylov code 



CT-HYB: Krylov code 



Multiorbital impurity with general U 

General Interaction: 

Krylov-CT-QMC 

A. Läuchli and Ph. Werner, et al PRB 80, 235117 (2009) 
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CT-QMC-Krylov: 
performance 



Miracle of CT-QMC  

 Interaction expansion CT-INT:  A. Rubtsov et al, JTP Lett (2004) 

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)  

E. Gull, et al, RMP (2011) + ALPS & TRIQS implementations  

Efficient Krylov scheme:  A. Läuchli and P. Werner, PRB (2009)  



Comparison of  different CT-QMC 
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CT-QMC review:E. Gull et al. RMP (2011) 

Ch. Jung, unpublished  



Scaling of  CT-QMC 

Temperature Interactions 



Magnetic susceptibility:  nanosystems 

Bethe-Salpeter 
Equation: 
Susceptibility:  

Local correlated nano-system: 

U 



   Spin and Charge susceptibility near impurity 

K. Patton, H. Hafermann,et.al 
PRB (2009) 



Kondo effect  

�  1933 van den Berg: exp. 

�  1964 Jun Kondo: theory 



Kondo effect: theory 

E DOS

EF
U

Tk

Abrikosov-resonanceSpin-flip scattering

Kondo-coherence



Nanostructures of  correlated atoms 
Atom manipulation 

N. Néel , et al.,  PRL  
101, 266803 (2008)  

P. Wahl et al.,  PRL  98, 056601 
(2007) 



Hybridization function Co on/in Cu(111) 

•  Hybridization of Co in bulk twice 
stronger than on surface 

•  Hybridization in energy range of Cu-d 
orbitals more anisotropic on surface 

•  Co-d occupancy: n= 7-8 
B. Surer, et al PRB (2012)  



Co on Cu(111) 
 

CT-QMC-Krylov 
B. Surer, et al. BRB (2011) 
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FIG. 9: (Color online) Top: Occupation statistics of Co in Cu
for β = 40. Bottom: Occupation statistics of Co on Cu for
β = 40.

This limit thus yields Kondo temperatures, which are
orders of magnitude smaller than obtained in our QMC
calculations as well as measured experimentally for Co in
and on Cu.
It is thus the successive locking of the impurity elec-

trons to a large spin by the Hund’s rule coupling and
the partial freezing out of orbital fluctuations that deter-
mines the on-set of Fermi liquid behavior and the Kondo
temperature in realistic systems like Co in / on Cu.
With this background it is instructive to analyze the

influence of a static crystal field on the energy spec-
trum of otherwise isolated Co atoms. Without crys-
tal fields, in a d8 configuration our local Coulomb in-
teraction (U = 4eV; J = 0.9 eV) yields a 21 fold de-
generate L = 3, S = 1 ground state which is sepa-
rated from the L = 2, S = 0 multiplet by an energy
of EL=2,S=0 = 1.3 eV. This is clearly larger than the
crystal field acting on the Co impurities (Fig. 2): The
cubic crystal field (evaluated at the Fermi level) of Co in
Cu leads to the eg states being 0.18 eV higher in energy
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FIG. 10: (Color online) Comparison of the DOS (left) and
quasi-particle weight Z (right) of Co on Cu at U = 4 eV for
the two values J = 0.0 eV and J = 0.9 eV.

than the t2g states. In this crystal field, the resulting
the d8 ground state is an orbital singlet. Excitations to
higher crystal field split states require energies on the or-
der of 0.2 eV. This is larger but comparable in order of
magnitude to the QMC and experimental Kondo tem-
peratures. However, fluctuations to these higher crystal
field split states must be taken into account to explain
the characteristic temperature of the low energy Fermi
liquid formed at Co impurities in Cu.
In our model of Co on Cu, the static crystal fields

also lift the degeneracy of the ground state multiplet
but a double degeneracy in the orbital space remains.
Excitations to higher crystal field split states require
0.03−0.08eV, here. In this model, even the ground state
multiplet allows for fluctuations of the orbital degree of
freedom.
In order to examine the effect of constraining orbital

fluctuations we consider the case of Co on Cu which
exhibits a strong reduction of the quasi-particle peak
compared to the GGA spectral function representing the
U = 0, J = 0 case. Turning off the Hund’s coupling J al-
lows the orbital and spin degrees of freedom to fluctuate
more freely and given the scaling considerations should
result in a higher Kondo temperature as well as a broader
quasi-particle peak. We study the effect of J = 0 for Co
on Cu, T = 0.025 eV, µ = 29 eV and present the compar-
ison of the quasi-particle weight and peak in Figure 10.
In line with our statement that the Kondo temperature
is determined by the locking of the impurity electrons to
a larger spin and possible restrictions of the orbital fluc-
tuations, we find a broadening of the quasi-particle peak
and increase of the quasi-particle weight Z as J → 0.

VI. CONCLUSIONS

For Co in and on Cu we found that a Fermi liquid is
formed at low T involving all impurity d-orbitals. The
example of Co on Cu shows that the characteristic tem-
perature, TK , associated with the onset of Fermi liquid
behavior can differ between the impurity orbitals. The
comparison of our QMC calculations and scaling argu-
ments further demonstrates that fluctuations in the or-
bital degree of freedom and Hund’s rule coupling are cru-
cial in determining TK in realistic systems. This is well
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FIG. 4: (Color online) Orbitally resolved DOS of the Co im-
purities in bulk Cu (top) and on Co (111) (bottom) obtained
from our QMC simulations at temperature T = 0.025 eV and
chemical potential µ = 27 eV and µ = 28 eV, respectively.

peak at the Fermi level is approximately twice narrower
in QMC. GGA+U accounts for the local Coulomb inter-
actions at the Co atoms on a Hartree Fock level which
leads to the destruction of the quasi-particle peak near
EF with all the spectral weight shifted to broad Hubbard
bands. The comparison to the QMC results shows that
this destruction of the quasi-particle peak is unphysical.

For Co on Cu, the hybridization is weaker and the DOS
from the QMC simulations exhibits, both, quasi-particle
peaks near EF as well as Hubbard type bands at higher
energies. The reduction of spectral weight of the quasi-
particle peak as compared to GGA is stronger, here.

The orbitally resolved DOS of Co in and on Co is shown
in Fig. 4. For Co in Cu the DOS of the eg and the t2g
orbitals is very similar particularly regarding the quasi-
particle peak — despite the (energy dependent) crystal
field splitting on the order of some 0.1 eV. The DOS of Co
on Cu exhibits stronger differences between the E1, E2,

and A1 orbitals. The E2 orbitals which spread out per-
pendicular to the z-axis showing the weakest hybridiza-
tion effects, but also, here, a quasi-particle peak appears
in all orbitals. This low energy quasi-particle peaks oc-
curring in all orbitals is beyond the expectation of an
S = 1 2-channel Kondo model, where a low energy quasi-
particle resonance would be expected in two orbitals only.
The DOS as obtained from our QMC calculations sug-

gests a low-temperature Fermi liquid state involving all
orbitals for both, Co in Cu and on Cu. We investigate the
nature of this state in the following sections by analyzing
the self-energies obtained from QMC and the statistics
of relevant atomic states.

B. Low energy Fermi liquid

If a Fermi liquid develops, the self-energy takes the
form

Σ(T,ω) = Σ(T, 0) + Σ′(T, 0)ω +O(ω2) (7)

with Σ(T, 0) and the first energy derivative Σ′(T, 0) being
real for T → 0. In this regime, the spectral weight Z
associated with the quasi-particle peak is determined by:

Z = (1− ReΣ′(0)− Re∆′(0))
−1

. (8)

Our QMC calculations yield the self-energy on the Mat-
subara axis. Analytic continuation ω → iωn shows that
Fermi liquid behaviour manifests itself on the Matsubara
axis by

ImΣ(T, iωn) ≈ ImΣ(T, 0)− ImΣ′(T, 0)ωn (9)

at low frequencies with ImΣ(T, 0) ∼ T 2.
We now compare these relations to the frequency and

the temperature dependence of ImΣ(T, iωn) obtained
from our QMC calculations. At the lowest accessible
temperature, T = 0.025 eV, we obtained the Matsubara
self-energies depicted for Co in and on Cu in Fig. 5.
In both systems |ImΣ| clearly decreases for all orbitals

except for the E2 orbitals of Co on Cu at µ = 27 eV
as ωn → 0. This is clearly different from the diverging
Σ(iω0) ∼ 1

iωn

, expected for the localized moment of an
isolated atom. For Co in bulk Cu, the eg and t2g orbitals
exhibit very similar self-energies, whose low-energy be-
havior is consistent with the form expected for a Fermi-
liquid (Eq. 9). For Co on Cu, the self-energies differ
considerably between the different orbitals with the E1

orbitals being least correlated and the E2 orbitals ex-
hibiting the largest self-energies at low frequencies. Our
results indicate that a Fermi liquid develops in all Co
orbitals, also here, but at different orbital specific char-
acteristic temperatures, TK .

C. Estimation of TK from QMC

TK manifests itself in the single particle excitation
spectrum as the width of the resonance in the spectral

4

GGA GGA+U
n Sz ñ S̃z n Sz ñ S̃z

Co on Cu 7.3 0.96 7.6 1.00 7.4 0.96 7.7 1.00
Co in Cu 7.3 0.51 7.6 0.53 7.3 0.90 7.5 0.93

TABLE I: Occupancies n and impurity spins S as obtained
from our GGA and GGA+U calculations. Values obtained
directly from the PAW projectors (n, S) and normalized by
the integrated total Co d-electron DOS, N =

∫
ν(E)dE, are

shown (ñ = n/N , S̃z = Sz/N ).

smaller than the diagonal elemtents. The off-diagonal
elements will be neglected, here.

As a general trend, one can see that the hybridization
of the Co d-electrons is about twice larger in the bulk
than on the surface.

In addition, DFT calculations can be used to gain in-
formation about the occupancy of the Co 3d impurity
orbitals. To this end, we peformed spin-polarized DFT
calculations using GGA as well as GGA+U (U = 4 eV,
J = 0.9 eV) of Co in Cu and Co on Cu. We obtained
the occupancies of the Co 3d orbitals derived from the
PAW projectors n = n↑ + n↓ and the impurity spin
Sz = 1

2 (n↑ − n↓) (Table I).

In all cases the average Co 3d occupancy suggested by
our DFT calculations is between n = 7 and n = 8. For
Co on Cu, the impurity spin is Sz ≈ 1 which is well in
line with a d8 configuration of the Co. In the bulk, the
Co spin is Sz ≈ 1 in GGA+U and Sz ≈ 1/2 in GGA.

In the following we study Co in and on Cu in the five-
orbital Anderson impurity model formulation (Eq. (1)).
In this framework, the chemical potential has to be cho-
sen to fix the occupancy of the Co d-orbitals. Due to the
well know double counting problem in LDA+DMFT type
approaches,23 the precise chemical potential µ and the Co
d-occupancy are not known. Therefore, we computed re-
sults in a range of chemical potential values which yield
a total d occupancy consistent with the estimates of the
DFT calculations. For both systems the results of the
DFT calculations predict a total density n ! 8 and sug-
gest a spin S ≈ 1 or slightly below in the case of Co in Cu.
For µ = 26, 27, 28eV (Co in Cu) and µ = 27, 28, 29eV
(Co on Cu) we obtain total densities and spins close to
these DFT estimates. The values of both observables
for the lowest simulation temperature T = 0.025 eV are
presented in Table II.

TABLE II: Total density and spin.

System µ ⟨n⟩ ⟨S⟩
Co in Cu 26 7.51± 0.07 1.02± 0.02
Co in Cu 27 7.78± 0.05 0.92± 0.02
Co in Cu 28 8.06± 0.03 0.817± 0.007
Co on Cu 27 7.76± 0.05 1.07± 0.01
Co on Cu 28 7.93± 0.05 0.99± 0.01
Co on Cu 29 8.21± 0.03 0.860± 0.007
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FIG. 3: (Color online) DOS of the Co impurities in bulk Cu
(top) and on Cu (111) (bottom) obtained from DFT (GGA
and GGA+U) as well as QMC simulations at temperature
T = 0.025 eV. QMC results obtained at different chemical
potentials µ are shown.

A. Quasi-particle spectra

We now analyze the excitation spectra of the Co im-
purities in order to understand the dominant physics at
different energy scales. For a first, qualitative insight into
the strength of many body renormalizations, we compare
the Co 3d-electron DOS obtained from our DFT calcu-
lations to the Co 3d spectral functions obtained from
analytical continuation of our QMC results (Fig. 3).
The non-spinpolarized GGA calculations used to deter-

mine the hybridization functions yield — by definition —
the LDOS corresponding to the Anderson model without
two-particle interactions (U = J = 0 eV). For both, Co
in and on Cu, the GGA DOS exihibts a peak near the
Fermi level (EF = 0). The QMC DOS qualitatively re-
produces the GGA DOS for the case of Co in Cu. Here,
the main difference between both approaches is that the



Self-energies: Local Fermi liquid  

•  Fermi liquid:  

•  Atomic limit: Signatures of  low energy Fermi liquids in all orbitals ! 
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Long range tails of  Coulomb interactions 
for effective Hubbard models of  graphene 
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Effect of  strain on Coulomb 
interactions in graphene 

Coulomb interaction Uij and hopping parameters t as function of  lattice constant a.  
The equilibrium lattice constant is a0 = 2.47Å. 
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Co ad-atoms: DFT calculations 

Energy relative to hex-site Magnetic moment of supercell 



Symmetry analysis 
Adatoms at h-site: 

�  irreducible representations of  C6v point 
symmetry 

E2=dxy, dx²-y²; E1=dxz, dyz; 
A1=d3r²-z² 

-  Atomic d-orbitals   
 = E1 + E2+ A1 

-  Graphene Dirac 
electrons = E1 +E2 
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Co on graphene at h-site:  
electronic structure 

S=1/2 
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Spin and orbital resolved density of  states at Co site from GGA+U (U=2eV, 
J=0.9eV) 

E1=dxz, dyz 
  

E2=dxy, dx²-y² 
  

A1=d3r²-z² 



Kondo effect: Co at h-site 
Energy level diagram 

 

E2=dxy, dx²-y²; E1=dxz, dyz; 
A1=d3r²-z² 

SU(4)-Kondo above scale of  λ, SU(2) 
below 



Realistic models of  correlated 
impurity  

Anderson multiorbital impurity model: U1234 

Hybridization function 

Interface of  DFT to many body methods  



Co at h-site: hybridization 
functions 

Particle hole asymmetry of  hybridization functions due to coupling to 
vHS 
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RG flow of  effective coupling 

•  10% change in bare coupling J0 changes TK by 
factor > 10 

•  Proximity to quantum critical point: Jc≈1.1eV 
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Kondo temperatures for Co at h-
site 

Experiment:  
TK=15K for µ=0.25eV 
(Manoharan et al. (unpublished)) 
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Jc=1.1 eV quantum critical point 



Summary 

�  CT-QMC describe local correlations effect 

�  DMFT is the simplest approach for real system  

�  DF: non-local correlation effects in nanosystem 

 

	
   


