Orbital physics in transition metal compounds: new trends

Sergey Streltsov Institute of Metal Physics, Ekaterinburg, Russia

Kourovka, 2018

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 71.20.Be, 71.70.-d, 75.10.-b

Orbital physics in transition metal compounds: new trends

S V Streltsov, D I Khomskii

Contents

- 1. Introduction
- 2. Basic concepts in the description of electrons in solids
- 3. Basic effects related to the orbital degrees of freedom

3.1 Crystal-field splitting, spin-state transitions; 3.2 Orbital degrees of freedom and magnetism; 3.3 Double exchange;3.4 Jahn–Teller effect; 3.5 Spin–orbit coupling

4. Effective reduction of dimensionality due to orbital degrees of freedom and its consequences

4.1 Formation of low-dimensional magnetic systems due to orbital ordering; 4.2 '1D-zation' of electron spectrum and orbitally driven Peierls state; 4.3 Novel states close to the Mott transition: 'molecules' in solids

5. Orbital-selective effects

5.1 Orbital-selective Mott transition; 5.2 Orbital-selective behavior and (partial) suppression of magnetism

6. Spin-orbit-related effects

6.1 Spin-orbit coupling versus Jahn-Teller effect; 6.2 Spin-orbit coupling and the formation of 'molecules' in solids; 6.3 $J_{\text{eff}} = 1/2$ and the spin-orbit-assisted Mott state; 6.4 Spin-orbit-driven Peierls transition; 6.5 Kitaev exchange; 6.6 Singlet (or excitonic) magnetism

7. Conclusions

References

Three main roles of orbitals

Additional degree of freedom

$$H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$
$$H = -\sum_{\langle ij \rangle mm'\sigma} t_{mm'} c_{im'\sigma}^{\dagger} c_{jm\sigma} + U \sum_{im} n_{im\uparrow} n_{im\downarrow} + U' \sum_{\substack{i,m\neq m'\\\sigma\sigma'}} n_{im\sigma} n_{im'\sigma'} - J_H \sum_{\substack{i,m\neq m'\\\sigma\sigma'}} c_{im\sigma}^{\dagger} c_{im\sigma'} c_{im'\sigma'} c_{im'\sigma'} + U \sum_{im} n_{im\uparrow} n_{im\downarrow} + U' \sum_{\substack{i,m\neq m'\\\sigma\sigma'}} n_{im\sigma} n_{im'\sigma'} - J_H \sum_{\substack{i,m\neq m'\\\sigma\sigma'}} c_{im\sigma'}^{\dagger} c_{im\sigma'} c_{im'\sigma'} c_{im'\sigma''}$$

"Glue" for different degrees of freedom

Effective reduction of dimensionality due to orbital degrees of freedom

- Formation of low-dimensional magnetic systems due to orbital ordering
- "1D-zation" of electron spectrum and orbitally driven Peierls state
- Novel states close to the Mott transition: "molecules" in solids

1. Effective reduction of dimensionality Introduction: orbitals and magnetism

Heisenberg model

$$H = J \sum_{ij} \mathbf{S}_i \mathbf{S}_j$$

1. Effective reduction of dimensionality Introduction: superexchange

$$J \sim \left(t_{\rm dd}^{\rm eff}\right)^2 \left(\frac{1}{U} + \frac{1}{\varDelta_{\rm CT} + U_{\rm pp}/2}\right)$$

$$J \sim \frac{t_{\rm pd}^4}{\varDelta_{\rm CT} U \varDelta_{\rm CT}} = \frac{\left(t_{\rm dd}^{\rm eff}\right)^2}{U} \qquad J \sim \frac{t_{\rm pd}^4}{\varDelta_{\rm CT} (\varDelta_{\rm CT} + U_{\rm pp}/2) \varDelta_{\rm CT}} = \frac{\left(t_{\rm dd}^{\rm eff}\right)^2}{\varDelta_{\rm CT} + U_{\rm pp}/2}$$

6

1. Effective reduction of dimensionality Introduction: GKA rules

KCuF₃

Crystal structure: perovskite (3D)

 $Cu^{3+}(3d^9)$

PHYSICAL REVIEW B

VOLUME 21, NUMBER 5

1 MARCH 1980

Neutron scattering study of spin waves in one-dimensional antiferromagnet KCuF₃

S. K. Satija, J. D. Axe, and G. Shirane Brookhaven National Laboratory, Upton, New York 11973

H. Yoshizawa and K. Hirakawa Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan (Received 31 October 1979)

Inelastic neutron scattering has been used to obtain the spin-wave spectrum in KCuF₃. The nature of magnetic interactions in this material is quasi-one-dimensional (chainlike) as evidenced by a highly anisotropic spin-wave dispersion. The spin-wave dispersion along the chain direction fits very well with the exact solution for an $S = \frac{1}{2}$ linear-chain antiferromagnet given by des Cloizeaux and Pearson. Using linear spin-wave theory, the ratio of interchain to intra-

by des Cloizeaux and Pearson. Using linear spin-wave theory, the ratio of interchain to intrachain magnetic exchange parameters J_a/J_c is found to be -0.01 ± 0.001 . A zone-center gap of

KCuF₃ $Cu^{3+}(3d^9)$ Crystal structure: perovskite (3D) week **Jahn-Teller distortions:** week FM FM **AFM y2_v/**2 **e**a S=1/2 strong chains! **AFM** Kugel & Khomskii, t_{2g} xz/yz JETP 37, 725 (1973)

Orbitals reduce dimension: 3D --- 1D

AFM chain S=1: Haldane chains

S. Lee et al., Nat. Mater. 5, 471 (2006)

Orbitals reduce dimensionality: 3D — **1D**

Orbital ordering: (LDA+U)

Exchange constants:

In dimer: $J_{intra} = 396 K (AFM)$ inter-dimer: $J_{inter} = -5 K (FM)$

Streltsov et al., PRL 96, 249701 (2006)

Orbitals reduce dimensionality: 1D --- 0D

Directional character of orbitals

/

Peierls transition: 1D chain doubling of the u.c.! Half-filling (1 electron/site) а а E(k)E(k) $\frac{\pi}{a}$ $-\frac{\pi}{a}$ $\frac{\pi}{a}$ $-\frac{\pi}{a}$

Instability at $|q| = 2k_F$ Half-filling (1 electron/site): $|k_F| = \frac{\pi}{2a}$, $|q| = \frac{\pi}{a}$

Gain in kinetic energy: $\sim -|\Delta|^2 \ln |\Delta|$ Loss in elastic energy: $\sim |\Delta|^2$

Lattice deformations are possible for other fillings!

Peierls transition: 1D chain

Instability at $|q| = 2k_F$

quarter-filling (1/2 electron/site):

 $|k_F| = \frac{\pi}{4a} |q| = \frac{\pi}{2a}$

quadrupling of the u.c.!

Spinels: AB₂O₄

Natural formation of 1D bands due to orbitals...

CuIr₂S₄: spinel

Nominally: $Ir^{3.5+}(t_{2g}^{5.5})$

T<230 K:

- 1) charge ordering $Ir^{3+}(t_{2g}^6)$ and $Ir^{4+}(t_{2g}^5)$
- **2) tetragonal elongation** c/a>1
- **3) dimerization** Ir⁴⁺ — Ir⁴⁺ dimers

Radaelli et al., Nature 416, 155 (2002)

What is the reason for such complex distortions?

CuIr₂S₄: spinel

Orbitals reduce dimensionality: 3D ---> 0D

Khomskii & Mizokawa, PRL 94, 156402 (2005)

Orbitals reduce dimensionality: 3D — **1D**

1. Effective reduction of dimensionality 1.3 Novel states near Mott transition "Molecules-in-solids"

Hubbard model:
$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

In solids:

Metal

Mott insulator

Hubbard model:
$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Molecules:

"Molecules-in-solids": Metallic drops in an insulating media

Plenty of mechanisms of spontaneous formation of "molecules": Peierls effect, CDW instability, <u>orbital ordering</u>.

 $LiCrO_2$ ($Cr^{3+} d^3$)

Exp: Insulator

W~1 eV, U~4 eV U >> W

Mazin PRB 75, 094407 (2007)

Soubeyroux et al PSS, 67, 633 (1981)

LiVO₂ (V³⁺ d²)

Exp: Insulator

Kobayashi et al, Mater. Res. Bull. 4, 95 (1969).

What is the difference between LiCrO₂ and LiVO₂?

Active orbital degrees of freedom!

t_{2g} orbitals on triangular lattice

(1) Configuration d³ (S=3/2)- leaves frustration

Configuration d² (S=1) - relieves frustration: makes 2 out of 3 Me-Me bonds inequivalent

(2) One of the lobes takes part in direct Me-Me exchange

$LiVO_2$

Orbitally induced trimerization

H. F. Pen, J. van den Brink, D. I. Khomskii, G. A. Sawatzky, Phys. Rev. Lett. 78, 1323 (1997).

"Molecules" in solids! (Valence bond solid)

Spin gap

Trimerization: J. Solid State Chem. 72, 234 (1988).

 $LiVL_2$ L: (

 $L: O \to S \to Se$

increase metallization!

Phys. Rev. Lett. 103, 146405 (2009)

"Molecules" do not appear, when we are far from the insulating regime

Orbitals reduce dimensionality: 2D ---> 0D

Spinel AIV₂O₄

Clusters: Heptamers

Y. Horibe et al Phys. Rev. Lett. 96, 86406 (2006). **Mechanism:** Peierls-like transition

A. Uehara, H. Shinaoka, and Y. Motome, Phys. Rev. B 92, 195150 (2015).

Orbitals reduce dimensionality: 3D ---•0D

Li₂RuO₃

Ru⁴⁺: 4d⁴ (S=1)

"Metal-insulator-like" (?) and, magnetic transitions at 540K

X-ray powder diffraction: Structural transition (?)

T < 540 K

T > 540 K

Formation of dimers and that's it?

Y. Miura et al., JPSJ 76, 033705 (2007)

Li₂RuO₃: New twist of the story

<u>X-Ray diffraction</u>: dimers exist $T < T_s = 540 \text{ K}$

Y. Miura, Y. Yasui, M. Sato, N. Igawa, K. Kakurai, J. Phys. Soc. Japan 76, 033705 (2007)

X-Ray diffraction, pair distribution functionanalysis:dimers exist even for $T > T_s = 540 \text{ K}$

S. Kimber, I. Mazin, J. Shen, H. Jeschke, S. Streltsov, D. Argyriou, R. Valenti, D. Khomskii, PRB 89, 081408 (2014)

Li₂RuO₃

T < 540 K: Valence bond solid (dimers are ordered)

T > 540 K: Valence bond liquid (dimers flow over the lattice)

Li₂RuO₃: any other <u>experimental</u> evidences of valence bond liquid besides PDF?

Valence bond liquid in Li₂RuO₃: what theory says

DFT: Formation of molecular orbitals in dimers in Li₂RuO₃ significantly reduces total energy

Examples of "Molecules-in-solids"

- LiVO₂: formation of trimers
- AIV₂O₄: formation of heptameters
- Li₂RuO₃: formation of very stable dimers

Can we have these "Molecules" <u>without</u> structurally isolated clusters?

Let's consider

- 1) Honeycomb lattice
- 2) Transition metals: t_{2g} ions
- 3) Hopping <u>only</u> via ligand porbitals

Molecules = TM₆ hexagons

(no clusters; all TM-TM bonds are the same)

Twofold nature of electrons:

(1) electrons are confined

in hexagons

(2) electrons are delocalized moving over hexagon

SrRu₂O₆: (4d) electronic analog of benzene!

SrRu₂O₆: Ru - 4d³ six d-electons/u.c.

Benzene C₆H₆: three sp²-electrons/C six p-electons/u.c.

Examples: Na₂IrO₃, Li₂IrO₃, Na₂RuO₃

PRL 109, 197201 (2012) PRB 90, 161110 (2014)

Strong direct d-d hopping and spin-orbit coupling spoils MOs on hexagons

SrRu₂O₆, AgRuO₃ perfect hexagonal lattice (no dimerization!) with MO!

S.S., I. Mazin, K. Foyevtseva PRB 92, 134408 (2015)

Anomalous properties, which MOs bring: Magnetism

SrRu₂O₆ is an non-Heisenberg magnet!

Is this related with unusually high T_N for layered material?

 $T_N = 560 \text{ K!}$

C. I. Hiley et al PRB 92, 104413 (2015)

Selection rule: parity

 $p^{\boldsymbol{x}}$ and $p^{\boldsymbol{y}}$ components of momentum operator transform according to E_{1u}

- Selection rule: symmetry (*D*_{6h})
- $B_{1u} \times A_{1g} = B_{1u}$ $B_{1u} \times E_{2g} = E_{1u}$ $E_{2g} \times E_{1u} = B_{1u} + B_{2u} + E_{1u}$ $E_{1u} \times A_{1g} = E_{1u}$

Joint density of states (JDOS)

$$J(\omega) = \sum_{c,v} \int \delta(\epsilon_c(\mathbf{k}) - \epsilon_v(\mathbf{k}) - \hbar\omega) d\mathbf{k}$$

Real part of optical conductivity

Im
$$\varepsilon_{\alpha\beta}(\omega) = \frac{e^2}{\pi m^2 \omega^2} \sum_{c,v} \int \langle c, \mathbf{k} | p^{\alpha} | v, \mathbf{k} \rangle \langle v, \mathbf{k} | p^{\beta} | c, \mathbf{k} \rangle$$

 $\times \delta(\epsilon_c(\mathbf{k}) - \epsilon_v(\mathbf{k}) - \hbar \omega) d\mathbf{k}.$ (5)

Formation of MOs suppresses optical transitions

Z. Pchelkina, S.S., I. Mazin Phys. Rev. B 94, 205148 (2016).

1. Effective reduction of dimensionality Take-home messages

1. Orbitals may **reduce dimensionality** of a magnetic subsystem

2. Orbitals may **induce "1D-zation"** of electronic spectrum

3. There may appear an intermediate state - "**Molecules-in-solids**" on a verge of metal-insulator transition

- Orbital-selective Mott transition
- Orbital-selective behavior and (partial) suppression of magnetism

Fig. 1. Basic crystal structure of $Ca_{2-x}Sr_{x}RuO_{4}$.

Sr

Fig. 3. Density of t_{2q} states for Sr_2RuO_4 obtained from LDA calculation. The solid line is the DOS for the (xz, yz)-orbitals and the dashed line for the xy-orbital. $(n_{(yz,zx)}, n_{xy})$ indicates

Energy (eV)

Geometry: layered structure, common corner sharing

Fig. 6. Results of LDA+DMFT(NCA) calculations obtained within LDA DOS for Sr_2RuO_4 . The solid line is the DOS for xz, yz-orbitals and the dashed line for (xy)-orbital. At U =

Orbital-selectivity: Metal-insulator transition occurs first for the *xz/yz* orbitals $(U_c=1.5 \text{ eV})$ and only then for the xy orbitals $(U_c=2.5 \text{ eV})$

2. Orbital-selective effects^{τ} Orbital-selective Mott (OSM) transition $\alpha = 1, 2$ t_{α}

2D Square lattice, two orbitals, $h_{\mathcal{H}}^{\mathcal{H}} = \mathcal{H}_{\text{hin}}^{\mathcal{H}} + \mathcal{H}_{\text{in}}^{\mathcal{H}}$ electroms/site)

 $\mathcal{H} = \mathcal{H}_{kin} + \mathcal{H}_{int}$ α - orbital index $\mathcal{H}_{kfr} = - \sum t_{\alpha} c_{i,\alpha,\sigma}^{\dagger} c_{j,\alpha,\sigma} + \text{h.c.},$ $\langle i, j \rangle \alpha.\sigma$ Metal $\mathcal{H} \stackrel{\dagger}{\stackrel{}}_{\alpha \sigma} \mathcal{H} \stackrel{\dagger}{\stackrel{}}_{i,\alpha} U \sum_{i,\alpha} n_{i,\alpha,\uparrow} n_{i,\alpha,\downarrow} + U' \sum_{i,\sigma,\sigma'} n_{i,1,\sigma} n_{i,2,\sigma'}$ $-J\sum_{i,\sigma,\sigma'}c_{i,1,\sigma}^{\dagger}c_{i,1,\sigma'}c_{i,2,\sigma'}c_{i,2,\sigma}-J'\sum_{i}(c_{i,1,\uparrow}^{\dagger}c_{i,1,\downarrow}c_{i,2,\uparrow}c_{i,2,\downarrow}+\text{h.c.})$ $\alpha = 1, \overset{R}{2} \leqslant \overset{i,\sigma,\sigma'}{1}$ $\begin{array}{ccc} R \leq 1 \\ R \doteq t_2/t_1^{i \, \alpha \, \sigma} \\ \hline \mathbf{F} \text{ ffect of orbital mixing } (t_{mm'} \neq 0) \end{array}$ U' $U_{\text{MIT}/t_1} = 5.5 \pm 0.6$ Destablization of the OSM state $U_{\rm MIT}/t_1 \sim 4$ Effect of the Hund's coupling: (1) Stabilization of Mott phase $U/W \simeq 1.3$ (2) <u>Stabilization of the OSM state</u> **γ**ίσι +41

 t_{α}

 $R = t_2/t_1$

 $R \leq 1$

OSM transition is possible even in the case of the same bandwidths

$$H = -t \sum_{\langle ij \rangle, m\sigma} (d^{\dagger}_{im\sigma} d_{jm\sigma} + \text{H.c.}) + \sum_{i,m\sigma} \varepsilon_m d^{\dagger}_{im\sigma} d_{im\sigma}$$
$$+ U \sum_{i,m} n_{im\uparrow} n_{im\downarrow} + \left(U' - \frac{J}{2} \right) \sum_{i,m > m'} n_{im} n_{im'}$$
$$- J \sum_{i,m > m'} [2\mathbf{S}_{im} \cdot \mathbf{S}_{im'} + (d^{\dagger}_{im\uparrow} d^{\dagger}_{im\downarrow} d_{im'\uparrow} d_{im'\downarrow} + \text{H.c.})].$$

3 Band model with crystal-field splitting (4 electrons/site)

With J we increase energy difference between high-spin and low-spin configurations (and suppress orbital fluctuations)

(1) Makes orbitals different

Crystal-field splitting

(2) Suppress orbital fluctuations

J_H suppresses orbital fluctuations

(1) Makes orbitals "the same"

Crystal-field splitting

(2) Mixing orbitals $t_{mm', ij}c^{\dagger}_{im\sigma}c_{jm\sigma}$ with $m \neq m$

Typical for real materials m'

Double exchange is a natural realization of the orbital-selectivity

Let's consider

- (1) metallic system;
- (2) <u>noninteger</u> number of electrons per site;
- (3) there are two types carriers: itinerant and localized.

Itinerant electrons

Localized electrons

Examples:

CrO₂, CMR manganates etc.

```
No energy gain due 
to hoppings!
```

Proposed:

C. Zener on examples of Mn-Mn dimer

 $\delta E_{DE} \sim -Wx$

C. Zener, Phys. Rev. 82, 403 (1951)

E.g. 1.5 electron per site

Double exchange in case of an <u>isolated dimer</u>

Maximum gain in Hund's energy, J_H

For an isolated dimer:

Important ingredients:

"double exchange" = maximum *S*_{tot} state

 two sets of orbitals localized "d" and molecular "c"

•
$$J_H \to \infty$$

45

The double exchange (maximum Stot) state can be suppressed!

Orbital-selective behavior and suppression of magnetism

Exact diag. (T=0) for a dimer

<u>Dimer:</u> 2 orbitals/site; 1.5 electrons/site

$$\begin{array}{ll} \underline{\text{Model:}} & H = H_0 + H_U \\ H_0 = t_c c_2^{\dagger} c_1 + t_d d_2^{\dagger} d_1 + H.c. \\ H_U = \frac{1}{2} \sum_{\substack{j \\ mm'\sigma}} U^{mm'} n_{j,m}^{\sigma} n_{j,m'}^{-\sigma} + \\ & + \frac{1}{2} \sum_{\substack{j \\ \langle mm' \rangle \sigma}} (U^{mm'} - J_H^{mm'}) n_{j,m}^{\sigma} n_{j,m'}^{\sigma} \end{array}$$

Transition from molecular-orbital to double exchange regime is discontinues 47

Orbital-selective behavior and suppression of magnetism

Each site has two orbitals: "c" electrons are "hopping" "d" electrons are "localized"

Model: Hubbard model

$$H = H_{0} + H_{inter} + H_{U}$$

$$H_{0} = \sum_{i} \left(t_{c} c_{i,2}^{\dagger} c_{i,1} + t_{d} d_{i,2}^{\dagger} d_{i,1} + H.c. \right),$$

$$H_{inter} = \sum_{i} \left(t_{c}^{\prime} c_{i,2}^{\dagger} c_{(i+1),1} + t_{d}^{\prime} d_{i,2}^{\dagger} d_{(i+1),1} + H.c. \right),$$

$$H_{U} = \frac{1}{2} \sum_{\substack{j \\ mm'\sigma}} U^{mm'} n_{j,m}^{\sigma} n_{j,m'}^{-\sigma} + \frac{1}{2} \sum_{\substack{j \\ \langle mm' \rangle \sigma}} (U^{mm'} - J_{H}^{mm'}) n_{j,m}^{\sigma} n_{j,m'}^{\sigma}.$$

Solver: Dynamical mean field theory (DMFT)

Orbital-selective behavior and suppression of magnetism

Dimerized chain: cluster-DMFT results

Streltsov & Khomskii PNAS 113, 10491 (2016)

Orbital-selective behavior and suppression of magnetism

Suppression of magnetic moments in $Y_5Mo_2O_{12}$

Mo^{4.5+}: 4d^{1.5} $\mu_{eff} = 3.24 \mu_B$ /dimer

Crystal structure: dimerized chains

S=1/2 per dimer $\mu_{eff} = 1.73 \mu_B$ /dimer

Molecular-orbital state is realized !

"c" electrons (*xy* orbitals) form MO *"d"* (*xz/yz* orbitals) retain local moments

		Theoretical				
	Elec. conf.	(basing on ionic conf.)	Experimental			
Ba ₃ NdRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.6 \mu_B$ /Ru			
Ba ₃ LaRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.2 \mu_B$ /Ru			
Ba ₃ YRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu=0.56\mu_B$ /Ru			

Dimers made of the edge sharing RuO₆ octahedra

 $t'/t_c\sim 40-50\%$

Dimers are not "well isolated" ("strongly coupled dimers")

	Elec. conf.	Theoretical (basing on ionic conf.)	Experimental
Ba ₃ NdRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.6 \mu_B$ /Ru
Ba ₃ LaRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.2 \mu_B$ /Ru
Ba ₃ YRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu=0.56\mu_B$ /Ru

Standard explanations

- 1. Hybridization effects oxidation state of Ru is the same;
- 2. Spin-orbit coupling (1) RuO₆ octahedra are strongly distorted;
 (2) GGA+SOC shows no orbital moment;

	Elec. conf.	(basing on ionic conf.)	Experimental		
Ba ₃ NdRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.6 \mu_B$ /Ru		
Ba ₃ LaRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu = 1.2 \mu_B$ /Ru		
Ba ₃ YRu ₂ O ₉	4d ^{3.5}	$\mu=2.5\mu_B$ /Ru	$\mu=0.56\mu_B$ /Ru		

Are we in the crossover MO/DE regime?

Details of the crystal structure defines $t_c/t_d/t'/J_H$ and what portion of magnetic moment is suppressed.

2. Orbital-selective effects Take-home messages

1. Directional character of orbitals may result in a very different bandwidths (for different orbitals) and as a result to the **orbital-selective Mott transition**

2. Orbital-selective effects may strongly suppress magnetism(especially in dimerized systems)

Spin-orbit related effects

- $j_{eff} = 1/2$ and the spin-orbit-assisted Mott state
- Spin-orbit coupling versus Jahn-Teller effect
- Kitaev exchange

3. Spin-orbit related effects Introduction: SOC for d-orbitals, basics

Spin-orbit coupling (SOC): $H_{SOC} = \lambda \mathbf{ls}$

Orbital moment for e_g is quenched => we consider t_{2g} -ions

<i>d</i> -orb.	$y_{Z\uparrow}$	zx_{\uparrow}	xy_{\uparrow}	$3z_{\uparrow}^{2}x$	$z^2 - y_{\uparrow}^2$	yz_{\downarrow}	zx_{\downarrow}	xy_{\downarrow}	$3z_{\downarrow}^2$:	$x^2 - y_{\downarrow}^2$	<i>p</i> -orb	•	x_{\uparrow}	${\cal Y}_{\uparrow}$	z_{\uparrow}	x_{\downarrow}	\mathcal{Y}_{\downarrow}	Z_{\downarrow}
$H_{SOC}^{mm'} =$	$ \begin{pmatrix} 0 \\ -\frac{i\lambda}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{\lambda}{2} \\ \frac{1}{2}i\sqrt{3\lambda} \end{pmatrix} $	$\frac{i\lambda}{2}$ 0 0 0 0 0 0 -\frac{i\lambda}{2}	$\begin{array}{c} 0\\ 0\\ 0\\ -i\lambda\\ \frac{\lambda}{2}\\ \frac{i\lambda}{2}\\ 0\\ 0\\ \end{array}$	0 0 0 0 $-\frac{1}{2}i\sqrt{3}\lambda$ $-\frac{\sqrt{3}\lambda}{2}$ 0 0	$\begin{array}{c} 0\\ 0\\ i\lambda\\ 0\\ 0\\ -\frac{i\lambda}{2}\\ \frac{\lambda}{2}\\ 0\\ 0\\ 0 \end{array}$	0 $\frac{1}{2}i\sqrt{3\lambda}$ $\frac{i\lambda}{2}$ 0 $\frac{i\lambda}{2}$ 0 0	0 $-\frac{i\lambda}{2}$ $-\frac{\sqrt{3}\lambda}{2}$ $\frac{\lambda}{2}$ 0 0 0	$-\frac{\lambda}{2}$ $\frac{i\lambda}{2}$ 0 0 0 0 0 0 0 0 0	$-\frac{1}{2}i\sqrt{3}\lambda$ $\frac{\sqrt{3}\lambda}{2}$ 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} -\frac{i\lambda}{2} \\ -\frac{\lambda}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ -i\lambda \\ 0 \end{array} $	H_{SOC}^{mm}		$\begin{array}{c} 0 & -\frac{i\lambda}{2} \\ 0 & 0 \\ 0 \\ \frac{\lambda}{2} \end{array}$	$ \begin{array}{c} -\frac{i\lambda}{2} \\ 0 \\ 0 \\ 0 \\ \frac{i\lambda}{2} \end{array} $	$\begin{array}{c} 0\\ 0\\ -\frac{\lambda}{2}\\ -\frac{i\lambda}{2}\\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ -\frac{\lambda}{2}\\ 0\\ -\frac{i\lambda}{2}\\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ \frac{i\lambda}{2}\\ \frac{i\lambda}{2}\\ 0\\ 0\\ \end{array}$	$ \begin{array}{c} \frac{\lambda}{2} \\ -\frac{i\lambda}{2} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $
Thus, if	$\Delta_{t_{2g}}$	$-\frac{\lambda}{2}$ $-e_g$	° la	° rge e	0 no ı	i o ugh	$egin{array}{c} t_2 \ l = \ \lambda \end{array}$	$i\lambda$ $g \rightarrow l$ $\rightarrow l$ $\rightarrow -$	p = p $p = ff = -\lambda$	0) L	3d 4d 5d	$ \begin{array}{c c} \Delta_{t_{2i}} \\ 1-2 \\ 3-4 \\ 4-4. \end{array} $	_g -e _g eV eV 5 eV	+	U 3-10 e 2-5 eV 1-3 eV	eV 7 7		

At least 5d transition metals can be described with $l_{eff} = 1$ ($j_{eff} = 1/2$ and 3/2)

3. Spin-orbit related effects Introduction: one electron scheme of d-levels splitting

3. Spin-orbit related effects Spin-orbit-assisted Mott state

Kim et al., PRL 101, 76402 (2008) Spin-orbit-assisted Mott state!

 $t_{xy/x\not\equiv} = 0;$

59

Let's consider

- 1) Hopping **only** via ligand p-orbitals
- 2) SOC is the strongest coupling
- 3) Conf: d^5 (*j_{eff}*=1/2 is half-filled)

 $t_{xy/xy} = 0;$ ($t_{xy/xz} = 0; t_{xy/yz} = 0; t_{yz/yz} = 0; t_{xz/xz} = 0;$) $t_{yz/xz} = t; t_{yz/xz} = t;$

$$\begin{split} |J_{1/2}^z\rangle &= \frac{1}{\sqrt{3}}\left(|xy\uparrow\rangle + |(ixz+yz)\downarrow\rangle\right),\\ |J_{-1/2}^z\rangle &= \frac{1}{\sqrt{3}}\left(|xy\downarrow\rangle + |(ixz-yz)\uparrow\rangle\right), \end{split}$$

Superexchange: $J \sim \frac{t_{dd,eff}^2}{II}$

Out
$$\langle J_{1/2,a}^{z}|\hat{t}|J_{-1/2,b}^{z}\rangle = \langle J_{-1/2,a}^{z}|\hat{t}|J_{1/2,b}^{z}\rangle = 0$$

 $\langle J_{1/2,a}^{z}|\hat{t}|J_{1/2,b}^{z}\rangle = \frac{1}{3}\left(-i\langle yz\downarrow_{a}|\hat{t}|xz\downarrow_{b}\rangle + i\langle xz\downarrow_{a}|\hat{t}|yz\downarrow_{b}\rangle\right) = (-it+it) =$

NO AFM superexchange!

Let's consider

- 1) Hopping **only** via ligand p-orbitals
- 2) SOC is the strongest coupling
- 3) Conf: d^5 (*j_{eff}*=1/2 is half-filled)

$$t_{xy/xy} = 0;$$

($t_{xy/xz} = 0; t_{xy/yz} = 0; t_{yz/yz} = 0; t_{xz/xz} = 0;$)
 $t_{yz/xz} = t; t_{yz/xz} = t;$

There will be only higher order (FM) terms!

$$\begin{split} K &\sim -\frac{t_{pd}^4}{\Delta_{CT}U} \frac{J_H}{U} \\ \text{Strong SOC} \Longrightarrow \quad \langle J_{1/2}^z | \hat{l}_z | J_{1/2}^z \rangle = \frac{2}{3} \end{split}$$

with $K < \theta$ (FM)

Kitaev model $H = \sum_{ij} K_{ij} S_i^{\gamma} S_j^{\gamma}$ *Kitaev Ann. Phys. 321, 2 (2006)*

Highly frustrated model (spin liquid GS) Exactly solvable

Jackeli-Khaliullin: d⁵ systems on honeycomb lattice can be a realization of the Kitaev model

G. Jackeli and G. Khaliullin, PRL 102, 17205 (2009).

Possible physical realizationes of Kitaev model: $Na_2IrO_3 \quad \alpha$ -Li₂IrO₃ $Li_2RhO_3 \quad \alpha$ -RuCl₃

Kitaev-Heisenberg model

$$\mathcal{H}_{ij} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} S_i^{\gamma} S_j^{\gamma} + \Gamma_{ij} \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$
$$+ \Gamma_{ij}' \left(S_i^{\gamma} S_j^{\alpha} + S_i^{\gamma} S_j^{\beta} + S_i^{\alpha} S_j^{\gamma} + S_i^{\beta} S_j^{\gamma} \right)$$

Experimental results

Property	Na ₂ IrO ₃	lpha-Li ₂ IrO ₃	$\rm Li_2RhO_3$	α -RuCl ₃
$\mu_{\mathrm{eff}} \left(\mu_B ight)$	1.79	1.83	2.03	2.0 to 2.7
Θ_{iso} (K)	~ -120	-33 to -100	~ -50	$\sim +40$
Θ_{ab} (K)	-176	$\Theta_{ab} > \Theta_c$	—	+38 to +68
Θ_c (K)	-40	—	—	-100 to -150
T_N (K)	13 - 18	~ 15	(6)	7 to 14
Order	Zigzag	Spiral	Glassy	Zigzag
k-vector	$(0, 1, \frac{1}{2})$	(0.32, 0, 0)	_	$(0,1,rac{1}{2})$

 $\Gamma_1 = \cos \theta$

Kitaev-Heisenberg model

$$\mathcal{H}_{ij} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} S_i^{\gamma} S_j^{\gamma} + \Gamma_{ij} \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$
$$+ \Gamma_{ij}' \left(S_i^{\gamma} S_j^{\alpha} + S_i^{\gamma} S_j^{\beta} + S_i^{\alpha} S_j^{\gamma} + S_i^{\beta} S_j^{\gamma} \right)$$

Na_2IrO_3

Method	J_1	K_1	Γ_1	Γ_1'	K_2	J_3
Pert. Theo. ⁴²	+3.2	-29.4	+1.1	-3.5	-0.4	+1.7
QC $(2\text{-site})^{41}$	+2.7	-16.9	+1.0	—	—	—
ED $(6\text{-site})^{43}$	+0.5	-16.8	+1.4	-2.1	-1.4	+6.7

α -RuCl₃

Method	Structure	J_1	K_1	Γ_1	J_3
Exp. An. ¹⁶¹	—	-4.6	+7.0	-	_
Pert. Theo. ¹⁴⁶	$P3_{1}12$	-3.5	+4.6	+6.4	_
QC $(2\text{-site})^{39}$	$P3_{1}12$	-1.2	-0.5	+1.0	_
ED $(6-site)^{43}$	$P3_{1}12$	-5.5	+7.6	+8.4	+2.3
Pert. Theo. ¹⁴⁶	Relaxed	-2.8/-0.7	-9.1/-3.0	+3.7/+7.3	_
ED $(6-site)^{43}$	C2/m	-1.7	-6.7	+6.6	+2.7
QC $(2\text{-site})^{39}$	C2/m	+0.7	-5.1	+1.2	_
DFT^{175}	C2/m	-1.8	-10.6	+3.8	+1.3
Exp. An. ¹⁷⁶	_	-0.5	-5.0	+2.5	+0.5

 $\Gamma_1 = \cos \theta$

Temperature, T (K)

Temperature, T (K)

15 FEBRUARY 2018 | V

A spin–orbital–entangled quantum lic honeycomb lattice

K. Kitagawa¹*, T. Takayama²*, Y. Matsumoto², A. Kato¹, R. Takano¹, Y. Kishimoto³, S. Bette², H. Takagi^{1,2,4}

 χ (T): no long-range magnetic order down to 2 K

C(T): no long-range magnetic order down to 0.05 K 0

Weak spin-orbit coupling (3d) and large spins

Fe²⁺ (t⁴_{2g}e²_g, S = 2) Co²⁺ (t⁵_{2g}e²_g, S = 3/2) Mean-field approximation for the SOC $\lambda \vec{ls} \rightarrow \lambda l^z s^z$

E.g. for Fe²⁺, tetragonal distortions

Spin-orbit coupling competes with the Jahn-Teller effect!

Strong spin-orbit coupling and small spins: d⁵

Ir⁴⁺ in octahedra (t_{2g}^5), or Cu²⁺ in tetrahedra (t_{2g}^5)

Spin-orbit coupling suppresses the Jahn-Teller effect!

Is this what goes in CuAl₂O₄?

OP Publishing **OP** Publishing

etters

.etters

IOP Publishing

doi:10.1088/1361-648X/aa5c72

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 29 (2017) 13LT01 (8pp)

Spin glass behavior in frustrated quantum spin system CuAl₂O₄ with a possible orbital liquid state

R Nirmala^{1,2,3}, Kwang-Hyun Jang^{1,3}, Hasung Sim^{4,5}, Hwanbeom Cho^{4,5}, Junghwan Lee^{1,3}, Nam-Geun Yang^{1,3}, Seongsu Lee^{6,7}, R M Ibberson^{8,9}, K Kakurai^{10,14}, M Matsuda^{10,11}, S-W Cheong⁷, V V Gapontsev¹² S V Streltsov^{12,13} and Je-Geun Park^{1,3,4,5}

Strong magnetic frustrations

Cu²⁺, but stays cubic at any temperature

etters

Strong spin-orbit coupling: d³

No need in JT

t_{2a}

$$\begin{split} |J_{3/2}, J_{3/2}^z\rangle &= -\frac{1}{\sqrt{2}}(|yz, \uparrow\rangle + i|xz, \uparrow\rangle), \\ |J_{3/2}, J_{-3/2}^z\rangle &= \frac{1}{\sqrt{2}}(|yz, \downarrow\rangle - i|xz, \downarrow\rangle), \\ |J_{3/2}, J_{1/2}^z\rangle &= \sqrt{\frac{2}{3}}|xy, \uparrow\rangle - \frac{1}{\sqrt{3}}|\frac{1}{\sqrt{2}}(yz + ixz), \downarrow\rangle, \\ J_{3/2}, J_{-1/2}^z\rangle &= \sqrt{\frac{2}{3}}|xy, \downarrow\rangle + \frac{1}{\sqrt{3}}|\frac{1}{\sqrt{2}}(yz - ixz), \uparrow\rangle. \end{split}$$

Spin-orbit coupling induces the Jahn-Teller effect!

3. Spin-orbit related effects Take-home messages

2. Spin-orbit coupling may induce strong anisotropy of exchange interaction

3. Spin-orbit coupling may help to, compete with or completely suppress the Jahn-Teller effect

