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Three main roles of orbitals

Additional degree of freedom
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Рис. 1.13: Возникновение пары дырка-дублон в одномерной цепочке.

иногда приводит порой к парадоксальным и физически неверным результа-
там.

Действительно, пусть у нас имеется одномерная однородная цепочка, на
каждом из узлов имеется одна s орбиталь и число электронов - один на центр.
В этом случае закон дисперсии задается выражением (1.31) и s-зона оказыва-
ется наполовину заполненной. Начнем увеличивать расстояние a между ато-
мами в цепочке. Хотя, как отмечалось в § 1.5, это приведет к постепенному
уменьшению параметра перескока t, качественно спектр, изображенный на
Рис. 1.8, не изменится - он будет лишь соответствующим образом масштабиро-
ван. Выходит, что даже, если разнести атомы цепочки на расстояние галактик,
то система должна остаться металлической, хотя очевидно, что в последнем
случае проводить электрический ток будет весьма затруднительно.

Учтем в данном рассмотрении кулоновское взаимодействие между элек-
тронами на узле. Пусть, если два электрона оказываются на одном центре,
то энергия взаимодействия равна U . Соответствующий член, описывающий
кулоновское отталкивание на узле, записывается в случае одной s орбитали
на узле в виде U

P
i ni"ni#, а полностью гамильтониан рассматриваемой мо-

дельной системы есть:

H = �
X

ij�

tijc
†
i�cj� + U

X

i

ni"ni#. (1.56)

Данная модель называется невырожденной моделью Хаббарда [9].
В случае половинного заполнения в основном состоянии имеется по одному

электрону на каждом из узлов. В возбужденном состоянии один из электронов
перепрыгивает на один из соседних центров. В результате в системе появляет-
ся дырка и узел с двойной заселенностью, т.н. дублон (см. Рис. 1.13b) и полная
энергия энергия системы увеличивается на U по сравнению с исходным состо-
янием, Рис. 1.13a.

Дырка и дублон могут начать передвигаться по решетке. При этом вы-
игрывается кинетическая энергия. Если таких элементарных возбуждений не
слишком много, то все они концентрируются на дне зоны с энергией ⇠ W/2 ⇠
�zt. Полный же выигрыш в кинетической энергии за счет и дырок, и дубло-
нов составляет Ekin ⇠ W ⇠ �2zt. Затрачивается же кулоновская энергия ⇠ U .
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ty

tx >> ty
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Effective reduction of dimensionality 
due to orbital degrees of freedom

• Formation of low-dimensional magnetic systems 
due to orbital ordering 

• “1D-zation” of electron spectrum and orbitally 
driven Peierls state

• Novel states close to the Mott transition: 
“molecules” in solids
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1. Effective reduction of dimensionality  
Introduction: orbitals and magnetism
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LigandTM TM
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1. Effective reduction of dimensionality  
1.1 Low-dimensional magnetism due to orbital ordering

Crystal structure:  
perovskite (3D)

KCuF3

PHYSICAL REVIEW B VOLUME 21, NUMBER 5 1 MARCH 1980

Neutron scattering study of spin waves in one-dimensional antiferromagnet KCuFs

S. K. Satija, J. D. Axe, and G. Shirane
Brookhaven National Laboratory, Upton, New York 11973

H. Yoshizawa and K. Hirakawa
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

(Received 31 October 1979)

Inelastic neutron scattering has been used to obtain the spin-wave spectrum in KCuF3. The
nature of magnetic interactions in this material is quasi-one-dimensional (chainlike) as evi-
denced by a highly anisotropic spin-wave dispersion. The spin-wave dispersion along the chain
direction fits very well with the exact solution for an S =—linear-chain antiferromagnet given2

by des Cloizeaux and Pearson. Using linear spin-wave theory, the ratio of interchain to intra-
chain magnetic exchange parameters J,/J, is found to be —0.01 +0.001. A zone-center gap of
1.1 meV in the spin-wave mode with a spin component out of the easy (xy) plane shows that
the spin system is predominantly of Heisenberg nature with a small (0.02'/o) xy-like component.

I. INTRODUCTION

The realization of many compounds which display
nearly one-dimensional magnetic properties has given
rise to a great deal of experimental and theoretical
work in this area in the past few years. ' In most such
materials, the interchain exchange interaction is very
weak, due to the presence of large nonmagnetic ions
which separate the chains. Several years ago,
Hirakawa et al. pointed out that KCuF3 displays
properties characteristic of one-dimensional antifer-
romagnets. The one dimensionality in KCuF3 is,
however, attributed to the distortion of octahedral
environment of the Cu + ions due to Jahn-Teller ef-
fect. This distortion leads to a spatial alignment of
the 3d orbitals in Cu2+ ions, giving rise to a strong
superexchange interaction J, between nearest-
neighbor ions along the c axis, which we refer to as
the chain axis. In the direction perpendicular to the
chain axis, the exchange interaction J, is very small
because of the poor overlap of the orbitals even
though the distances between magnetic atoms is
essentially the same along all principal axes. This
spatial overlap of orbitals is depicted in Fig. 1 for
both (a) and (d) polytype structures of KCuF3.
In a previous neutron-diffraction work, Hutchings

et al. 3 did not find any direct evidence for one-
dimensional order above the Neel temperature
Tjy =38 K where three-dimensional ordering occurs.
Ikeda and Hirakawa have, however, confirmed the
one-dimensional nature of KCuF3 above Tjy, from
quasielastic neutron scattering experiments. They es-
timate that even well above the Neel temperature the
spin-correlation length in the chain direction is of the
order of 500 A, with interchain correlation length be-
ing considerably smaller. The ratio of interchain to

(a) type (d) type

FIG. 1. Schematics of type (a) and (d) structures ob-
served in KCuF3.

intrachain coupling was estimated to be about 0.027
by Ikeda and Hirakawa. . The strong exchange in-
teraction along chain axis was found to be of the or-
der of —190 K from magnetic-susceptibility measure-
ments using the theory of Bonner and Fisher' for
one-dimensional (1-D) antiferromagnets with spin

1S=—2'
An intersting feature of the present system is the

spin S = 2 and hence the quantum nature of the sys-1

tern. The dispersion relation for the excited states of
a 1-D Heisenberg antiferromagnet with S = 2 was
first calculated by des Cloizeaux and Pearson (dCP)
to be

E(q) = rr J, l sin (qc) I

where J, is the nearest-neighbor (nn) exchange in-
teraction and c is nn separation. This spectrum is

21 2001

Cu3+ (3d9)
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Crystal structure:  
perovskite (3D)

KCuF3
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Jahn-Teller distortions:
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chains!
Kugel & Khomskii,  
JETP 37, 725 (1973)

Orbitals reduce dimension:     3D 1D

Cu3+ (3d9)

1. Effective reduction of dimensionality  
1.1 Low-dimensional magnetism due to orbital ordering
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Crystal structure:  
pyrochlore (3D)

Tl2Ru2O7
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Crystal structure:  
pyroxene (1D)

NaTiSi2O6 1D chain

Orbital  
ordering: 
(LDA+U)

Jintra

Jinter

dimer

In dimer:    Jintra = 396 K (AFM)  
inter-dimer: Jinter = -5 K    (FM)

Exchange constants:

Streltsov et al., PRL 96, 249701 (2006)

Orbitals reduce dimensionality:  1D 0D

Ti3+ (3d1, S=1/2)

1. Effective reduction of dimensionality  
1.1 Low-dimensional magnetism due to orbital ordering
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1. Effective reduction of dimensionality  
1.2 “1D-zation” of electron spectrum

Directional character of orbitals
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Peierls transition: 1D chain

k

E(k)
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Half-filling  
(1 electron/site)

1. Effective reduction of dimensionality  
1.2 “1D-zation” of electron spectrum

Lattice deformations are possible for other fillings!

Instability at |q| = 2kF

Half-filling (1 electron/site):                  ,
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2D}
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Gain in kinetic energy: 
Loss in elastic energy: 
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doubling of the u.c.!
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Peierls transition: 1D chain

quarter-filling (1/2 electron/site):

Instability at |q| = 2kF

quadrupling of the u.c.!

B. Ionic model

Another type of periodic distortion is given by local
potentials, resulting in the so-called ionic model

Hionic = − t!
i,!

N

"ci,!
+ ci+1,! + H . c . # + !

i

N

Wini − !
i

N

hiSi
z.

"6#

Again, for the half-filled band the same calculation as before
can be performed for a periodic potential, with "c="s=2W.
In case of the ionic model for a quarter-filled system we
compare several potentials, which correspond to different
charge and spin patterns.

"a# First, we study a simple potential with 2kF"4a# period,
given by Wi=W cos"#i /2#. Here, the charge order for
zero hopping is given by 1/0.5/0/0.5 electrons per site,
periodically continued. Spin order is not established.

"b# A modification of "a# given by Wi=W cos"#i /2#
+W cos$#"i+1# /2%, which leads to two occupied and two
unoccupied sites "“cluster”#,13 i.e., a 1/1/0/0 charge order.

"c# A charge order with a 1/0/1/0 pattern, i.e., a
4kF"2a#-periodic order, is forced by a potential with
Wi=W cos"#i#. With interaction we likewise expect mag-
netic ordering.

"d# In addition, a local magnetic field with
hi=W cos"#i /2#"ni,↑−ni,↓# enforces a ↑ /0 / ↓ /0 pattern.
As in "c#, we expect a 2kF"4a# period for the spins and
correspondingly a 4kF"2a# period for the charges.

Diagonalizing the resulting Hamilton matrix, as described
above, yields the dispersions

"a#, "d# $"k#= ± t&2+w2 /2±&4 cos2"2k#+2w2+w4 /4,
"b# $"k#= ± t&2+w2 /2±&4 cos2"2k#+4w2,
"c# $"k#= ± t&w2+4 cos2k,

with w=W / t. Figure 2 shows the dispersion for potentials "a#

and "c#. In comparison to the Peierls model not only a gap
opens at k=Q /2 but the lower and upper bands are shifted
down and up, respectively. In case of a small perturbation,
the dispersion is similar for the Peierls and the ionic model,
as well as for potentials "a# and "b#. Potentials "a# and "d# are
equivalent in the noninteracting case.

The energy gain in the quarter filled band is found to be
about −W1.65 in cases "a#, "b#, and "d#. For small W, the
energy gain here is nearly the same in cases "a# and "b#,
whereas it becomes weaker in case "b# than in case "a#
at W'0.5t. In case "c#, the energy gain is quadratic,
E"W#−E"0#= 8

3W2. It mainly traces back to the band shift.
Accordingly, the gaps are given by

"a#, "d# "1=W, "2=&2W, "3=W;
"b# "1(W for small W, "1→"1

% for strong W,
"2=&2−W /2, "3="1;
"c# "1=0, "2=W, "3=0.

C. Hubbard model

The Hubbard model is known to capture the interplay
between kinetic energy "delocalization# and interaction "lo-
calization# in electronic systems. The Hamiltonian is given
by

HHubb = − !
i,!

N

ti"ci,!
+ ci+1,! + H . c . # + U!

i

N

ni,↑ni,↓. "7#

The Hubbard model in one dimension is exactly solvable by
means of the Bethe ansatz.27 Note that in one dimension
another useful formulation of the Hubbard model is available
on the basis of the bosonization technique. The low lying
excitations of the noninteracting as well as the interacting
fermions system are sound waves, i.e., the Fermi system can
be described as a noninteracting Bose system, called a Lut-
tinger liquid, showing spin-charge separation. In the clean
case, the Hubbard model has three phases. For U&0, the
spin excitation spectrum has a gap and the low-lying charge
excitations can be described by those of a Luttinger liquid.
For U'0 and away from half filling, spin and charge exci-
tations are those of a Luttinger liquid. The last phase occurs
for U'0 and half filling, where the charge excitations have
a gap and the spin excitations are of Luttinger type. A rel-
evant 4kF-Umklapp scattering term, only present for half fill-
ing, is responsible for the Mott gap in the latter phase. The
bosonization technique is adequate for metallic systems or in
the weak coupling regime. It is useful to determine the phase
boundary between metals and insulators but it is not suitable
for distinguishing different insulating phases for intermediate
or strong perturbations.

D. Periodic Hubbard model

A commensurate periodic distortion—i.e., commensurate
to the band filling—introduces an additional nonlinear term
in the bosonized Hamiltonian, which couples spin and charge
degrees of freedom and destroys the integrability of the clean
Hubbard model. In the half-filled case we therefore find a

FIG. 2. "Color online# One-particle energy $"k# versus momen-
tum k, where W=0.1t and the horizontal lines indicate the Fermi
level of the half-filled and quarter-filled band. The straight line cor-
responds to the Q=# /a-periodic potential, the dashed line to the
Q=# /2a-periodic potential. The reduction of the Brillouin zone of
the clean model is obvious.

ONE-DIMENSIONAL HUBBARD MODEL AT QUARTER… PHYSICAL REVIEW B 75, 045124 "2007#

045124-3
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Spinels: AB2O4

xz

yz

xy

Metal (B)Ligand (O)

Assumption:  
the most important is a 
direct overlap between   
d-orbitals

E(k)

Natural formation of 1D bands due to orbitals…

1. Effective reduction of dimensionality  
1.2 “1D-zation” of electron spectrum
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CuIr2S4: spinel Nominally: Ir3.5+ (t2g5.5)

Radaelli et al., Nature 416, 155 (2002)

T<230 K:  

    1) charge ordering 
         Ir3+ (t2g6)  and  Ir4+ (t2g5) 
    2) tetragonal elongation 
         c/a>1 
    3) dimerization 
         Ir4+ — Ir4+ dimers

What is the reason for such complex distortions?

1. Effective reduction of dimensionality  
1.2 “1D-zation” of electron spectrum
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CuIr2S4: spinel

TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1; % 1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1; % 1$,
#1; 0; 1$, and #1; 0; % 1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn ) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
Octamer is shown by thick lines. Short singlet bonds are in-
dicated by double lines. (b) Schematic electronic structure of
CuIr2S4.
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blue. (b) Schematic electronic structure of MgTi2O4. Note
different orientation of coordinate axes as compared with
Figs. 1 and 2.
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TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1; % 1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1; % 1$,
#1; 0; 1$, and #1; 0; % 1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn ) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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MgTi2O4: spinel

TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1; % 1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1; % 1$,
#1; 0; 1$, and #1; 0; % 1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn ) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1; % 1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1; % 1$,
#1; 0; 1$, and #1; 0; % 1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion— the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn ) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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structure contains only one Ti site, ruling out the possi-
bility of charge disproportionation. However, the center
of symmetry at the Ti site is lost, so that Ti moves away
from the center of the TiO6 octahedron, and the six
nearest-neighbor Ti-Ti distances become inequivalent.
Two out of six Ti-Ti bonds [s ! 2:853"7# !A and l !
3:157"7# !A] differ substantially from the Ti-Ti distance
found in the cubic MgTi2O4 [3:008 43"1# Å]. The shortest

distance is comparable to the close-contact distance in Ti
metal (2:896 !A at room temperature), suggesting the for-
mation of a metal-metal bond. It should be noted that the
intradimer distance in VO2 is 2:654 !A [5], which is also
comparable to theV-V distance in V metal (2:61 !A). In the
cubic spinel structure (inset of Fig. 2), the TiO6 octahedra
form edge-sharing ‘‘ribbons,’’ so that the Ti-Ti bonds run
in straight lines along six equivalent $110%c directions. In
the tetragonal structure, both the short and the long bonds
run along four directions ($011%c, $01"11%c, $10"11%c, and
$101%c) of the cubic structure ($112%t direction), alternat-
ing with one of the intermediate bonds [i1 ! 3:007"5# !A]
in the sequence ‘‘s-i1-l-i1.’’ Ti-Ti-bond lines running
along the $100%t direction ($110%c;$1"110%c) are entirely
made up of the other type of intermediate bonds [i2 !
3:0147"3# !A]. Neither of the Ti-Ti-bond lines is perfectly
straight, the Ti-Ti-Ti bond angle being 174:7"2#& and
178:3"1#& along the $100%t and $112%t directions, respec-
tively. Refinements of the temperature-dependent neutron
data indicate that the phase transition is abrupt, with no
coexistence region between the two phase (Fig. 1, upper
panel). This is reflected in the splitting of the Ti-Ti bond
lengths, which is about 80% of the full value at 250 K and
is fully saturated below 200 K.

From the topological point of view, the most interest-
ing aspect of the MgTi2O4 low-temperature structure is
the dimerization pattern of the alternating short and long
bonds. Here, the chiral nature of the space group is clearly
revealed in the formation of ‘‘s-l-s-l helices’’ running
along the c axis (Fig. 2). With our choice of space group,
the helices are left-handed, but the right-handed space
group P 43212 is also an allowed solution. Several authors
have pointed out the relevance of spin chirality for mag-
netism and transport on a pyrochlore lattice [9–11].
However, our observation of chirality in the structural
sector of a pyrochlore lattice is extremely unusual and
immediately raises two issues. First, it is interesting to
consider whether the chiral dimerization pattern is in any
way related to the geometrical frustration of the pyro-
chlore lattice. On this point, one should notice that, once
the system ‘‘decides’’ to dimerize, the topology of the
problem changes drastically: the relevant lattice is no
longer the pyrochlore lattice itself, but its ‘‘medial’’ (or
bond center) lattice at 1=6 filling (only one bond out of six
is a dimer). Each Ti atom can be involved only in one
dimer; therefore, one occupied dimer site precludes the
occupancy of ten neighboring bonds. At such low filling,
this rule clearly leads to a highly degenerate ground state,
but, arguably, the system is no longer frustrated because
the local degeneracy is absent. Second, the nature of the
spin singlet state needs to be further investigated. To this
effect, we have carried out band structure calculations
using the CRYSTAL code [12]. All electron triple valence
basis sets were used in which three independent radial
functions are included for all valence states [13].
Electronic exchange and correlation are approximated

FIG. 2 (color). The Ti-Ti bond structure in tetragonal
MgTi2O4 at 200 K. The red and purple bonds represent the
shortest (dimerized) and the longest bonds in the MgTi2O4

structure, respectively. The dashed and solid blue bonds mark
the intermediate i1!3:007"5# !A and i2!3:0147"3# !A Ti-Ti dis-
tances, respectively. A portion of the Ti tetrahedral connectiv-
ity is also shown. The inset shows a fragment of the spinel
structure in the same orientation, visualized using cation-anion
polyhedra. One of the ‘‘helices’’ is outlined in yellow.

TABLE I. Lattice constants, fractional coordinates of atoms,
and bonds in MgTi2O4 at 200 K (P 41212) and 275 K (Fd3m).
The parameters originate from the Rietveld refinement of high-
and medium-resolution neutron powder diffraction patterns.
The data were corrected using lattice constants derived from
the x-ray experiment.

200 K x y z Uiso ( !A2)

Ti 8b '0:0089"5# 0.2499(9) '0:1332"4# 0.0125(2)
Mg 4a 0.7448(3) 0.7448(3) 0 0.0073(2)
O(1) 8b 0.4824(2) 0.2468(3) 0.1212(2) 0.0064(2)
O(2) 8b 0.2405(3) 0.0257(2) 0.8824(2) 0.0035(2)

a ! 6:022 01"1# !A, c ! 8:484 82"2# !A, R wp ! 0:0467, R p ! 0:0637

275 K x y z Uiso ( !A2)

Ti 16d 1=2 1=2 1=2 0.0117(1)
Mg 8a 1=8 1=8 1=8 0.0069(1)
O 32e 0.259 20(2) 0.259 20(2) 0.259 20(2) 0.005 22(5)

a ! 8:509 027"5# !A, R wp ! 0:0402, R p ! 0:0267

Bond ( !A) Cubic, 275 K Tetragonal, 200 K

Ti-Ti 3:008 43"1# ( 6 2:853"7# ( 1
3:007"5# ( 2, 3:0147"3# ( 2

3:157"7# ( 1
Ti-O 2.0520(2) (6 2.031(5), 2.026(5), 2.024(5)

2.083(5), 2.138(4), 2.020(4)
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3

Figure 2: Peierls transition accompanied by opening of the
gap in the electronic spectrum.

localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model

H = �t

X

hiji�

c
†
i�cj� + U

X

i

ni"ni#, (3)

where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
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there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state

 HL =
1p
2

⇣
c
†
1"c

†
2# � c

†
1#c

†
2"

⌘
(5)
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Mulliken, or molecular orbital (MO) state (sometimes de-
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bination of Atomic Orbitals).
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that both MO (6) and HL (5) wavefunctions describe
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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ni"ni#, (3)

where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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Mulliken, or molecular orbital (MO) state (sometimes de-
noted as MO LCAO: Molecular Orbitals – Linear Com-
bination of Atomic Orbitals).
In quantum chemistry it was relatively soon realized

that both MO (6) and HL (5) wavefunctions describe
just two limiting cases and for realistic calculations one
should rather use a linear combination of homopolar
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model

H = �t

X

hiji�
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†
i�cj� + U

X
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ni"ni#, (3)

where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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Such state in the theory of chemical bonds is called Hund-
Mulliken, or molecular orbital (MO) state (sometimes de-
noted as MO LCAO: Molecular Orbitals – Linear Com-
bination of Atomic Orbitals).
In quantum chemistry it was relatively soon realized

that both MO (6) and HL (5) wavefunctions describe
just two limiting cases and for realistic calculations one
should rather use a linear combination of homopolar
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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X

hiji�

c
†
i�cj� + U

X
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ni"ni#, (3)

where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet

 MO =
1

2

⇣
c
†
1" + c

†
2"

⌘⇣
c
†
1# + c

†
2#

⌘
(6)

Such state in the theory of chemical bonds is called Hund-
Mulliken, or molecular orbital (MO) state (sometimes de-
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bination of Atomic Orbitals).
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that both MO (6) and HL (5) wavefunctions describe
just two limiting cases and for realistic calculations one
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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where ni� = c
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i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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Figure 2: Peierls transition accompanied by opening of the
gap in the electronic spectrum.

localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model

H = �t
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where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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Mulliken, or molecular orbital (MO) state (sometimes de-
noted as MO LCAO: Molecular Orbitals – Linear Com-
bination of Atomic Orbitals).
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Figure 2: Peierls transition accompanied by opening of the
gap in the electronic spectrum.

localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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localized one per site.
The reason for this was explained already long ago[10],

see also Appendix A.1 in Ref. [1]: when we remember
that electrons repel each other, it immediately becomes
clear that if we start with one electron per site and then
try to create charge carriers, transferring electron from
this site to the other one, the repulsion of the transferred
electron with “its own” one, already existing at this site,
will prevent such charge transfer. In e↵ect the mate-
rial would become an insulator with electrons localized
each at its own site. This is what we now call Mott, or
Mott-Hubbard insulators. And, in contrast to the band
insulators, described at the beginning if this section, the
very fact that such system remains insulating, is due to
electron-electron interaction, and not due to the inter-
action of independent electrons with the periodic lattice
potential.

To describe this state we have to generalize the de-
scription presented in Eqs. (1)-(2) and include electron-
election interaction – at least the electron repulsion at
the same site. Corresponding model
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ni"ni#, (3)

where ni� = c
†
i�ci� is the electron density, is called the

Hubbard model, and it serves nowadays as the basic
model to describe the physics of systems with strong
electron-electron interaction or with strong electron cor-
relations.

According to the physics described above and de-
scribed by the Hubbard model (3), the state of the system
is described by two parameters: average electron density
n = Nel/N and the e↵ective interaction U/t, or U/W ,
where W = 2zt is the electron bandwidths (for simple
lattices like linear chain, square or cubic lattice; z is the
number of nearest neighbors). If U/t ⌧ 1, we are deal-
ing with weakly interacting electrons, and in this case the
standard band description is valid; electron-electron in-
teraction can be then taken into account by perturbation
theory, using for example Feynman diagram technique,
etc. Also for n 6= 1 we would have a metal – although for
strong interaction U � t it could be a special metal with
still strong correlations, and such metallic state could be

in principle rather fragile and very sensitive (may be un-
stable) to any extra perturbations – longer range interac-
tions, etc. However at least in simplest cases this descrip-
tion catches the main physical e↵ect: creation of novel
state – Mott insulator with localized electrons for half-
filled bands (one electron per site n = 1) and for strong
interaction U/t � 1. And we see that in this state we
simultaneously create localized magnetic moments: each
electron localized at respective site gives localized spin
S = 1/2.
When in this situation we take into account only the

dominant term in the Hamiltonian (3), the interaction
term Uni"ni#, the spin direction would not matter, and
the system would be paramagnetic (with disordered lo-
calized spins). However, if we also consider electron hop-
ping, the first term in (3), this hopping lifts the spin
degeneracy in the second order of perturbation theory
in t/U � 1, and it leads to the antiferromagnetic in-
teraction of localized spins ⇠ t

2
/U , i.e. the low-energy

states of the system can be e↵ectively described by the
Heisenberg model (see Sec. III B for details)
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where Si is the spin operator acting at site i and J defines
exchange coupling between spins on two of such sites (and
hence in principle can be di↵erent for di↵erent pairs, i.e.
J ! Jij in this situation). The ground state of such
system would be Mott insulator with antiferromagnetic
spin ordering. For only two sites we would then have the
singlet ground state
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This is what is called in the theory of chemical bond
the Heitler-London (HL) description. Here we should say
that actually also for noninteracting electrons described
by the simple Hamiltonian (1) the ground state would be
also a unique singlet state – filled Fermi-surface, in which
there are two electrons with spins up and down for every
occupied state. For only two such sites the ground state
would also be a singlet
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Such state in the theory of chemical bonds is called Hund-
Mulliken, or molecular orbital (MO) state (sometimes de-
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bination of Atomic Orbitals).
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that both MO (6) and HL (5) wavefunctions describe
just two limiting cases and for realistic calculations one
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for the monochromator. Higher-order neutrons were removed by the pyrolytic graphite 
filter. The neutron energy was fixed at either 13.7 or 30.5 meV, and collimations 30'40'- 
40' were employed. A polarization analysis experiment was carried out on the ISSP- PONTA 
spectrometer at JRR-3M using a Heusler polarizer. Neutrons of 13.7 meV and collimations 
30'-80'-80'-80' were used. Higher-order neutrons were removed by the pyrolytic graphite 
filter. The sample was mounted in a closed cycle 4He gas refrigerator, so that the horizontal 
scattering plane of the spectrometer coincided with the (h h l ) ,  (h 0 I )  or (h k 0) zone. 

3. Experimental results: 

3.1. Magnetic susceptibility 

The temperature dependence of the magnetic susceptibility is shown in figure 2.  The 
susceptibility is almost temperature independent, and shows no anisotropy above TN 
and a very small anisotropy ~ 1 1 .  > X_LS below TN. No anisotropy and very weak 
temperature dependence of the susceptibility are well known characteristics of the 
Heisenberg antiferromagnet on the 2D triangular lattice. These were shown by a Monte 
Carlo simulation [31 and were observed in the real antiferromagnets VBrz and VCl, [15]. 
Therefore the susceptibility data strongly suggest that LiCrOZ is a good quasi-2D system. 

2.5 

2.0 

1 2 1.0 
v 

x 

0.5 

0.0 

T (K) 
Figure 2. Temperatwe dependence of magnetic susceptibiliry. 

3.2. Unpolarized neutron difJraction 

Crystal structure refinement of LiCrOz was performed by both the previous neutron powder 
[81 and single-crystal [9] experiments. To confirm their results, we also performed it using 
(hO1)-type reflections, and obtained the same result. It is summarized in table 1. 

LiCrO2 (Cr3+ d3)

W~1 eV, U~4 eV
U >> W

Exp: Insulator

Mazin PRB 75, 094407 (2007) Soubeyroux et al 
 PSS, 67, 633 (1981)

Kudowaki et al 
JPCM, 6, 6869 (1995)

LiVO2 (V3+ d2)
Exp: Insulator

Active orbital 
degrees of freedom!

What is the 
difference between
LiCrO2 and LiVO2?

Kobayashi et al,  
Mater. Res. Bull. 4, 95 (1969).

1. Effective reduction of dimensionality 
1.3 “Molecules-in-solids”



t2g orbitals on triangular lattice

One of the lobes takes 
part in direct Me-Me  
exchange

(2)Configuration d3 (S=3/2)- leaves frustration

Configuration d2 (S=1) - relieves frustration:  
makes 2 out of 3 Me-Me bonds inequivalent

(1)
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Orbitally induced trimerization
H. F. Pen, J. van den Brink, D. I. Khomskii, G. A. Sawatzky,  

Phys. Rev. Lett. 78, 1323 (1997).

“Molecules” in solids! 
(Valence bond solid)

Spin gap

Trimerization: J. Solid State Chem. 72, 234 (1988).

S=0

S=0

S=0

LiVO2

1. Effective reduction of dimensionality 
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LiVL2 L: increase metallization!

amount of V and Se at the same condition with
Li!0:75VS2"xSex. The products were immersed in a
0.2 M n-BuLi hexane solution for 4 days to attain the
maximum Li content [14]. The samples were characterized
by powder x-ray diffraction. The electron diffraction mea-
surements were carried out in a HF-3000S (Hitachi) trans-
mission electron microscope. Differential scanning
calorimetry (DSC) was conducted by using DSC 204 F1
Phoenix (Netzsch). Vanadium K-edge extended x-ray ab-
sorption fine structure (EXAFS) was measured at BL14B1,
SPring-8. Magnetic susceptibility was measured by a
SQUID magnetometer (Quantum Design). Electrical resis-
tivity was measured by a four-probe method. The powder
samples were sintered at 500 #C under Ar atmosphere for
the resistivity measurements.

LiVS2exhibits a first order metal to insulator transition
at Tc ! 305 K, shown in Fig. 2. At high temperatures
above Tc, the resistivity is about 40 m!cm and almost
temperature independent. Since the sample is a low-
temperature sintered polycrystal, empirically, the intrinsic
resistivity can be more than 1 order of magnitude smaller
than 40 m!cm, consistent with the metallic nature.
Accompanied with the metal to insulator transition, an
abrupt decrease in the magnetic susceptibility is observed,
as shown in Fig. 2. The system is very likely to be non-
magnetic below Tc with a temperature-independent Van
Vleck term and a tiny low-temperature Curie tail, which

corresponds to paramagnetic impurities of !1% if we
assume spin-1=2moment. In accord with the nonmagnetic
behavior of LiVS2,

51V NMR relaxation rate T"1
1 shows

thermally activated behavior, from which we estimate a
spin gap of " ¼ 1900 K [17].
Despite the metallic behaviors above Tc, electron dif-

fraction measurements on LiVS2show an evidence for the
formation of the V trimers below Tc, which indicates
development of the same VBS state as in the insulating
LiVO2. The electron diffraction pattern reveals sharp su-
perlattice reflections at f1=3 1=3 0g below Tc ! 305 K, as
in Fig. 3. The superlattice reflections correspond to affiffiffi
3

p
a%

ffiffiffi
3

p
a superlattice in real space, suggesting a forma-

tion of vanadium trimers in the VS2 plane, shown in the
right inset of Fig. 3. The Fourier-transformed patterns of
EXAFS spectra, shown in Fig. 3, are indeed consistent with
the vanadium trimers in low-temperature phase. Below Tc,
spectra show three clear peaks between 1.5 and 3.5 Å. The
first peak at around 2 Å is ascribed to that from the first-
neighbored V-S. The second and third peaks, marked by

FIG. 1 (color online). Schematic phase diagram in the LiVO2,
LiVS2, and LiVSe2 system. Spin pseudogap is observed in the
white region in the metallic phase. The left inset shows the
schematic VBS state on the triangular lattice of V3þ. The circles
within the triangles denote the V ions. The right inset shows the
phase diagram in the vicinity of the VBS transition. Solid circles
denote the VBS transition obtained from magnetic measure-
ments for the solid solution LiVS2"xSex.
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amount of V and Se at the same condition with
Li!0:75VS2"xSex. The products were immersed in a
0.2 M n-BuLi hexane solution for 4 days to attain the
maximum Li content [14]. The samples were characterized
by powder x-ray diffraction. The electron diffraction mea-
surements were carried out in a HF-3000S (Hitachi) trans-
mission electron microscope. Differential scanning
calorimetry (DSC) was conducted by using DSC 204 F1
Phoenix (Netzsch). Vanadium K-edge extended x-ray ab-
sorption fine structure (EXAFS) was measured at BL14B1,
SPring-8. Magnetic susceptibility was measured by a
SQUID magnetometer (Quantum Design). Electrical resis-
tivity was measured by a four-probe method. The powder
samples were sintered at 500 #C under Ar atmosphere for
the resistivity measurements.

LiVS2exhibits a first order metal to insulator transition
at Tc ! 305 K, shown in Fig. 2. At high temperatures
above Tc, the resistivity is about 40 m!cm and almost
temperature independent. Since the sample is a low-
temperature sintered polycrystal, empirically, the intrinsic
resistivity can be more than 1 order of magnitude smaller
than 40 m!cm, consistent with the metallic nature.
Accompanied with the metal to insulator transition, an
abrupt decrease in the magnetic susceptibility is observed,
as shown in Fig. 2. The system is very likely to be non-
magnetic below Tc with a temperature-independent Van
Vleck term and a tiny low-temperature Curie tail, which

corresponds to paramagnetic impurities of !1% if we
assume spin-1=2moment. In accord with the nonmagnetic
behavior of LiVS2,

51V NMR relaxation rate T"1
1 shows

thermally activated behavior, from which we estimate a
spin gap of " ¼ 1900 K [17].
Despite the metallic behaviors above Tc, electron dif-

fraction measurements on LiVS2show an evidence for the
formation of the V trimers below Tc, which indicates
development of the same VBS state as in the insulating
LiVO2. The electron diffraction pattern reveals sharp su-
perlattice reflections at f1=3 1=3 0g below Tc ! 305 K, as
in Fig. 3. The superlattice reflections correspond to affiffiffi
3

p
a%

ffiffiffi
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p
a superlattice in real space, suggesting a forma-

tion of vanadium trimers in the VS2 plane, shown in the
right inset of Fig. 3. The Fourier-transformed patterns of
EXAFS spectra, shown in Fig. 3, are indeed consistent with
the vanadium trimers in low-temperature phase. Below Tc,
spectra show three clear peaks between 1.5 and 3.5 Å. The
first peak at around 2 Å is ascribed to that from the first-
neighbored V-S. The second and third peaks, marked by

FIG. 1 (color online). Schematic phase diagram in the LiVO2,
LiVS2, and LiVSe2 system. Spin pseudogap is observed in the
white region in the metallic phase. The left inset shows the
schematic VBS state on the triangular lattice of V3þ. The circles
within the triangles denote the V ions. The right inset shows the
phase diagram in the vicinity of the VBS transition. Solid circles
denote the VBS transition obtained from magnetic measure-
ments for the solid solution LiVS2"xSex.

800

600

400

200

0

M
/ H

  (
10

-6
 e

m
u/

m
ol

)

8006004002000

T (K)

10
-2

10
-1

100

101

102

103

104

  (
Ω

cm
)

LiVS2

LiVSe2

LiVSe2

LiVS2

LiVO2

LiVO2

(single crystal)

out-of-plane

in-plane

(a)

(b)
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temperature. The electrical resistivity and magnetic susceptibil-
ity data of LiVO2 are cited from Ref. [5]. The broken line in
magnetic susceptibility has been corrected for paramagnetic
impurities as explained in the text.
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“Molecules” in solids

“Molecules” do not appear, when we are far from the insulating regime

Phys. Rev. Lett.  
103, 146405 (2009)
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Spinel AlV2O4
Clusters: Heptamers

Mechanism: 
Peierls-like transition

A. Uehara, H. Shinaoka, and Y. Motome, 
Phys. Rev. B 92, 195150 (2015).

Fig. 1(b). We concluded that the CO phase of AlV2O4has a
rhombohedral structure with the space group of R!3m.

As a next step, we have determined the magnitude and
the direction of the atomic displacements in the CO phase
by refining the synchrotron x-ray powder diffraction data.
Here, the starting model for structural refinements was set
up based on the reciprocal lattice obtained from the ED
experiment. The displacement pattern of each atom was
determined using the space-group representation theory.
Using this starting model, a full, unconstrained refinement
on the x-ray powder diffraction data was performed by the
Rietveld method [10]. The overall quality of the fitting was
fairly good: profile-weighted R factor Rwp! 7:82%,
R-Bragg factor RB ! 2:10%, and goodness of fit s !
1:6054. A portion of the Rietveld refinement plots for the
synchrotron x-ray profile is shown in Fig. 1(c). The refined
structure of the CO phase in AlV2O4 is displayed in
Fig. 2(a) with the V-V bond lengths. Atomic parameters
in the CO phase can be shown in Table I.

One characteristic distortion in the CO phase of AlV2O4
is V clustering. As shown in Fig. 2(a), there are three
independent V sites in the hexagonal unit cell, 2 V atoms
on the triangular lattice [V1 (yellow) and V2 (red)], and 1
V atom on the kagome lattice (V3, blue). On the kagome
lattice, there are two kinds of V3-V3 bonds with different
bond lengths [the shorter (red) is 2.6101 Å and the longer
(gray) is 3.1413 Å], and V3 ‘‘trimers’’ are formed as a
result. On the other hand, there are two inequivalent

triangular-lattice layers, composed of V1 atoms and V2
atoms, respectively. Here, all the V2 atoms are sandwiched
by two V3 trimers, but none of the V1 atoms are.
Furthermore, the V2-V3 bond length (2.8086 Å, red) is
much shorter than the V1-V3 bond length (3.0394 Å, gray).
These results indicate that the 7 V atoms, two V3 trimers,
and one V2 atom in between, form a V cluster, or a
‘‘heptamer,’’ in the CO structure [shown by red lines in
Fig. 2(a)], and a V1 atom (yellow) is left alone from the
heptamer formation. It should be noted that the V1-O bond
length is 2.0439 Å, close to the theoretical value for the
V3"-O2# bond, and thus it is reasonable to interpret the
‘‘left-alone’’ V1 ion as trivalent (3d2).

Another unsolved problem for the CO state is the behav-
ior of magnetic susceptibility. As shown in Fig. 3, the in-
verse magnetic susceptibility $1=!%T&'shows a T-linear
dependence below 100 K [11]. It was found that !%T&(
%T""& with "!22:6 K is constant between 10 K and
120 K within 4% error (not shown), indicating that !%T&
below 120 K is purely dominated by one Curie-Weiss
component, !%T& ! C=%T " "&. However, 1=!%T& shows
a clear bending around 200 K, which implies the evolution
of another component at temperatures higher than 200 K.
At the CO transition temperature (700 K), there is a kink in
1=!%T&. Such a complicated behavior is in clear contrast to
the simpler behavior of other spinel vanadates with V3"

ions (MgV2O4, for example, shown in Fig. 3), in which
1=!%T& is almost linear down to the spin-ordering
temperature.

We found that the magnetic susceptibility of AlV2O4

below 600 K can be fitted by the sum of a Curie-Weiss term
and a spin-gap term, given as follows:

dxy

dyz
dzx

(a) (b)

V1

V3

V2
2.8086A

2.6101A

3.1413A

3.0394A

FIG. 2 (color). (a) The crystal structure in the CO phase of
AlV2O4are shown schematically. There are three inequivalent V
ions (V1, V2, V3), and V-V bond lengths are substantially dif-
ferent. Heptamers, each of which is made of one V2 (red) and six
V3 ions (blue) connected by the shorter V-V bonds (shown by
red lines) can be seen. The V1 (yellow) is a left-alone ion from
the heptamer formation. (b) Schematic electronic bonds in the
heptamer are shown. There are six ‘‘intratrimer bonds’’ and three
‘‘intertrimer bonds’’ in one heptamer. Each bond consists of dxy,
dyz, or dyz orbitals, as illustrated by different colors.

FIG. 1. (a) Complete reciprocal lattice in the CO phase of
AlV2O4. Large and small circles show fundamental spots due
to the cubic spinel structure (Fd!3m indexing) and superlattice
spots at 1=2 1=2 1=2-type positions, respectively. The solid line
is a guide to the eye. (b) Thick solid lines indicate the rhombo-
hedral unit cell in the CO phase. The small cubic (8 of which
forms large cubic) refers to the unit cell of original cubic spinel
lattice. Small circles depicted Al ions. (c) Portion of the Rietveld
fit of the synchrotron x-ray powder diffraction pattern for
AlV2O4 at room temperature (# ! 0:12060 nm.)
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find that they are dominantly in the a1g orbital sector,
which is anticipated from the DOS in Fig. 1(b).

2. RPA calculation and eigenmode analysis of AlV2O4

Next, we calculate the generalized susceptibility by in-
cluding the effect of electron correlations in a perturba-
tive way at the level of RPA. First, let us discuss the
results for AlV2O4. We investigate the generalized sus-
ceptibility obtained by RPA, χRPA, while changing U ,
JH, and V . Among the parameters, we find that V in-
duces particularly interesting behavior, which might be
related with the heptamer formation in AlV2O4, as dis-
cussed below.

FIG. 4. (color online). (a) V dependence of the maximum
eigenvalues of χRPA(q) for AlV2O4. (b) V dependence of the
eigenvalues at q0 = (π/16, π/16, π/16), which is the smallest
wave number along the Γ-L line in the present calculations.
In (a) and (b), we take U = 300 meV and JH = 30 meV,
while the other parameters are the same as in Fig. 3(a). (c)
σ-bonding type charge fluctuations obtained from the eigen-
mode analysis. The vertical axis represents the fluctuation of
the electron density in arbitrary units. The histogram repre-
sents the density fluctuations decomposed into the dxy, dyz,
and dzx orbitals. The numbers 1-4 in the horizontal axis de-
note the sublattices. (d) Schematic visualization of the fluc-
tuations in the mode 1 in (a).

Figure 4(a) shows the largest eigenvalues of χRPA,
which are considerably enhanced by increasing V . As
shown in Fig. 4(b), the enhancement occurs in particu-
lar eigenmodes, whereas all the other modes are almost
insensitive to V . To clarify the nature of these enhanced
fluctuations by V , we analyze the eigenvectors of the
three quasi-degenerate modes26. We find that the dom-
inant fluctuations are in the charge sector. Figure 4(c)
shows the fluctuations of local electron densities. In all
the three modes, the density fluctuation at one sublat-
tice has the opposite sign to the other three, and the net
density fluctuation vanishes in the four-site tetrahedron.
Note that, while the densities at the sublattices 1, 2, and

3 are suppressed in the modes 1, 2, and 3, respectively,
one can make the mode 4 in which the sublattice 4 is
suppressed by a linear combination of the modes 1-3.
Interestingly, we find that the density fluctuations in

these modes are strongly orbital dependent, as shown
in Fig. 4(c). The orbital dependence indicates that the
dominant fluctuations occur through the ddσ orbital on
each bond. For instance, in the mode 1, the charge den-
sity in the dyz orbital is dominantly transferred between
the sites 1 and 2 on the yz plane, which is regarded
as the charge fluctuation through the ddσ orbital. The
bond- and orbital-dependent fluctuations are schemati-
cally shown in Fig. 4(d). Thus, the fluctuations of the
three modes sensitive to V are of σ-bonding type. The
importance of such σ-bonding states in the heptamer
was suggested in the previous experimental and theo-
retical studies5,6. Hence, our results for the dominant
charge fluctuations in σ-bonding orbitals suggest that
the inter-site Coulomb repulsion plays a role in the self-
organization of heptamers in AlV2O4.
We note that the values of V in the present RPA calcu-

lations are rather large: in reality, the bare value of V will
be considerably smaller than U . Nevertheless, our finding
might be relevant to the heptamer formation in AlV2O4

due to the following reason. The structural change as-
sociated with the heptamer formation clearly indicates
the importance of the Peierls-type electron-phonon cou-
pling. Such inter-site phonons are known to give rise to
an effective repulsive interaction for electrons: indeed,
the integration of phonon degrees of freedom leaves the
effective V term, together with other inter-site interac-
tions33. We regard that such effects are included in the
value of V in the RPA analysis, although the realistic
estimate is left for future study.

3. RPA calculation and eigenmode analysis of LiV2O4

Next, we discuss the results of χRPA for LiV2O4. We
here focus on the effect of U , while V leads to a differ-
ent charge fluctuation from AlV2O4 as mentioned below.
Figure 5(a) shows U dependence of the maximum eigen-
values of χRPA. The maximum eigenvalues are enhanced
by U and become more dispersive.
We plot U dependence of the largest sixteen eigenval-

ues of χRPA in Fig. 5(b). Note that all of them are of a1g
character as discussed above. We find that nine eigen-
modes are largely enhanced by U . We also elucidate that
all the nine eigenmodes consist of spin fluctuations. Fig-
ure 5(c) shows the three of them, which are the spin fluc-
tuations in the x component. In all the three modes, the
spin fluctuation δsx at one sublattice has an opposite sign
to the other three; the net δsx vanishes in the four-site
tetrahedron. Similar situations are found also in the y
and z components. Namely, the spin fluctuations satisfy
the relation

∑4
ρ=1 δsρ = 0, where δsρ = (δsxρ , δs

y
ρ, δs

z
ρ).

Hence, we call them the optical-type spin fluctuations,
whose schematic visualization is shown in Fig. 5(d). As
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27
considered to be due almost entirely to the contribution from
the Van Vleck paramagnetism. We do not know if the
nonzero value of ! is due to the existence of the small and
intrinsic Fermi surface or is due to merely the small amount
of metallic parts existing in the samples.

In Fig. 3, the lattice parameters and the unit cell volume V
obtained by powder X-ray measurements are shown as
functions of T . The lattice parameter a (b) decreases
(increases) rapidly at Tc with decreasing T . The value of
b=a is !

ffiffiffi
3
p

above Tc, indicating that the honeycomb
structure changes from a nearly ideal form to a distorted one
as a result of the transition.

Neutron Rietveld analyses have been carried out at 600 K
and RT (see Figs. 4 and 5). Although the space group at RT
was previously reported to be C2=c,5,6) it cannot explain the
superlattice peaks indicated by the black arrows in Fig. 5. To
reproduce these reflections, we must adopt the space group
P21=m, for which the conventional unit cell with half the
volume of that for C2=c can be used. (The cell for P21=m has
a single Ru-honeycomb layer, while that for C2=c has two
Ru-honeycomb layers.) The result of the Rietveld fitting by

P21=m is rather well. As the possible space group at 600 K,
we have adopted C2=m, the minimal non-isomorphic super-
group of P21=m, because for this space group, we can take
the unit cell with the single RuO6-honeycomb layer and also
because it allows the second-order transition at Tc. (From the
experimental data, it is not easy to definitely distinguish if it
is the second-order one or the first-order one.)

In the fitting described above, we have obtained satisfac-
tory results (Figs. 4 and 5). The superlattice peaks observed
at RT (<Tc) are indicated by the black arrows in Fig. 5. (The
peaks from RuO2 and the unidentified phase are indicated by
the open and gray arrows, respectively.) The obtained R
factors are as follows. At RT, Rwp ¼ 4:17, Re ¼ 3:07 and
S ¼ 1:36 for P21=m. At 600 K, Rwp ¼ 4:32, Re ¼ 3:07 and
S ¼ 1:41 for C2=m. The lattice constants and atomic
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Fig. 3. Lattice parameters and the unit cell volume V obtained by powder
X-ray diffraction are shown against T , where the dotted lines are guides
for the eyes.
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“Metal-insulator-like” (?) and,
magnetic transitions at 540K

T < 540 K

Ru

T > 540 K

Y. Miura et al., JPSJ 76, 033705 (2007)

X-ray powder diffraction: 
Structural transition (?)

Formation of dimers and that’s it?

Ru4+: 4d4 (S=1)Li2RuO3
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Li2RuO3: New twist of the story

X-Ray diffraction: dimers exist T < Ts=540 K

Y. Miura, Y. Yasui, M. Sato, N. Igawa, K. Kakurai, 
 J. Phys. Soc. Japan 76, 033705 (2007)

X-Ray diffraction, pair distribution function 
analysis:                 dimers exist even for T > Ts=540 K

S. Kimber, I. Mazin, J. Shen, H. Jeschke, S. Streltsov,  
D. Argyriou, R. Valenti, D. Khomskii, 
PRB 89, 081408 (2014)

T < 540 K: Valence bond solid (dimers are ordered)

T > 540 K: Valence bond liquid (dimers flow over the lattice)

Li2RuO3
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Li2RuO3: any other experimental evidences  
                of valence bond liquid besides PDF?

378
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ARAPOVA et al.

lattice relaxation time, , changes with temperature.
This relaxation rate was measured using the inversion
recovery pulse sequence  with a

-pulse width of ~3 s and is shown in Fig. 5. One may
see that there can hardly be found any activation-type
processes in the low-temperature range. This is at vari-
ance with other spin dimer or spin ladder systems,
where activation process is typically associated with
excitations across the spin gap [19, 20]. The real reason
for non-activation type behavior of Li RuO  in the low-
temperature range is unknown, but one may argue that
it is related to the low-energy magnetic excitations pro-
ducing substantial increase in the NMR shift and uni-
form magnetic susceptibility discussed above.

In contrast, an increase in  above ~560 K is
most likely caused by some activation process. An
approximation of these data within a framework of
Blombergen–Pursell–Pound model [21] yields an
estimate of activation energies 190 and 130 meV for
two Li lines. In fact, because of different form factors
for different Li positions these two energies may corre-
spond to the same activation process. One may expect
Li diffusion in the systems of Li MeO  series. How-
ever, the activation energy for such a process in iso-
structural Li TiO  is ~500 meV [22], i.e., more than
twice larger than what we observe in Li RuO . More-
over, the presence of the local magnetic moments on
Ru in Li RuO  in the high-temperature phase would
additionally suppress diffusion of Li ions. Therefore, it
is unlikely that the thermal activation process detected
by NMR through the temperature dependence of the
spin-lattice relaxation time  corresponds to the Li
diffusion. Instead, one may suppose that it can be

1T

π − − π −( /2) ( )t M t
π µ

2 3

−1
1T

2 3

2 3

2 3

2 3

1T

related to the motion of the Ru–Ru dimers, seen in the
X-ray experiments [8].

There are two holes in the  shell of Ru  ions in
Li RuO . In the low-temperature phase, where dimers
are ordered, both these holes are bound to form a sin-
glet state  out of  of each Ru [8]. As was
proposed in [8, 9], an increase in the temperature may
induce transition to the orbital-selective state [9, 10],
when a weak covalent bonding between the 
orbitals gets broken and corresponding holes behave as
nearly free . In its turn, strong bonding
between the  orbitals (~2.5 eV) prevents destruction
of dimers. This naturally explains modest volume
increase at the phase transition (only one weak 
bond is broken above transition) and the fact that
experimental effective magnetic moment in the high-
temperature phase is , which is much
smaller than what one may expect for free paramag-
netic Ru  ions with .

In order to get insight into a magnetic behavior at
high temperature, we performed the LDA +
DMFT(cluster) calculations based on the Hirsch–Fye
Quantum Monte Carlo solver [23]. The noninteract-
ing LDA Hamiltonian for Ru  was obtained using
the Wannier function projection procedure [24] as
applied to the linearized muffin-tin orbitals method
[25]. Hubbard  was estimated to be  eV and

 eV [26, 27]. The uniform magnetic suscepti-
bility, calculated as a response to an external magnetic
field, shown in Fig. 6, qualitatively agrees with experi-
mental data. One may see a strong suppression of the

 in the low-temperature phase related to the stabi-
lization of the spin singlet ground state and separated
by the spin gap from the higher lying excited states.
The critical temperature of the phase transition is
overestimated by a factor of  1.3, which is reasonable
for the mean-field theory.

As was described above, one may explain the tem-
perature dependence of both magnetic susceptibility
and the NMR shift by the broken weak  bond in
the Ru–Ru dimers at high temperatures. Real LDA +
DMFT calculations show that indeed the magnetic
response is mostly due to the  orbitals. However,
there is also some contribution from the  orbitals.
Due to low symmetry, there are off-diagonal matrix
elements in the noninteracting LDA Hamiltonian.
This results in the orbital mixing and spin polarization
of the  bands in Li RuO . Thus, our LDA + DMFT
calculations demonstrate that one may indeed con-
sider the high-temperature phase of Li RuO  as
orbital-selective with the  orbitals being mostly,
but not completely decoupled from the  orbitals.

To sum up in the present paper the NMR has been
applied for the investigation of the magnetic properties
of Li RuO . We found that the NMR shift is propor-
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Fig. 5. (Color online) Spin–lattice relaxation rate, 
versus the inverse temperature. Open circles point the data
for additional line in high temperature phase (positions of
Li atoms in Ru layers). Straight lines are guide for the eyes
which show the temperature range, where Arrhenius law
determines the behavior of spin–lattice relaxation.
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Y. Arapova, A. Buzlukov, A. Germov, K. Mikhalev, T. Tan, J. Park, S. Streltsov, JETP Lett. 105, 375 (2017).
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Valence bond liquid in Li2RuO3: what theory says
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FIG. 4. (Color online) Armchair (a) and parallel (b) dimerized
structures of Li2RuO3 investigated in this work. Shorter (dimerized)
Ru-Ru bonds are marked with a dark bar, longer bonds with a light
bar. The Ru DOS for these two low-energy structures are shown in
panels (c) and (d), respectively.

(4) The u− orbital also contributes to the total covalency, albeit
considerably less. The corresponding bonding-antibonding
splitting is about 0.7 eV and the second hole takes advantage
of this fact. Moreover, this contribution is only weakly
dependent on the bond length, and therefore its contribution
to dimerization is much smaller than to covalency in general.
(5) Examination of the Ru effective moment in spin-polarized
calculation shows that it is at most spin 1/2 and never 1;
this indicates that at least one electron spin is quenched. The
second, u±, spin may or may not be quenched depending
on temperature. Our calculations find rather small energy
differences between ferro- and antiferromagnetic arrangement
of the u± spins, so when they are unbound and their covalent
bond is broken at high temperature, they behave magnetically

as nearly free spin 1/2 electrons. Indeed the difference between
the experimental susceptibility at low temperatures (spin gap)
and at high temperatures [7] is consistent with this scenario.
(6) Finally, all investigated long-range orders of the structural
dimers are energetically favorable when compared with the
undimerized structure. The differences among the dimerized
structures are of the order of 40 meV, comparable with
the ordering transition temperature. On the other hand, the
(optimized) uniform structure is 155 meV above the ground
state structure, which explains why dimers themselves survive
well above Tc.

Discussion . Our experimental results combined with theo-
retical calculations render the following picture: Ru-Ru bonds
in Li2RuO3 have a very strong tendency to form local dimers
with covalent bonds via direct overlap of Ru 4d orbitals [13].
The structural transition at ∼270 ◦C is of the order-disorder
type: the dimers at T ! 270 ◦C do not disappear at higher
temperatures, nor does their concentration (1/3 of all bonds)
change. Dimer-dimer interaction, presumably of elastic origin
[as evidenced by the fact that the disordered phase has a larger
a lattice parameter (see SM), due to a lack of proper dimer
packing], is much weaker and responsible for mutual ordering
of the dimers in the observed “armchair” structure. [18] In
the high-temperature phase there is no ordering of dimers
at a length scale "1.5 nm, or 2–3 lattice parameters. The
ordering temperature is consistent with the calculated energy
differences between dimerized phases with different dimer
long-range ordering. Upon quick cooling to 50◦, the long-
range dimer ordering was restored suggesting that the high-
temperature phase is a valence bond liquid, where dimerization
occurs dynamically on a time scale long compared to the
characteristic time scale of our x ray measurements. While the
concept of quantum spin liquid of dynamically disordered spin
singlets is well known, its classical analog, a liquid of valence
bonds dynamically disordered due to thermal fluctuations,
as it is our case, has been less investigated [24]. Statistical
physics of such an object should be nontrivial, bearing
resemblance to Maier-Saupe transitions in liquid crystals and
solid hydrogen [25]. Such a local dimer scenario may be also
realized in the 4d5 and 5d5 counterpart systems. We hope that
our results will stimulate further experimental and theoretical
studies in this direction.
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1. Effective reduction of dimensionality.  
“Molecules-in-solids”

AlV2O4:  formation of heptameters

Li2RuO3: formation of very stable dimers

LiVO2:    formation of trimers

Examples of “Molecules-in-solids”

Can we have these “Molecules” without 
structurally isolated clusters?
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Twofold nature of 
electrons:

(1) electrons are confined  
in hexagons

(2) electrons are delocalized moving over hexagon

1) Honeycomb lattice  
2) Transition metals: t2g ions 
3) Hopping only via ligand p-

orbitals

Let’s consider

Molecules = TM6 hexagons
(no clusters; all TM-TM 
bonds are the same)

1. Effective reduction of dimensionality 
1.3 “Molecules-in-solids”

SrRu2O6
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Benzene C6H6: three sp2-electrons/C
                          six p-electons/u.c.

SrRu2O6: Ru - 4d3 
six d-electons/u.c.

SrRu2O6: (4d) electronic analog of benzene!
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Examples:   Na2IrO3, Li2IrO3, Na2RuO3

SrRu2O6, AgRuO3

Strong direct d-d hopping and spin-orbit coupling 
spoils MOs on hexagons

perfect hexagonal lattice (no dimerization!) with MO!

B1u

E2g

E1u

A1g2(t+t’)

-2(t-t’)
-(t+t’)

t-t’

Isolate Ru6 cluster: GGA calculation for SrRu2O6:S. STRELTSOV, I. I. MAZIN, AND K. FOYEVTSOVA PHYSICAL REVIEW B 92, 134408 (2015)

FIG. 1. (Color online) Density of states (DOS) projected on
molecular orbitals of different symmetries in nonmagnetic GGA
calculations (WIEN2k results). The Fermi energy is set to zero.

always exists in the common edge geometry) is included, as
well as deviations of the angle from 90◦, two more hoppings
emerge: one between the same orbitals on the neighboring
sites t1, and the other an O-assisted second neighbor hopping
between unlike orbitals t ′2. As long as t ′1 is dominant, the
MO model still applies, and can be readily solved. The
solution entails six bands, A1g , E2u, E1g , and B1u (the E
bands being double degenerate in each spin channel), whose
dispersion is controlled by t1, and whose centers are located at
2(t ′1 + t ′2), (t ′1 − t ′2), − (t ′1 + t ′2), and − 2(t ′1 − t ′2), respectively.
In Na2IrO3 t ′1 ≈ − 3t ′2, so that the A1g and E2u practically
merge. This accidental degeneracy also leads to much stronger
spin-orbit effects than would have been possible had the MO
bands remained well separated, and to considerable destruction
of the MO picture in the relativistic case. On the other hand, the
hopping parameters for SrRu2O6, as calculated in Ref. [11],
are similar to those in Na2IrO3, in the sense that again
t ′1 = 300 meV is by far the largest hopping, and the only other
sizable hoppings are t1 = 160 meV and − t ′2 ≈ 100–110 meV.
Note that here |t ′2| is again about 1/3 of t ′1. Thus, the A1g

and E2u bands merge, while E1g and B1u remain separated,
as one can see in Fig. 1. Projecting the density of states onto
MOs, we observe that the predicted characters are very well
reproduced. The distance between the centers of the E2u and
E1g bands is about 0.8 eV, and their width is about 0.6–0.7 eV,
thus providing for a small gap of ≈50 meV.

It is instructive to compare SrRu2O6 with Na2IrO3 and
with Li2RuO3. All these compounds share the same crystallo-
graphic motif, but feature a different number of d electrons: 5,
4, or 3. In the iridate, a single hole in the upper A1g singlet is
prone to both strong correlations and, due to near degeneracy
between A1g and E2u, to spin-orbit interaction. As a result,
as one increases the spin-orbit coupling, the A1g singlet is
gradually transformed into the jeff = 1/2 singlet [9]. Either
way, a half-filled singlet triggers Mott physics even if the
Hubbard U is small. This transformation controls most of
the interesting physics in this compound. Li2RuO3 has two
d holes, providing it with an opportunity to form strongly
bound covalent dimers. This is exactly what happens, and the
MO on the hexagons transforms to an MO on the Ru dimers
resulting in the spin singlet ground state [12]. Neither Mott
nor spin-orbit physics is relevant on the background of the
strong covalent bonding in dimers. Finally, SrRu2O6 has the six
MO bands half-filled, and the gap is formed between the

lower and the upper MO triads. Similar to Li2RuO3, both
Mott and spin-orbit effects are of minor importance, and the
gap structure inherent to the MO picture gives rise to unique
magnetic properties.

Let us now turn to the energetics of the material. First,
we have confirmed, using the WIEN2k package [13,14], the
numbers published by Singh [4] regarding the interplanar
coupling, single-site anisotropy, and Ru magnetic moment.
We also confirmed that the ferromagnetic structure cannot
be stabilized. Moreover, the so-called stripy and zigzag
magnetic patterns [9], where one or two out of three bonds
are ferromagnetic, and the net moment is zero, cannot be
stabilized. This indicates that besides the obvious influence
of the nonmagnetic gap there are other factors strongly
disfavoring ferromagnetic bonds. In fact, given that the gap
value is ten times smaller than Ru Stoner factor [5], and the
calculated magnetic moment in the Néel state is ∼ 1.3 µB , it is
surprising that the ferromagnetic bonds do not stabilize with a
finite moment.

In order to gain more insight into the problem, we turned to
the VASP code [14,15], which is faster and has the capability
to restrict magnetic moments to a certain direction, or to
both a direction and a magnitude (we confirmed that the
energies of collinear magnetic states agree with those found
in WIEN2k). First, we computed the total energy for a canted
antiferromagnet (AFM), restricting the angle with the z axis
to be ± φ for the two Ru’s in the cell. The results are shown
in Fig. 2. Note that for the largest canting angle we were able
to converge, 35◦, the energy of the magnetic state is already
higher than that of the nonmagnetic one. Also note how soft
the magnetic moments are: despite the sizable equilibrium
moment, the energy cost of total suppression of magnetism
is less than 80 meV, only 50% larger than the transition
temperature. This is, again, an indication of the great role of
itinerancy, and specifically, delocalization over Ru6 hexagons.

Interestingly, suppression of magnetism with canting can-
not be described by a naive combination of a local Hamiltonian
for itinerant magnets [16], E =

∑
i!0 aiM

2i , where M is
the magnetization, with a Heisenberg term. While the total
energies at a fixed canting angle φ " 35◦ can be very
well described by this Hamiltonian with just three terms,
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FIG. 2. Magnetic energy (squares) and magnetic moments (cir-
cles) as a function of the canting angle of spins, starting from the Néel
antiferromagnetic structure. Results are from VASP calculations.
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Anomalous properties, which MOs bring:  
Magnetism

SrRu2O6 is an 
non-Heisenberg 

magnet!

ANTIFERROMAGNETISM AT T > 500 K IN THE . . . PHYSICAL REVIEW B 92, 104413 (2015)
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FIG. 3. (Color online) Calculated electronic structure of SrRu2O6 (a) band structure, (b) density of states with partial contributions in two
spin channels, and (c) simulated XPS overlaid on the experimental XPS spectra. All were calculated using the G-type magnetic order found
experimentally.

FIG. 4. (Color online) Rietveld fits of powder neutron data from
SrRu2O6 (a) at 7.5 K and (b) at 623 K, and (c) a representation of the
atomic structure of the material with green octahedra representing Ru
and Sr shown as red spheres. In (a) and (b) blue ticks are due to the
magnetic unit cell and orange due to the atomic unit cell.

displays pronounced O 2p and Ru 4d hybridization, while the
conduction band minimum is dominated by unoccupied Ru 4d
states, mixed with some O 2p states [Fig. 3(b)]. To compare
our calculated results with experiment, we have overlaid
simulated XPS data (constructed from the ion decomposed
density of states weighted using the scattering cross sections
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TN = 560 K!

Is this related with unusually 
high TN for layered material?
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Figure 2: Results of the antiferromagnetic GGA calcula-
tions. (a) The joint density of states, J(ω), is shown by black
line. (b) The real part of optical conductivity, Re σαβ(ω) =
ω
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Im εαβ(ω), where α,β = x (blue dotted line) and α,β = z
(green dotted line). The imaginary part of the frequency-
dependent dielectric functions, εxx (c) and εzz (d) are shown
by solid blue and green lines, correspondingly.

element [19]. This, obviously, includes the phase space
factor, usually called the joint density of states,

J(ω) =
∑

c,v

∫

δ(ϵc(k) − ϵv(k)− !ω)dk,

and the effects of the matrix elements. The J(ω) ob-
tained within the AFM GGA calculations is shown in
Fig. 2(a). One observes a broad maximum in the joint
DOS at 1.1–1.4 eV, due to the transitions between the
E2g and the E1u+A1g manifolds, and another maximum
at 1.6-1.8 eV, due to the B1u → E1u +A1g transitions.
Since SrRu2O6 has a trigonal crystal structure there

are only two independent components in the dielectric
tensor, εxx and εzz . Fig. 2(c), (d) shows the calcu-
lated imaginary part of dielectric tensor components for
SrRu2O6. The amplitude of the εxx component is about
8 times larger than the one of εzz, reflecting the fact that
it only appears through deviations from the MO model.
More interestingly, we observe that Im εxx(ω) has one
strong peak “A”at ∼1 eV, corresponding to E2g → E1u

transitions, while the second peak of J(ω) is completely
suppressed in Im εxx(ω) (Fig. 2(c)). Moreover, the first
peak also becomes sharper, reflecting the fact that, while
the E1u and A1g orbitals are strongly mixed, the higher
energy part of the corresponding manyfold has some-
what more of the A1g character, leaving less room for the

E2g → E1u transitions (remember that the E2g → A1g

transitions are forbidden by parity). This is exactly the
qualitative effect we were looking for.
Note that if the matrix elements in Eq. (5) are set

to a constant, ⟨c,k|pα|v,k⟩ = const, then ωσ(ω) =
const · J(ω), and, indeed often in computational papers
joint DOS is compared to ωσ(ω). However, in real ma-
terials, |⟨c|p|v⟩|2/m usually grows with energy, roughly
as (Ec − Ev) [20], so one can elucidate the suppression
of particular transitions by comparing J(ω) (Fig. 2(a))
with σ(ω) (Fig. 2(b)).
It is worth noting that the structure of Im εzz(ω),

which cannot be derived from the MO model, is nonethe-
less quite interesting. Indeed, the pz matrix element ap-
pears to be strongly enhanced in the very low frequency
region, from the absorption edge to about 0.7 eV (the
feature denoted “C” in Fig. 2(d)). The matrix elements
for next feature, “D”, are suppressed by a factor of ≈ 1.5
[2.2-2.3 in Im εzz(ω)/J(ω)], and the high-energy region
corresponding to the B1u → E1u +A1g transitions by an
additional factor of ≈1.8 (feature “E”).
Compared to iridates Na2IrO3 and Li2IrO3, often

quoted in the context of MOs, SrRu2O6 has a clear ad-
vantage in the sense that in iridates the MO picture
is contaminated by a strong spin-orbit interaction that
makes selection rules not well expressed. Indeed, while
DFT calculations for iridates [21] agree well with experi-
mental data, they cannot be interpreted in such a simple
way as ours presented above, and cannot provide such a
qualitative assessment of the MO picture.
Conclusions. We presented first principle calculations

of the optical properties of the putative molecular orbital
solid SrRu2O6, as well as an analytical analysis of the
optical absorption in the molecular orbitals model. We
have identified a qualitative signature of molecular or-
bitals in optical properties. There are only four possible
transitions allowed by the parity of the wave functions,
but one of these parity-respecting optical transitions is
suppressed by the point group symmetry, an unusual ef-
fect directly related to molecular orbitals. Different dis-
tortions of the crystal lattice, spin-orbit coupling, cor-
relation effects etc. may completely suppress formation
of molecular orbitals or strongly modify their structure.
Our results show that one may use optical spectroscopy
as a probe to study molecular orbital physics in transition
metals oxides consisting of honeycomb layers.
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element [19]. This, obviously, includes the phase space
factor, usually called the joint density of states,

J(ω) =
∑

c,v

∫

δ(ϵc(k) − ϵv(k)− !ω)dk,

and the effects of the matrix elements. The J(ω) ob-
tained within the AFM GGA calculations is shown in
Fig. 2(a). One observes a broad maximum in the joint
DOS at 1.1–1.4 eV, due to the transitions between the
E2g and the E1u+A1g manifolds, and another maximum
at 1.6-1.8 eV, due to the B1u → E1u +A1g transitions.
Since SrRu2O6 has a trigonal crystal structure there

are only two independent components in the dielectric
tensor, εxx and εzz . Fig. 2(c), (d) shows the calcu-
lated imaginary part of dielectric tensor components for
SrRu2O6. The amplitude of the εxx component is about
8 times larger than the one of εzz, reflecting the fact that
it only appears through deviations from the MO model.
More interestingly, we observe that Im εxx(ω) has one
strong peak “A”at ∼1 eV, corresponding to E2g → E1u

transitions, while the second peak of J(ω) is completely
suppressed in Im εxx(ω) (Fig. 2(c)). Moreover, the first
peak also becomes sharper, reflecting the fact that, while
the E1u and A1g orbitals are strongly mixed, the higher
energy part of the corresponding manyfold has some-
what more of the A1g character, leaving less room for the

E2g → E1u transitions (remember that the E2g → A1g

transitions are forbidden by parity). This is exactly the
qualitative effect we were looking for.
Note that if the matrix elements in Eq. (5) are set

to a constant, ⟨c,k|pα|v,k⟩ = const, then ωσ(ω) =
const · J(ω), and, indeed often in computational papers
joint DOS is compared to ωσ(ω). However, in real ma-
terials, |⟨c|p|v⟩|2/m usually grows with energy, roughly
as (Ec − Ev) [20], so one can elucidate the suppression
of particular transitions by comparing J(ω) (Fig. 2(a))
with σ(ω) (Fig. 2(b)).
It is worth noting that the structure of Im εzz(ω),

which cannot be derived from the MO model, is nonethe-
less quite interesting. Indeed, the pz matrix element ap-
pears to be strongly enhanced in the very low frequency
region, from the absorption edge to about 0.7 eV (the
feature denoted “C” in Fig. 2(d)). The matrix elements
for next feature, “D”, are suppressed by a factor of ≈ 1.5
[2.2-2.3 in Im εzz(ω)/J(ω)], and the high-energy region
corresponding to the B1u → E1u +A1g transitions by an
additional factor of ≈1.8 (feature “E”).
Compared to iridates Na2IrO3 and Li2IrO3, often

quoted in the context of MOs, SrRu2O6 has a clear ad-
vantage in the sense that in iridates the MO picture
is contaminated by a strong spin-orbit interaction that
makes selection rules not well expressed. Indeed, while
DFT calculations for iridates [21] agree well with experi-
mental data, they cannot be interpreted in such a simple
way as ours presented above, and cannot provide such a
qualitative assessment of the MO picture.
Conclusions. We presented first principle calculations

of the optical properties of the putative molecular orbital
solid SrRu2O6, as well as an analytical analysis of the
optical absorption in the molecular orbitals model. We
have identified a qualitative signature of molecular or-
bitals in optical properties. There are only four possible
transitions allowed by the parity of the wave functions,
but one of these parity-respecting optical transitions is
suppressed by the point group symmetry, an unusual ef-
fect directly related to molecular orbitals. Different dis-
tortions of the crystal lattice, spin-orbit coupling, cor-
relation effects etc. may completely suppress formation
of molecular orbitals or strongly modify their structure.
Our results show that one may use optical spectroscopy
as a probe to study molecular orbital physics in transition
metals oxides consisting of honeycomb layers.
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Figure 2: Results of the antiferromagnetic GGA calcula-
tions. (a) The joint density of states, J(ω), is shown by black
line. (b) The real part of optical conductivity, Re σαβ(ω) =
ω
4π

Im εαβ(ω), where α,β = x (blue dotted line) and α,β = z
(green dotted line). The imaginary part of the frequency-
dependent dielectric functions, εxx (c) and εzz (d) are shown
by solid blue and green lines, correspondingly.

element [19]. This, obviously, includes the phase space
factor, usually called the joint density of states,

J(ω) =
∑

c,v

∫

δ(ϵc(k) − ϵv(k)− !ω)dk,

and the effects of the matrix elements. The J(ω) ob-
tained within the AFM GGA calculations is shown in
Fig. 2(a). One observes a broad maximum in the joint
DOS at 1.1–1.4 eV, due to the transitions between the
E2g and the E1u+A1g manifolds, and another maximum
at 1.6-1.8 eV, due to the B1u → E1u +A1g transitions.
Since SrRu2O6 has a trigonal crystal structure there

are only two independent components in the dielectric
tensor, εxx and εzz . Fig. 2(c), (d) shows the calcu-
lated imaginary part of dielectric tensor components for
SrRu2O6. The amplitude of the εxx component is about
8 times larger than the one of εzz, reflecting the fact that
it only appears through deviations from the MO model.
More interestingly, we observe that Im εxx(ω) has one
strong peak “A”at ∼1 eV, corresponding to E2g → E1u

transitions, while the second peak of J(ω) is completely
suppressed in Im εxx(ω) (Fig. 2(c)). Moreover, the first
peak also becomes sharper, reflecting the fact that, while
the E1u and A1g orbitals are strongly mixed, the higher
energy part of the corresponding manyfold has some-
what more of the A1g character, leaving less room for the

E2g → E1u transitions (remember that the E2g → A1g

transitions are forbidden by parity). This is exactly the
qualitative effect we were looking for.
Note that if the matrix elements in Eq. (5) are set

to a constant, ⟨c,k|pα|v,k⟩ = const, then ωσ(ω) =
const · J(ω), and, indeed often in computational papers
joint DOS is compared to ωσ(ω). However, in real ma-
terials, |⟨c|p|v⟩|2/m usually grows with energy, roughly
as (Ec − Ev) [20], so one can elucidate the suppression
of particular transitions by comparing J(ω) (Fig. 2(a))
with σ(ω) (Fig. 2(b)).
It is worth noting that the structure of Im εzz(ω),

which cannot be derived from the MO model, is nonethe-
less quite interesting. Indeed, the pz matrix element ap-
pears to be strongly enhanced in the very low frequency
region, from the absorption edge to about 0.7 eV (the
feature denoted “C” in Fig. 2(d)). The matrix elements
for next feature, “D”, are suppressed by a factor of ≈ 1.5
[2.2-2.3 in Im εzz(ω)/J(ω)], and the high-energy region
corresponding to the B1u → E1u +A1g transitions by an
additional factor of ≈1.8 (feature “E”).
Compared to iridates Na2IrO3 and Li2IrO3, often

quoted in the context of MOs, SrRu2O6 has a clear ad-
vantage in the sense that in iridates the MO picture
is contaminated by a strong spin-orbit interaction that
makes selection rules not well expressed. Indeed, while
DFT calculations for iridates [21] agree well with experi-
mental data, they cannot be interpreted in such a simple
way as ours presented above, and cannot provide such a
qualitative assessment of the MO picture.
Conclusions. We presented first principle calculations

of the optical properties of the putative molecular orbital
solid SrRu2O6, as well as an analytical analysis of the
optical absorption in the molecular orbitals model. We
have identified a qualitative signature of molecular or-
bitals in optical properties. There are only four possible
transitions allowed by the parity of the wave functions,
but one of these parity-respecting optical transitions is
suppressed by the point group symmetry, an unusual ef-
fect directly related to molecular orbitals. Different dis-
tortions of the crystal lattice, spin-orbit coupling, cor-
relation effects etc. may completely suppress formation
of molecular orbitals or strongly modify their structure.
Our results show that one may use optical spectroscopy
as a probe to study molecular orbital physics in transition
metals oxides consisting of honeycomb layers.
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Figure 1: The nonmagnetic GGA band structure (upper
panel) and total DOS obtained by GGA calculation for the
Neél antiferromagnetic structure (lower panel). The contribu-
tions from different molecular orbitals are labeled according
to Refs. [8, 12].

e.g., optical absorption and photoemission measurements
(the latter are mostly determined by the electronic den-
sity of states, DOS), properly corrected for corresponding
cross sections. We will show both analytically and nu-
merically that the optical conductivity in the MO picture
is dramatically different from the joint DOS, because of
unusually restrictive optical selection rules.

Optical properties of molecular orbitals. The dipole se-
lection rules prohibit optical transitions between states
of the same parity. In the MO picture, this leaves four
transitions: B1u → E2g (at !ω = t′1 − 3t′2), E2g → E1u

(at 2t′1), E1u → A1g (at t′1 + 3t′2), and B1u → A1g (at
4t′1). For the half filling, representative of SrRu2O6, that
would generate two absorption peaks, corresponding to
the E2g → E1u and B1u → A1g transitions, the latter at
a twice larger energy than the former. However, there
is an additional symmetry in the problem that forbids
some of these transitions. Indeed, to assure a nonzero
optical matrix element, the direct product of the rep-
resentations of the initial and final states must contain
a representation of the corresponding component of the
dipole operator pα (see, e.g., Ref. [15]). In the case of an
ideal hexagon with the point group symmetry D6h the

px and py components are transformed according to the
E1u representation [16]. Since

B1u ×A1g = B1u (1)

B1u × E2g = E1u (2)

E2g × E1u = B1u +B2u + E1u (3)

E1u ×A1g = E1u (4)

the point symmetry will suppress B1u → A1g, but not
B1u → E2g, E2g → E1u, and E1u → A1g transitions. In
SrRu2O6 only E2g → E1u transitions are allowed, but in
other hexagonal systems with different number of d elec-
trons one may also expect B1u → E2g and E1u → A1g

transitions. In the Appendix we show explicitly the ma-
trix elements of pα in the nearest- and next-nearest neigh-
bor tight binding approximation. The out-of plane ma-
trix element is zero and corresponding optical transitions
are absent in the MO approximation.
Together with the selection rules forbidding transitions

between states with the same parity this additional se-
lectivity offers a direct test of the MO scenario. It sug-
gests that despite the double-hump structure of the DOS
(Fig. 1), and, correspondingly, joint DOS, the optical ab-
sorption σ(ω) will have a one peak structure. Impor-
tantly, this is a qualitative, not quantitative test. While
the exact positions and relative intensities of different
peaks in DOS and σ(ω) may differ from the density func-
tion theory predictions (due to many-body effects), the
general structure described above should qualitatively
hold. This way one can directly verify by spectroscopi-
cal means (comparing optical, photoemission and inverse
photoemission spectra) the concept of molecular orbitals.

DFT calculations of σ(ω) in SrRu2O6. We used the
full-potential linearized augmented plane-wave (LAPW)
method as implemented in the WIEN2k code [17] to
calculate optical properties of SrRu2O6. We used the
exchange-correlation potential of Ref. [18]. Integration
was performed using the tetrahedron method on a mesh
consisting of 4096 k-points in the Brillouin zone (BZ).
The radii of atomic spheres were chosen to be 2.36,
1.93 and 1.72 a.u. for Sr, Ru, and O, respectively.
The parameter of the plane wave expansion was set to
RMTKmax=7, where RMT is the radius of O and Kmax

is the plane wave cut-off.
For a dielectric, the imaginary part of the dielectric

function Im ε(ω) = 4πσ(ω)/ω in the random-phase ap-
proximation (RPA) is defined as

Im εαβ(ω) =
e2

πm2ω2

∑

c,v

∫

⟨c,k|pα|v,k⟩⟨v,k|pβ |c,k⟩

× δ(ϵc(k)− ϵv(k) − !ω)dk. (5)

where m is the electron mass, {α,β} = {x, y, z}, summa-
tion runs over all pairs of conduction (c) and valence (v)
bands, and ϵ(k) gives the energy of corresponding band,
while ⟨c,k|pα|v,k⟩ is the momentum operator’s matrix
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Figure 1: The nonmagnetic GGA band structure (upper
panel) and total DOS obtained by GGA calculation for the
Neél antiferromagnetic structure (lower panel). The contribu-
tions from different molecular orbitals are labeled according
to Refs. [8, 12].

e.g., optical absorption and photoemission measurements
(the latter are mostly determined by the electronic den-
sity of states, DOS), properly corrected for corresponding
cross sections. We will show both analytically and nu-
merically that the optical conductivity in the MO picture
is dramatically different from the joint DOS, because of
unusually restrictive optical selection rules.

Optical properties of molecular orbitals. The dipole se-
lection rules prohibit optical transitions between states
of the same parity. In the MO picture, this leaves four
transitions: B1u → E2g (at !ω = t′1 − 3t′2), E2g → E1u

(at 2t′1), E1u → A1g (at t′1 + 3t′2), and B1u → A1g (at
4t′1). For the half filling, representative of SrRu2O6, that
would generate two absorption peaks, corresponding to
the E2g → E1u and B1u → A1g transitions, the latter at
a twice larger energy than the former. However, there
is an additional symmetry in the problem that forbids
some of these transitions. Indeed, to assure a nonzero
optical matrix element, the direct product of the rep-
resentations of the initial and final states must contain
a representation of the corresponding component of the
dipole operator pα (see, e.g., Ref. [15]). In the case of an
ideal hexagon with the point group symmetry D6h the

px and py components are transformed according to the
E1u representation [16]. Since

B1u ×A1g = B1u (1)

B1u × E2g = E1u (2)

E2g × E1u = B1u +B2u + E1u (3)

E1u ×A1g = E1u (4)

the point symmetry will suppress B1u → A1g, but not
B1u → E2g, E2g → E1u, and E1u → A1g transitions. In
SrRu2O6 only E2g → E1u transitions are allowed, but in
other hexagonal systems with different number of d elec-
trons one may also expect B1u → E2g and E1u → A1g

transitions. In the Appendix we show explicitly the ma-
trix elements of pα in the nearest- and next-nearest neigh-
bor tight binding approximation. The out-of plane ma-
trix element is zero and corresponding optical transitions
are absent in the MO approximation.
Together with the selection rules forbidding transitions

between states with the same parity this additional se-
lectivity offers a direct test of the MO scenario. It sug-
gests that despite the double-hump structure of the DOS
(Fig. 1), and, correspondingly, joint DOS, the optical ab-
sorption σ(ω) will have a one peak structure. Impor-
tantly, this is a qualitative, not quantitative test. While
the exact positions and relative intensities of different
peaks in DOS and σ(ω) may differ from the density func-
tion theory predictions (due to many-body effects), the
general structure described above should qualitatively
hold. This way one can directly verify by spectroscopi-
cal means (comparing optical, photoemission and inverse
photoemission spectra) the concept of molecular orbitals.

DFT calculations of σ(ω) in SrRu2O6. We used the
full-potential linearized augmented plane-wave (LAPW)
method as implemented in the WIEN2k code [17] to
calculate optical properties of SrRu2O6. We used the
exchange-correlation potential of Ref. [18]. Integration
was performed using the tetrahedron method on a mesh
consisting of 4096 k-points in the Brillouin zone (BZ).
The radii of atomic spheres were chosen to be 2.36,
1.93 and 1.72 a.u. for Sr, Ru, and O, respectively.
The parameter of the plane wave expansion was set to
RMTKmax=7, where RMT is the radius of O and Kmax

is the plane wave cut-off.
For a dielectric, the imaginary part of the dielectric

function Im ε(ω) = 4πσ(ω)/ω in the random-phase ap-
proximation (RPA) is defined as

Im εαβ(ω) =
e2

πm2ω2

∑

c,v

∫

⟨c,k|pα|v,k⟩⟨v,k|pβ |c,k⟩

× δ(ϵc(k)− ϵv(k) − !ω)dk. (5)

where m is the electron mass, {α,β} = {x, y, z}, summa-
tion runs over all pairs of conduction (c) and valence (v)
bands, and ϵ(k) gives the energy of corresponding band,
while ⟨c,k|pα|v,k⟩ is the momentum operator’s matrix

Selection rule: 
symmetry

(D6h)

px and py components of momentum operator transform according to E1u

1. Effective reduction of dimensionality 
1.3 “Molecules-in-solids”
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1. Effective reduction of dimensionality  
Take-home messages

1. Orbitals may reduce 
dimensionality of a magnetic 
subsystem

2. Orbitals may induce “1D-zation” 
of electronic spectrum

3. There may appear an intermediate 
state - “Molecules-in-solids” on a 
verge of metal-insulator transition
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Orbital-selective effects

• Orbital-selective Mott transition 

• Orbital-selective behavior and (partial) 
suppression of magnetism
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Fig. 6. Results of LDA+DMFT(NCA) calculations obtained
within LDA DOS for Sr2RuO4. The solid line is the DOS for
xz, yz-orbitals and the dashed line for (xy)-orbital. At U =
1.5 eV the xz, yz-orbitals become localized. At U = 2.5 eV
additionally the localization of xy-orbital occurs. The Fermi
energy is defined to be zero and was adjusted to conserve the
number of particles (4 electrons per site).

an expansion around an infinite coordination number and
formulates the problem in terms of an effective Anderson
impurity model which is to be solved self-consistently. In
this way the growth of onsite correlations can be treated
as the Mott transition is approached in a paramagnetic
metal. Recent advances use LDA calculations to determine
the input parameters and a non-crossing approximation
(NCA) to solve the effective Anderson model.

We performed a series of calculations using this LDA
+ DMFT (NCA) approximation scheme [26,27] for the
Sr2RuO4 structure. We increased the value of Hubbard-
U to examine how the onsite correlations grow. Figure 6
shows a series of results for the density of states (DOS) in
the xy- and (xz, yz)-subbands. Since these subbands have
quite different widths, the onset of Mott localization oc-
curs at different critical values of U . Thus we see that as U
is increased through a value of U ≈ 1.5 eV there is a trans-
fer of electrons between the subbands so that the integer
occupancy of 3 electrons and Mott localization appears
in (xz, yz)-subbands while the broader half-filled xy-band
remains itinerant. This unusual behavior is driven by the
combination of the crystal field splitting, as shown in Fig-
ure 2 ((xz, yz) lower) and the narrower bandwidth of the

(xz, yz)-orbitals. A further increase in the value of U to
U ≈ 2.5 eV is required to obtain Mott localization also in
the xy-subband.

These results lead us naturally to the following pro-
posal to explain the anomalous properties in the criti-
cal concentrations x = xc. The electronic configuration
is now (3,1). The 3 electrons in the {xz, yz}-subbands are
Mott localized and have a local moment of S = 1/2. The
remaining valence electrons are in the itinerant xy-band
and is responsible for the metallic character. Thus at this
concentration we have the unusual situation of localiza-
tion in only part of the 4d-orbitals and coexisting localized
and itinerant 4d-orbitals. Note that in the orthorhombic
crystal structure at x = xc the 2 subbands have differ-
ent parity under reflection around a RuO2-plane, similar
to tetragonal Sr2RuO4, which forbids direct hybridization
between the subbands. This proposal explains in a natural
way the unexpected moment of S = 1/2 of the Ru-ions and
the coexistence of metallic behavior and local moments.

Note that the calculations are carried out more con-
veniently by increasing the value of the onsite repulsion,
U which however should not change appreciably with the
concentration, x. In reality it is the bandwidth which is
changing with the decreasing x as the RuO6-octahedra
progressively rotate when Ca is substituted for Sr. The
key result however is the existence of a parameter range
where this partial localization is stable. The fact that we
calculated only for the highly symmetric Sr2RuO4 struc-
ture, rather than the distorted structure is, we believe,
unimportant in establishing this (3,1) configuration as a
stable electronic configuration.

3.2 Region II (0.5 > x > 0.2)

At lower values of x we enter Region II (0.5 > x > 0.2)
characterized by a tilting plus rotation of RuO6-
octahedra. Ca1.8Sr0.2RuO4 has a low-symmetry crystal
structure with the space group P21/c [28], which can be
obtained from the tetragonal I4/mmm structure by ro-
tating and tilting of the RuO6-octahedra similar to pure
Ca2RuO4 but with a smaller tilting angle [28] (Fig. 4c).
There are now two types of in-plane oxygen ions and
two types inequivalent of RuO6-octahedra. The RuO6-
octahedra continue to be elongated in this region so that
the xy-orbital continues to lie higher in energy. The metal-
lic character of the alloys in this region shows that the itin-
erant character of the xy-subband is preserved, although
the bandwidth will be narrowed by the additional tilt-
ing distortion of the RuO6-octahedra. Our conclusion is
that the (3,1) orbital occupation continues to hold also
in Region II with localization of the electrons only in the
{xz, yz}-subband.

3.3 Region I (0.2 > x > 0) Ca-rich

The Ca-rich region is characterized by a transition to an
insulating groundstate and simultaneously a change in the
crystal structure. The S-Pbca structure of the groundstate

Orbital-selectivity: Metal-insulator transition occurs first for the xz/yz orbitals     
                                (Uc=1.5 eV) and only then for the xy orbitals (Uc=2.5 eV)

Geometry: layered structure, common corner sharing
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Table 1. Crystallographic data, which is used for LDA calculations: symmetry group, parameters of lattice, atomic positions
and distance between nearest atoms. Symbol “/”denotes that for this structure corresponding parameter do not exist.

Compound Sr2RuO4 Ca1.5Sr0.5RuO4 Ca1.8Sr0.2RuO4 Ca2RuO4

Symmetry group I4/mmm I41/acd P21/c Pbca

a [Å] 3.8603 5.3195(1) 5.3338(4) 5.6323(3)

b [Å] 3.8603 5.3195(1) 5.3162(4) 11.7463(5)

c [Å] 12.729 25.1734(5) 12.4143(8) 5.3877(2)

Vol. [Å3] 189.69 712.33(2) 352.01(4) 356.45

β [o] / / 90.06(1) /

Ca(Sr) x 0.0 0.0 0.0141(21)/0.4903(24) 0.0593(4)

Ca(Sr) y 0.0 0.25 0.0137(23)/0.5273(23) 0.3525(2)

Ca(Sr) z 0.14684 0.5492(1) 0.3483(2) 0.0021(5)

O1 x 0.0 0.1933(2) 0.1939(6) 0.3005(4)

O1 y 0.0 0.4433(2) 0.3079(6) 0.0272(2)

O1 z 0.3381 0.125 0.0/0.0196(5) 0.1952(4)

O2 x 0.5 0 −0.0344(5) −0.0212(4)

O2 y 0.0 0.25 −0.0064(7) 0.1645(2)

O2 z 0.0 0.4568(1) 0.1649(2) −0.0692(3)

Ru − O1 [Å] 1.930 1.929(1) 1.936(3)/1.926(3) 2.015(2)

1.941(3)/1.952(3) 2.018(2)

Ru − O2 [Å] 2.061 2.059(3) 2.056(3)/2.056(3) 1.972(2)

Ca − O1 [Å] 2.692 2.399(2) 2.316(7)/2.286(10) 2.292(3)

2.994(2) 2.445(8)/2.502(9) 2.433(3)

2.838(11)/2.934(10) 2.565(3)

3.141(10)/3.037(10) 3.313(3)

Ca − O2 [Å] 2.439 2.326(4) 2.294(4)/2.296(4) 2.287(3)

2.737 2.664(1) 2.416(12)/2.488(13) 2.362(3)

2.559(13)/2.444(13) 2.399(3)

2.772(13)/2.845(13) 3.118(3)

2.932(12)/2.912(13) 3.296(3)

the t2g-subshell, which we shall show is the key to under-
standing the electronic properties. The paper concludes
with a discussion and summary of our results. A brief ac-
count of this work has appeared elsewhere [16].

2 End members: Sr2RuO4 and Ca2RuO4

We start with Sr2RuO4 (or x = 2). This is a good metal,
forming a 3-dimensional but anisotropic Landau-Fermi
liquid at low temperatures [17,18]. Sr2RuO4 crystallizes
in the undistorted single-layered K2NiF4-structure [19,20]
(see Fig. 1) with lattice parameters quoted in Table 1. The
RuO6-octahedra are slightly elongated along the c-axis.
The Ru-ions have a formal valence Ru4+ and have a
tetragonal local symmetry. The 2p-O levels are completely
filled, leaving 4 electrons in t2g-subshell of the 4d-Ru lev-
els. The crystal field level scheme that would apply for an
isolated Ru4+-ion is shown in Figure 2. The upper eg-shell
(not included in this figure) is empty. The splitting be-
tween the xy-orbitals and the degenerate {xz, yz}-orbitals
is small. But the xy-orbitals π-hybridize with 2p-orbitals

Fig. 1. Basic crystal structure of isoelectronic alloy series
Ca2−xSrxRuO4.
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Fig. 2. Local electronic structure of isoelectronic alloy se-
ries Ca2−xSrxRuO4. In Ca2RuO4 spin-down electron occupies
xy-orbital (left panel); In Sr2RuO4 spin-down electron occu-
pies xz/yz-orbitals (right panel).
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Fig. 3. Density of t2g states for Sr2RuO4 obtained from LDA
calculation. The solid line is the DOS for the (xz, yz)-orbitals
and the dashed line for the xy-orbital. (n(yz,zx), nxy) indicates
the electron occupation of the orbitals.

of all 4 in-plane O-neighbors while the xz(yz)-orbitals
π-hybridize only with the 2 O-neighbors along the x(y)-
axis. As a result the xy-bandwidth is approximately twice
the {xz, yz} bandwidth (see Fig. 3). The LDA calcula-
tions [8] give 3 Fermi surface sheets, one with essentially
xy and two with mixed {xz, yz} character. Their shape
and volume agree with the de Haas-van Alphen results [7].

The volumes contained by the Fermi surface sheets
give an almost equal occupancy of each of the 3 t2g-
orbitals. If we denote the occupancy of the {xz, yz} and
(xy)-orbitals by (n(α,β), nγ), then Sr2RuO4 has the frac-
tional occupancy (8/3, 4/3). Although there are clear
signs of strong correlations in the enhanced effective mass
(enhancements ∼3−4 [7,21,22]) and low effective Fermi
temperature, the low-temperature behavior is clearly that
of a well-defined Landau-Fermi liquid.

Fig. 4. Scheme of crystal distortion of Ca2−xSrxRuO4. Con-
secutive structural change of the O-octahedra in the alloy series
Ca2−xSrxRuO4. (a) Ideal structure K2NiF4-type (space group
I4/mmm); (b) Space group I41/acd derives from I4/mmm by
rotation around [001]-axis; (c) Space group P21/c described
by the additional rotation around a free axis in the octahe-
dron basis plane. (d) Space group Pbca derived from the ideal
structure by rotation around the [001]- and [110]-axes.

Turning to the other end member, Ca2RuO4 or x = 0,
the substitution of the smaller Ca2+-ion for Sr2+ does not
lead to a uniform shrinking of the lattice parameter. In-
stead the RuO6-octahedra undergo a combined rotation
and tilt (Pbca-structure) so that the Ru-O bond length
is preserved but the Ru-Ru separation contracts. In Fig-
ure 4 we illustrate the relevant distortion of the crystal
structure. This distortion bends the Ru-O-Ru bond an-
gle away from 180o, thereby reducing the bandwidth of
the t2g-orbitals. Also the smaller size of the Ca2+-ion de-
creases the interlayer distance (i.e. the c-axis lattice con-
stant) which results in a change from elongation to a com-
pression of the RuO6-octahedra. This in turn changes the
sign of the energy splitting between the (xy)- and (xz, yz)-
orbitals, so that now the xy-orbital lies lower in energy
(see Fig. 2). The crystal structure is orthorhombic (see
Tab. 1). All RuO6-octahedra are equivalent with a rota-
tion around their long axis (0 0 1) and a tilt around the
diagonal in-plane axis (1 1 0) (Fig. 4d). Note all inplane
O-ions are equivalent in this structure.

Ca2RuO4 is an AF insulator. The LDA+U method [9]
which is based upon spin-orbital unrestricted Hartree-
Fock equation (i.e. a static mean field treatment),

xy

yz,zx

yz,zx

xy

Starting point: Anisimov et al., Eur. Phys. J. B 25, 191 (2002) 
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The wave function obtained from applying the Jastrow 
factor to the ground state of the BCS Hamiltonian of equa-
tion (11) does not describe phases with magnetic long-range 
order; also phases with orbital order cannot be captured. In 
this sense, as discussed in the introduction, our variational 
states are suitable to approach the paramagnetic Mott trans-
ition, driven solely by electronic correlations. We would like 
to mention the fact that orbital order may be obtained when-
ever, in the BCS Hamiltonian (11), the d-wave intra-orbital 
pairing is replaced by an on-site s-wave one:

⎡⎣ ⎤⎦c c c c h.c. .
k

k k k k1 ,1, ,1, 2 ,2, ,2,
† † † †∑ ∆ +∆ +↑ − ↓ ↑ − ↓ (15)

Indeed, this pairing term gives a sizable energy gain for J  =  0, 
due to the appearance of a staggered orbital order, where 
the orbital 1 is (almost) doubly occupied and the orbital 2 is 
(almost) empty on one sublattice and vice-versa for the other 
sublattice. Remarkably, although the BCS Hamiltonian of 
equation (15) is translationally invariant (implying a trans-
lationally invariant ⟩|Φ0 ), density–density correlations com-
puted with the wave function ⟩|Ψ  of equation (10) clearly show 
long-range orbital order. The fact that (correlated) translation-
ally invariant wave functions may show long-range order has 
been already discussed in one-band models, where dimeriza-
tion [31] or charge order [46] can be obtained, and has been 
investigated in detail in [47 ].

Finally, we would like to emphasize the advantages and 
disadvantages of the variational Monte Carlo method. The 
main advantage is that correlated states may be considered 
and treated beyond any perturbative approach and without any 
approximation (e.g. without the Gutzwiller approximation 
[48, 49]). However, in order to compute expectation values 
over variational states, a Monte Carlo sampling is necessary, 
thus leading to statistical errors. The energy computed with 
variational Monte Carlo gives an upper bound to the exact 
value, thus providing a criterion to judge the quality of the 
variational states. Moreover, it is possible to assess quite large 
clusters, with all relevant spatial symmetries (translations, 
rotations, and reflections) preserved. By contrast, it is difficult 
to quantify the systematic errors, which are introduced by the 
choice of the trial state.

3. Results

In this section, we present the variational results obtained by 
using the Jastrow–Slater wave function of equation (10). We 
study the model on two-dimensional square lattices with L 
sites and take 45-degree tilted clusters with L  =  2 l2 sites, l 
being an odd integer. First, we consider the case with J  =  0, 
then we study the effect of a small Hund’s coupling, i.e. 
J/U  =  0.1.

3.1. The case with J  =  0

Let us start by pointing out that, if no inter-orbital coupling 
is present in the Hamiltonian of equation  (3) (i.e. =′U 0 

and = =′J J 0), the OSMI would take place in a quite large 
region of the phase diagram. Indeed, the full Hamiltonian (1) 
would decouple into two single-band Hubbard models, with 
the same Coulomb repulsion U but different hopping ampl-
itudes, e.g. R  <  1. In the non-magnetic sector, the two orbitals 
would have distinct MITs, because ≠R 1. The phase diagram, 
in the (R, U/t1) plane would be very simple: i) a Mott phase for 
>U UMIT, where UMIT is the critical value for the single-band 

model; ii) a metallic phase for <U U RMIT ; and iii) an OSMI 
for < <U R U UMIT MIT. These (trivial) results are obtained 
within the variational wave function (10) by imposing a 
vanishing inter-orbital Jastrow factor in equation  (14), i.e. 
=α βv 0i j,

,  for α β≠ . In this case, = ±U t/ 7.5 0.5MIT 1
3.

The results are substantially modified in the presence of 
the inter-orbital coupling =′U U (J  =  0), which favors the 
metallic phase over a much larger region. Within the vari-
ational approach, this effect is captured by allowing an inter-
orbital Jastrow factor α βvi j,

,  with α β≠  in equation  (14). Our 
results, obtained from calculations on 98 and 162 sites (with 
two orbitals per site) are summarized in figure 1, where we 
report the ground-state phase diagram in the (R, U/t1) plane. 
We notice that, as long as the value of R is sufficiently small, 
e.g. !R 0.5 , the two orbitals stay essentially decoupled, and 
the OSMI may exist at intermediate Coulomb interactions. In 
addition, the critical U leading to the full Mott phase does 
not depend upon R, as expected, since the two orbitals are 
decoupled. By contrast, for !R 0.5 , the OSMI disappears, 
given the effective hybridization between the two orbitals. 
Here, the value of UMIT, at which the Mott state takes place, 
increases monotonically with R. This result is consistent 
with what has been suggested by a Monte Carlo study of the 

Figure 1. Non-magnetic phase diagram of the two-band Hubbard 
model with J  =  0. Three regions can be identified as a function 
of R and U/t1: a metal (where both orbitals are metallic), a full 
Mott insulator (where both orbitals are insulating), and the orbital-
selective Mott insulator (where the orbital with the smallest 
bandwidth is insulating while the one with the largest bandwidth is 
metallic). Continuous lines denote second-order transitions, while 
the dashed line denotes a first-order transition.

3 For the single-band Hubbard model the value of U t/MIT 1  slightly changes 
when allowing d-wave pairing in the variational wave function. The values 
are U t/ 8.5 0.5MIT 1= ±  if we fix 0∆ =  [32], and U t/ 7.5 0.5MIT 1= ±  when a 
finite electron pairing is allowed.
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or slave-boson (SB) [4] techniques, but also within variational 
Monte Carlo (VMC) [5]. For example, whenever magnetic 
phases are not taken into account, DMFT and SB calculations 
have suggested that the Hund’s coupling J has a different effect 
for different filling factors: at half filling, it reduces the value 
UMIT above which the Mott state is stabilized, while, for all the 
other (integer) fillings, the presence of a finite J increases UMIT 
[6, 7]. Another aspect that induces interesting variations in the 
description of the MIT is the existence of different bandwidths 
for degenerate orbitals [8]. In the past, this issue has been 
deeply investigated on two-band models on the square lattice 
with hoppings t1 and t2, both intra- and inter-orbital Coulomb 
repulsions, and possibly also the Hund’s exchange terms, by 
means of DMFT [9–15] and SB or slave-particle approaches 
[11, 16]. In this case, whenever the ratio =R t t/2 1  is suffi-
ciently small (assuming ⩽R 1), the two orbitals have distinct 
MITs by increasing the Coulomb repulsion, which implies 
the existence of an intermediate phase where one orbital is 
insulating and the other one is metallic; this phase has been 
named orbital-selective Mott insulator (OSMI). Instead, when 
the two orbitals have comparable hopping amplitudes, i.e. for 
R larger than a critical value, a single MIT is present, where 
both orbitals undergo a simultaneous transition. Recently, it 
has been proposed that an OSMI can be stabilized also when 
the orbitals have the same bandwidth, provided they have dif-
ferent band dispersions [17]. The presence of a crystal-field 
splitting in the Hamiltonian is also responsible for the appear-
ance of an OSMI [18–20].

The possibility of a phase where some d orbitals give 
rise to delocalized bands while some others remain local-
ized has been discussed in connection with Ca2−xSrxRuO4, 
to explain the coexistence of spin-1/2 moments and metal-
licity at x  =  0.5 [21–23]1. A partial localization of f electrons 
in some Uranium-based heavy-fermion compounds has been 
also proposed to explain the observed Haas–van Alphen fre-
quencies in UPt3 [24]. In this context, hopping anisotropies 
driven by intra-atomic correlations have been proposed as the 
driving mechanism for partial localization [25]. Moreover, the 
orbital-selective Mott transition is conceptually equivalent to 
the Kondo breakdown in heavy-fermion systems [26], where 
the localized f electrons suddenly stop to hybridize with the 
conducting c electrons and no longer contribute to the Fermi 
volume (which is determined by c electrons only) [27]2. In 
this respect, a sign-problem-free model with one itinerant and 
one fully localized band has been studied by Determinant 
Monte Carlo [28].

As mentioned, the issue of MITs in multi-orbital models 
with different hopping amplitudes has been investigated 
mainly by using DMFT, which is exact in infinite dimen-
sions, and SB, which is a simple mean-field approximation; 
by contrast, very few attempts have been done with correlated 
methods that work in finite spatial dimensions [29, 30]. In this 
paper, we examine the phase diagram of the Hubbard model 
in two dimensions, with two degenerate orbitals and ⩽R 1, by 

using correlated variational wave functions that are straight-
forward generalizations of the Jastrow–Slater states that have 
been widely used to study the single-band Hubbard model in 
the recent past [31, 32]. In particular, the Jastrow factor is con-
sidered on top of an uncorrelated state, in order to correctly 
describe the effect of electron-electron interaction. Here, the 
uncorrelated determinant can be factorized into two terms for 
the different orbitals; the crucial ingredient is the inter-orbital 
Jastrow factor that couples densities on different orbitals and 
allows us a reliable determination of the various phases.

The outcomes of our variational approach are in good 
agreement with the ones that have been obtained by DMFT 
[10, 11, 15]. This fact suggests that the (metastable) non-
magn etic phase diagram of the model does not change much 
from infinite to two dimensions. It is also remarkable that rela-
tively simple variational wave functions are able to capture 
most of the important physical properties also in cases where 
more than one orbital is involved, making it possible to use 
a similar technique also for other (more complicated) multi-
orbital systems.

The paper is organized as follows: in section 2, we intro-
duce the two-band Hubbard model and the variational wave 
functions that are used to study it; in section 3, we present the 
numerical results obtained by using variational Monte Carlo 
for J  =  0 and J/U  =  0.1; finally, in section  4 we draw our 
conclusions.

2. Model and method

We consider the two-band Hubbard model defined by:

= +H H H ,kin int (1)

where the kinetic term Hkin  describes hopping processes of 
electrons within the two orbitals:

⟨ ⟩

†∑= − +
α σ

α α σ α σH t c c h.c.,
i j

i jkin
, , ,

, , , , (2)

where †
α σci, ,  ( α σci, , ) creates (destroys) an electron with spin σ 

on site i and orbital α = 1, 2  and αt  is the nearest-neighbor 
hopping amplitude with orbital index α. We define =R t t/2 1  
as the ratio between the two hopping parameters and, without 
loss of generality, we focus on the case with ⩽R 1. In the fol-
lowing, we also fix t1  =  1. We would like to stress the fact that 
the kinetic term is diagonal in the orbital index and, therefore, 
there is no a direct hybridization between different orbitals.

The interaction term includes different contributions:
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where †=α σ α σ α σn c ci i i, , , , , ,  is the electronic density per spin on 
site i and orbital α. These four terms represent the intra-orbital 
interaction U, the inter-orbital interaction ′U , the Hund’s cou-
pling J, and the pair hopping ′J .

1 For a recent discussion on different aspects of the orbital-selective Mott 
transition, see for example [23].
2 For a review on the orbital-selective Mott transition and its relation to the 
Kondo breakdown, see [27].
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or slave-boson (SB) [4] techniques, but also within variational 
Monte Carlo (VMC) [5]. For example, whenever magnetic 
phases are not taken into account, DMFT and SB calculations 
have suggested that the Hund’s coupling J has a different effect 
for different filling factors: at half filling, it reduces the value 
UMIT above which the Mott state is stabilized, while, for all the 
other (integer) fillings, the presence of a finite J increases UMIT 
[6, 7]. Another aspect that induces interesting variations in the 
description of the MIT is the existence of different bandwidths 
for degenerate orbitals [8]. In the past, this issue has been 
deeply investigated on two-band models on the square lattice 
with hoppings t1 and t2, both intra- and inter-orbital Coulomb 
repulsions, and possibly also the Hund’s exchange terms, by 
means of DMFT [9–15] and SB or slave-particle approaches 
[11, 16]. In this case, whenever the ratio =R t t/2 1  is suffi-
ciently small (assuming ⩽R 1), the two orbitals have distinct 
MITs by increasing the Coulomb repulsion, which implies 
the existence of an intermediate phase where one orbital is 
insulating and the other one is metallic; this phase has been 
named orbital-selective Mott insulator (OSMI). Instead, when 
the two orbitals have comparable hopping amplitudes, i.e. for 
R larger than a critical value, a single MIT is present, where 
both orbitals undergo a simultaneous transition. Recently, it 
has been proposed that an OSMI can be stabilized also when 
the orbitals have the same bandwidth, provided they have dif-
ferent band dispersions [17]. The presence of a crystal-field 
splitting in the Hamiltonian is also responsible for the appear-
ance of an OSMI [18–20].

The possibility of a phase where some d orbitals give 
rise to delocalized bands while some others remain local-
ized has been discussed in connection with Ca2−xSrxRuO4, 
to explain the coexistence of spin-1/2 moments and metal-
licity at x  =  0.5 [21–23]1. A partial localization of f electrons 
in some Uranium-based heavy-fermion compounds has been 
also proposed to explain the observed Haas–van Alphen fre-
quencies in UPt3 [24]. In this context, hopping anisotropies 
driven by intra-atomic correlations have been proposed as the 
driving mechanism for partial localization [25]. Moreover, the 
orbital-selective Mott transition is conceptually equivalent to 
the Kondo breakdown in heavy-fermion systems [26], where 
the localized f electrons suddenly stop to hybridize with the 
conducting c electrons and no longer contribute to the Fermi 
volume (which is determined by c electrons only) [27]2. In 
this respect, a sign-problem-free model with one itinerant and 
one fully localized band has been studied by Determinant 
Monte Carlo [28].

As mentioned, the issue of MITs in multi-orbital models 
with different hopping amplitudes has been investigated 
mainly by using DMFT, which is exact in infinite dimen-
sions, and SB, which is a simple mean-field approximation; 
by contrast, very few attempts have been done with correlated 
methods that work in finite spatial dimensions [29, 30]. In this 
paper, we examine the phase diagram of the Hubbard model 
in two dimensions, with two degenerate orbitals and ⩽R 1, by 

using correlated variational wave functions that are straight-
forward generalizations of the Jastrow–Slater states that have 
been widely used to study the single-band Hubbard model in 
the recent past [31, 32]. In particular, the Jastrow factor is con-
sidered on top of an uncorrelated state, in order to correctly 
describe the effect of electron-electron interaction. Here, the 
uncorrelated determinant can be factorized into two terms for 
the different orbitals; the crucial ingredient is the inter-orbital 
Jastrow factor that couples densities on different orbitals and 
allows us a reliable determination of the various phases.

The outcomes of our variational approach are in good 
agreement with the ones that have been obtained by DMFT 
[10, 11, 15]. This fact suggests that the (metastable) non-
magn etic phase diagram of the model does not change much 
from infinite to two dimensions. It is also remarkable that rela-
tively simple variational wave functions are able to capture 
most of the important physical properties also in cases where 
more than one orbital is involved, making it possible to use 
a similar technique also for other (more complicated) multi-
orbital systems.

The paper is organized as follows: in section 2, we intro-
duce the two-band Hubbard model and the variational wave 
functions that are used to study it; in section 3, we present the 
numerical results obtained by using variational Monte Carlo 
for J  =  0 and J/U  =  0.1; finally, in section  4 we draw our 
conclusions.
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where †=α σ α σ α σn c ci i i, , , , , ,  is the electronic density per spin on 
site i and orbital α. These four terms represent the intra-orbital 
interaction U, the inter-orbital interaction ′U , the Hund’s cou-
pling J, and the pair hopping ′J .

1 For a recent discussion on different aspects of the orbital-selective Mott 
transition, see for example [23].
2 For a review on the orbital-selective Mott transition and its relation to the 
Kondo breakdown, see [27].
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or slave-boson (SB) [4] techniques, but also within variational 
Monte Carlo (VMC) [5]. For example, whenever magnetic 
phases are not taken into account, DMFT and SB calculations 
have suggested that the Hund’s coupling J has a different effect 
for different filling factors: at half filling, it reduces the value 
UMIT above which the Mott state is stabilized, while, for all the 
other (integer) fillings, the presence of a finite J increases UMIT 
[6, 7]. Another aspect that induces interesting variations in the 
description of the MIT is the existence of different bandwidths 
for degenerate orbitals [8]. In the past, this issue has been 
deeply investigated on two-band models on the square lattice 
with hoppings t1 and t2, both intra- and inter-orbital Coulomb 
repulsions, and possibly also the Hund’s exchange terms, by 
means of DMFT [9–15] and SB or slave-particle approaches 
[11, 16]. In this case, whenever the ratio =R t t/2 1  is suffi-
ciently small (assuming ⩽R 1), the two orbitals have distinct 
MITs by increasing the Coulomb repulsion, which implies 
the existence of an intermediate phase where one orbital is 
insulating and the other one is metallic; this phase has been 
named orbital-selective Mott insulator (OSMI). Instead, when 
the two orbitals have comparable hopping amplitudes, i.e. for 
R larger than a critical value, a single MIT is present, where 
both orbitals undergo a simultaneous transition. Recently, it 
has been proposed that an OSMI can be stabilized also when 
the orbitals have the same bandwidth, provided they have dif-
ferent band dispersions [17]. The presence of a crystal-field 
splitting in the Hamiltonian is also responsible for the appear-
ance of an OSMI [18–20].

The possibility of a phase where some d orbitals give 
rise to delocalized bands while some others remain local-
ized has been discussed in connection with Ca2−xSrxRuO4, 
to explain the coexistence of spin-1/2 moments and metal-
licity at x  =  0.5 [21–23]1. A partial localization of f electrons 
in some Uranium-based heavy-fermion compounds has been 
also proposed to explain the observed Haas–van Alphen fre-
quencies in UPt3 [24]. In this context, hopping anisotropies 
driven by intra-atomic correlations have been proposed as the 
driving mechanism for partial localization [25]. Moreover, the 
orbital-selective Mott transition is conceptually equivalent to 
the Kondo breakdown in heavy-fermion systems [26], where 
the localized f electrons suddenly stop to hybridize with the 
conducting c electrons and no longer contribute to the Fermi 
volume (which is determined by c electrons only) [27]2. In 
this respect, a sign-problem-free model with one itinerant and 
one fully localized band has been studied by Determinant 
Monte Carlo [28].

As mentioned, the issue of MITs in multi-orbital models 
with different hopping amplitudes has been investigated 
mainly by using DMFT, which is exact in infinite dimen-
sions, and SB, which is a simple mean-field approximation; 
by contrast, very few attempts have been done with correlated 
methods that work in finite spatial dimensions [29, 30]. In this 
paper, we examine the phase diagram of the Hubbard model 
in two dimensions, with two degenerate orbitals and ⩽R 1, by 

using correlated variational wave functions that are straight-
forward generalizations of the Jastrow–Slater states that have 
been widely used to study the single-band Hubbard model in 
the recent past [31, 32]. In particular, the Jastrow factor is con-
sidered on top of an uncorrelated state, in order to correctly 
describe the effect of electron-electron interaction. Here, the 
uncorrelated determinant can be factorized into two terms for 
the different orbitals; the crucial ingredient is the inter-orbital 
Jastrow factor that couples densities on different orbitals and 
allows us a reliable determination of the various phases.

The outcomes of our variational approach are in good 
agreement with the ones that have been obtained by DMFT 
[10, 11, 15]. This fact suggests that the (metastable) non-
magn etic phase diagram of the model does not change much 
from infinite to two dimensions. It is also remarkable that rela-
tively simple variational wave functions are able to capture 
most of the important physical properties also in cases where 
more than one orbital is involved, making it possible to use 
a similar technique also for other (more complicated) multi-
orbital systems.

The paper is organized as follows: in section 2, we intro-
duce the two-band Hubbard model and the variational wave 
functions that are used to study it; in section 3, we present the 
numerical results obtained by using variational Monte Carlo 
for J  =  0 and J/U  =  0.1; finally, in section  4 we draw our 
conclusions.
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interaction U, the inter-orbital interaction ′U , the Hund’s cou-
pling J, and the pair hopping ′J .
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UMIT above which the Mott state is stabilized, while, for all the 
other (integer) fillings, the presence of a finite J increases UMIT 
[6, 7]. Another aspect that induces interesting variations in the 
description of the MIT is the existence of different bandwidths 
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with hoppings t1 and t2, both intra- and inter-orbital Coulomb 
repulsions, and possibly also the Hund’s exchange terms, by 
means of DMFT [9–15] and SB or slave-particle approaches 
[11, 16]. In this case, whenever the ratio =R t t/2 1  is suffi-
ciently small (assuming ⩽R 1), the two orbitals have distinct 
MITs by increasing the Coulomb repulsion, which implies 
the existence of an intermediate phase where one orbital is 
insulating and the other one is metallic; this phase has been 
named orbital-selective Mott insulator (OSMI). Instead, when 
the two orbitals have comparable hopping amplitudes, i.e. for 
R larger than a critical value, a single MIT is present, where 
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has been proposed that an OSMI can be stabilized also when 
the orbitals have the same bandwidth, provided they have dif-
ferent band dispersions [17]. The presence of a crystal-field 
splitting in the Hamiltonian is also responsible for the appear-
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The possibility of a phase where some d orbitals give 
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ized has been discussed in connection with Ca2−xSrxRuO4, 
to explain the coexistence of spin-1/2 moments and metal-
licity at x  =  0.5 [21–23]1. A partial localization of f electrons 
in some Uranium-based heavy-fermion compounds has been 
also proposed to explain the observed Haas–van Alphen fre-
quencies in UPt3 [24]. In this context, hopping anisotropies 
driven by intra-atomic correlations have been proposed as the 
driving mechanism for partial localization [25]. Moreover, the 
orbital-selective Mott transition is conceptually equivalent to 
the Kondo breakdown in heavy-fermion systems [26], where 
the localized f electrons suddenly stop to hybridize with the 
conducting c electrons and no longer contribute to the Fermi 
volume (which is determined by c electrons only) [27]2. In 
this respect, a sign-problem-free model with one itinerant and 
one fully localized band has been studied by Determinant 
Monte Carlo [28].

As mentioned, the issue of MITs in multi-orbital models 
with different hopping amplitudes has been investigated 
mainly by using DMFT, which is exact in infinite dimen-
sions, and SB, which is a simple mean-field approximation; 
by contrast, very few attempts have been done with correlated 
methods that work in finite spatial dimensions [29, 30]. In this 
paper, we examine the phase diagram of the Hubbard model 
in two dimensions, with two degenerate orbitals and ⩽R 1, by 

using correlated variational wave functions that are straight-
forward generalizations of the Jastrow–Slater states that have 
been widely used to study the single-band Hubbard model in 
the recent past [31, 32]. In particular, the Jastrow factor is con-
sidered on top of an uncorrelated state, in order to correctly 
describe the effect of electron-electron interaction. Here, the 
uncorrelated determinant can be factorized into two terms for 
the different orbitals; the crucial ingredient is the inter-orbital 
Jastrow factor that couples densities on different orbitals and 
allows us a reliable determination of the various phases.

The outcomes of our variational approach are in good 
agreement with the ones that have been obtained by DMFT 
[10, 11, 15]. This fact suggests that the (metastable) non-
magn etic phase diagram of the model does not change much 
from infinite to two dimensions. It is also remarkable that rela-
tively simple variational wave functions are able to capture 
most of the important physical properties also in cases where 
more than one orbital is involved, making it possible to use 
a similar technique also for other (more complicated) multi-
orbital systems.

The paper is organized as follows: in section 2, we intro-
duce the two-band Hubbard model and the variational wave 
functions that are used to study it; in section 3, we present the 
numerical results obtained by using variational Monte Carlo 
for J  =  0 and J/U  =  0.1; finally, in section  4 we draw our 
conclusions.
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Mott phase shifts down to lower values of U/t1. This outcome 
can be easily understood from the fact that the Mott state, 
where all electrons are localized, has a large energy gain 
coming from the Hund’s rule, which favors a spin alignment. 
(ii) A finite J coupling also favors the OSMI with respect to 
the metallic phase (i.e. the OSMI can be stabilized for larger 
values of R, up to 0.6, with respect to the J  =  0 case). Within 
DMFT, this fact has been explained by a non-vanishing magn-
etic moment in the metallic phase when J  >  0 [7 ], which may 
gain energy when coupled together with the one present in 
the insulating orbital. Moreover, we have that the critical U 

that leads to the Mott phase for small R is no longer inde-
pendent from R: here, J directly couples the two orbitals and 
the transition point changes from = ±U t/ 4 0.5MIT 1  for ≈R 0 
to = ±U t/ 5.5 0.5MIT 1  for R  =  0.6. This feature is somehow 
missing in the DMFT picture where the transition to the Mott 
phase is almost constant at ∼U t/ 4MIT 1  [15]. We also remark 
that the critical U predicted by our Monte Carlo approach for 
the MIT at R  =  1 is smaller than the slave-boson result, where 

!U W/ 1.3 [51].
One important aspect is that a remarkable energy gain 

in the Mott phase is obtained by considering an on-site and 
inter-orbital triplet pairing ∆⊥

t  in the mean-field Hamiltonian 
(11). This outcome is natural, given the fact that for J  >  0, 
the atomic ground state of equation (3 ) is given by the triplet 
states of equations (4 )–(6).

In figure 4  (upper panel) we report the BCS pairings as a 
function of U/t1 at R  =  0.5. Three different regimes can be 
distinguished by increasing the Coulomb repulsion: a metallic 
phase for ⩽U t/ 41  where all the pairings are negligible, an 
OSMI phase at ≈U t/ 51 , where the largest pairing is the intra-
orbital one on the most correlated band, and the Mott insu-
lator, where in addition to the two d-wave intra-orbital pairings 
there is a large triplet pairing between different orbitals on the 
same site. This latter term encodes the ferromagnetic Hund’s 
coupling part of the Hamiltonian. We finally remark that, in 
contrast to the J  =  0 case, no orbital order is observed for 
J/U  =  0.1, since this ordered state would be incompatible 
with the Hund’s coupling, which favors triplet states.

4. Conclusions

In this paper, we examined a two-band Hubbard model in 
the case where the two orbitals have different hopping ampl-
itudes, with particular emphasis on the existence of the orbital 
selective Mott insulator, that emerges in the non-magnetic 
sector. In the recent past, this topic has been widely addressed 
by mean-field methods, including SB approaches and DMFT, 
which is exact in infinite dimensions. Here, we made use of 
an alternative approach, based on variational wave functions 
with Jastrow terms, in order to capture long-range spatial cor-
relations in two dimensions, thus providing a complemen-
tary approach to DMFT. The first outcome of our study is 
that the non-magnetic phase diagram does not qualitatively 
change when going from infinite to two spatial dimensions: 
we confirm the existence of the OSMI phase already for the 
J  =  0 case; in addition we verify that the Hund’s coupling is 
favoring the full Mott phase over the OSMI and the OSMI 
over the metal. The second outcome is more technical and 
refers to the fact that relatively simple variational wave func-
tions are able to capture the important physical properties of 
multi-band Hubbard models, with different kinds of interac-
tions. In particular, we highlighted the role of the inter-band 
Jastrow factor in properly describing the orbital hybridization 
and the role of the triplet inter-orbital pairing in capturing the 
effect of the Hund’s coupling.

Our variational states can be naturally extended to describe 
three- or even five-orbital models, which are suitable to 

Figure 5. The same as in figure 1 but with J/U  =  0.1.

Figure 6. The same as in figure 2  but with J/U  =  0.1.
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The situation we consider is indeed very general, mak-
ing our OSMT probably the most common in nature. It is
well known that, e.g., a cubic crystal field splits the five d
obitals in two groups, t2g and eg, respectively, originating
three and two bands. Further lowering of the symmetry can
induce further splittings.

We investigate the simplest realization of such a mecha-
nism, namely, a system of three bands (the minimal situ-
ation in order to have manifolds of different degeneracy
after the splitting, i.e., two degenerate bands and one lifted
by the crystal field) of equal bandwidth with 4 electrons per
site. In absence of the crystal-field splitting each band will
be populated by 4=3 electrons. If we continuously lift one
of the bands to higher energy, the electrons will gradually
move to the lower levels. Therefore the density of the lifted
band will decrease from 4=3 eventually reaching 1, becom-
ing half filled. Then, if the interaction strength is enough to
localize the half-filled band, but it is smaller than the
critical value for the remaining three electrons hosted by
the lower two bands, we can expect an OSMT.

A first step in this direction has been taken in Ref. [9],
where an OSMT has been reported for twowide degenerate
bands and a narrower one lifted in energy, with 4 electrons
per site. Unfortunately in that model both the difference in
bandwidth and the lifted degeneracy are at work and none
could be singled out as the driving one.

The electrons in the three bands are coupled via a local
SUð2Þ invariant interaction. The Hamiltonian reads

H¼ $ t
X

hiji;m!

ðdyim!djm! þ H:c:Þ þ
X

i;m!

"md
y
im!dim!
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X

i;m

nim"nim# þ
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U0 $ J

2

" X

i;m>m0
nimnim0

$ J
X

i;m>m0
½2Sim ' Sim0 þ ðdyim"d

y
im#dim0"dim0# þ H:c:Þ(:

(1)

Here di;m! is the destruction operator of an electron of spin

! at site i in orbital m, and nim! ) dyim!dim!, nim )P
!d

y
im!dim!, Sim is the spin operator for orbital m at site

i, t is the nearest-neighbor hopping (denoted in the sum by
h i), "m is the bare energy level in orbital m. U and U0 ¼
U $ 2J are intra- and interorbital repulsions and J is the
Hund’s coupling. The densities of states of the three bands
are semicircular of half-bandwidth D.

We study this three-band model assuming that two bands
have the same energy ("2 ¼ "3) and one is lifted by a
crystal-field splitting ! ) "1 $ "2 > 0. The !< 0 case,
which is believed to be relevant to Sr2$ xCaxRuO4 has been
studied in [10] and does not lead to an OSMT. Yet, it has
been recently proposed that a similar mechanism to what
we present here applies in Sr0:2Ca1:8RuO4 even if !< 0
thanks to a doubling of the unit cell [11].

We use two local mean-field approximations: the faster
and computationally inexpensive slave-spin mean-field
[5,23] (SSMF) for surveying the phase diagram and

DMFT, solved with exact diagonalization (ED), for more
accurate and aimed calculations. In Fig. 1 we show the
SSMF phase diagram obtained adjusting ! to have 1 elec-
tron in the lifted band, and 1.5 electrons in each of the
degenerate ones. Indeed, an orbitally selective Mott phase
(OSMP) is found for a large zone of the parameters U and
J. It is worth noting that a finite Hund’s coupling is
needed to stabilize the OSMP, while for small J a direct
transition from a metal to a Mott insulator is found. The
indications of SSMF are confirmed by the more accurate
DMFT, as shown in Fig. 2, where we plot Z# ¼
ð1 $ Im"#ði!0Þ=!0Þ$ 1 ["#ð!Þ being the self-energy for
the band #], which measures the low-frequency spectral
weight associated with metallic behavior. Z1 for the lifted
band vanishes at a critical U, signaling the localization of
this band, while the same quantity is still finite for the two
lower bands. We notice that ED calculations suffer from
truncation effects. Analyzing these effects we find that the
actual Uc will be higher than what shown in the figure and
we estimate the DMFT value of Uc ’ 2:5D, for J=U ¼
0:25. Comparison with SSMF confirms the reliability of
the latter approach, which only slightly overestimates Uc.
The phase diagram clearly shows that increasing J=U

increases the region of the OSMP. We can gain more
insight analyzing the orbital fluctuations hn1n2i $ hn1i *
hn2i. In order to have an OSMT this quantity should be
small, signaling a decoupling of the bands which opens the
way for a different behavior between them, and the local-
ization of the half-filled one. As shown in the inset of
Fig. 2, for J ¼ U ¼ 0 the orbitals are uncorrelated.
Increasing the two quantities, U initially prevails, leading
to an increased orbital correlation. Further increasing U
and J makes the electrons more and more localized. In this
regime the effect of J becomes predominant [24], and it
reduces the orbital correlations. The role of J can be
understood in the atomic limit: increasing J enhances the
distance between the lowest-lying high-spin state in which

FIG. 1 (color online). Phase diagram for fixed populations
nm ¼ ð1; 1:5; 1:5Þ (obtained by adjusting the crystal field !)
within Slave-spin mean-field. Inset: phase diagram for fixed total
filling n ¼ 4 as a function of U and ! at J=U ¼ 0:25. Dashed
lines: modification of this diagram under a small splitting
(+ 0:4=D) of the two degenerate bands.
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! at site i in orbital m, and nim! ) dyim!dim!, nim )P
!d

y
im!dim!, Sim is the spin operator for orbital m at site

i, t is the nearest-neighbor hopping (denoted in the sum by
h i), "m is the bare energy level in orbital m. U and U0 ¼
U $ 2J are intra- and interorbital repulsions and J is the
Hund’s coupling. The densities of states of the three bands
are semicircular of half-bandwidth D.

We study this three-band model assuming that two bands
have the same energy ("2 ¼ "3) and one is lifted by a
crystal-field splitting ! ) "1 $ "2 > 0. The !< 0 case,
which is believed to be relevant to Sr2$ xCaxRuO4 has been
studied in [10] and does not lead to an OSMT. Yet, it has
been recently proposed that a similar mechanism to what
we present here applies in Sr0:2Ca1:8RuO4 even if !< 0
thanks to a doubling of the unit cell [11].

We use two local mean-field approximations: the faster
and computationally inexpensive slave-spin mean-field
[5,23] (SSMF) for surveying the phase diagram and

DMFT, solved with exact diagonalization (ED), for more
accurate and aimed calculations. In Fig. 1 we show the
SSMF phase diagram obtained adjusting ! to have 1 elec-
tron in the lifted band, and 1.5 electrons in each of the
degenerate ones. Indeed, an orbitally selective Mott phase
(OSMP) is found for a large zone of the parameters U and
J. It is worth noting that a finite Hund’s coupling is
needed to stabilize the OSMP, while for small J a direct
transition from a metal to a Mott insulator is found. The
indications of SSMF are confirmed by the more accurate
DMFT, as shown in Fig. 2, where we plot Z# ¼
ð1 $ Im"#ði!0Þ=!0Þ$ 1 ["#ð!Þ being the self-energy for
the band #], which measures the low-frequency spectral
weight associated with metallic behavior. Z1 for the lifted
band vanishes at a critical U, signaling the localization of
this band, while the same quantity is still finite for the two
lower bands. We notice that ED calculations suffer from
truncation effects. Analyzing these effects we find that the
actual Uc will be higher than what shown in the figure and
we estimate the DMFT value of Uc ’ 2:5D, for J=U ¼
0:25. Comparison with SSMF confirms the reliability of
the latter approach, which only slightly overestimates Uc.
The phase diagram clearly shows that increasing J=U

increases the region of the OSMP. We can gain more
insight analyzing the orbital fluctuations hn1n2i $ hn1i *
hn2i. In order to have an OSMT this quantity should be
small, signaling a decoupling of the bands which opens the
way for a different behavior between them, and the local-
ization of the half-filled one. As shown in the inset of
Fig. 2, for J ¼ U ¼ 0 the orbitals are uncorrelated.
Increasing the two quantities, U initially prevails, leading
to an increased orbital correlation. Further increasing U
and J makes the electrons more and more localized. In this
regime the effect of J becomes predominant [24], and it
reduces the orbital correlations. The role of J can be
understood in the atomic limit: increasing J enhances the
distance between the lowest-lying high-spin state in which

FIG. 1 (color online). Phase diagram for fixed populations
nm ¼ ð1; 1:5; 1:5Þ (obtained by adjusting the crystal field !)
within Slave-spin mean-field. Inset: phase diagram for fixed total
filling n ¼ 4 as a function of U and ! at J=U ¼ 0:25. Dashed
lines: modification of this diagram under a small splitting
(+ 0:4=D) of the two degenerate bands.
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OSM transition is possible  
even in the case of the same bandwidths

The situation we consider is indeed very general, mak-
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2. Orbital-selective effects 
Orbital-selective Mott (OSM) transition

JH suppresses orbital fluctuations
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Double exchange is a natural realization of  
the orbital-selectivity

3. Модельные подходы 76

Рис. 3.18: Cхема иллюстрируящая ФМ природу двойного обмена. Если (a)
локализованные спины упорядочены ФМ, то делокализованному
электрону легко перескакивать с узла на узел. В АФМ случае (b)
это сделать гораздо тяжелее из-за сильного внутриатомного об-
менного взаимодействия JH . Конкуренция тенденции к установ-
лению АФМ упорядочения для локализованных спинов и пониже-
нием энергии за счет перескоков может привести к стабилизации
(c) неколлинеарного магнитного упорядочения.

персией16:

"(k) = �2teff
⇣
Cos(kx) + Cos(ky) + Cos(kz)

⌘
. (3.78)

При небольшом числе допированных носителей (x), они концентрируются на
дне зоны (т.е. вблизи kx = ky = kz = 0) и их вклад в полную энергию составит
приблизительно EDE = �6txCos(✓/2).

Пусть обменное взаимодействие между локализованными спинами будет
антиферромагнитным (наиболее часто встречающийся случай для оксидов пе-
реходных металлов, см. § 3.3). Тогда понижение энергии за счет перескоков
добавленных в систему электронов будет конкурировать с АФМ упорядоче-
нием локализованных спинов. В квазиклассическом приближении:

E(✓) = 2JS2Cos(✓)� 6txCos(✓/2). (3.79)

Минимизация этой зависимости дает:

Cos(✓/2) =
3tx

4JS2
. (3.80)

16 В данной модели в качестве базисных используются орбитали  n, центрированные на
узлах кристаллической решетки (нумеруются индексом n), энергии которых известны (на-
пример из решения атомной задачи) h n|H| ni = E. Рассмотрим для простоты 1D цепочку,
в которой h n±1|H| ni = t, тогда выполняя Фурье преобразование легко видеть, что

h k|H| ki =
1

N

X

mn

e
i(n�m)kah m|H| ni = E � 2tcos(ka), (3.77)

где a - параметр решетки.

AFM

Itinerant electrons

Localized electrons

No energy gain due 
to hoppings!
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нием энергии за счет перескоков может привести к стабилизации
(c) неколлинеарного магнитного упорядочения.

персией16:

"(k) = �2teff
⇣
Cos(kx) + Cos(ky) + Cos(kz)

⌘
. (3.78)

При небольшом числе допированных носителей (x), они концентрируются на
дне зоны (т.е. вблизи kx = ky = kz = 0) и их вклад в полную энергию составит
приблизительно EDE = �6txCos(✓/2).

Пусть обменное взаимодействие между локализованными спинами будет
антиферромагнитным (наиболее часто встречающийся случай для оксидов пе-
реходных металлов, см. § 3.3). Тогда понижение энергии за счет перескоков
добавленных в систему электронов будет конкурировать с АФМ упорядоче-
нием локализованных спинов. В квазиклассическом приближении:

E(✓) = 2JS2Cos(✓)� 6txCos(✓/2). (3.79)

Минимизация этой зависимости дает:

Cos(✓/2) =
3tx

4JS2
. (3.80)

16 В данной модели в качестве базисных используются орбитали  n, центрированные на
узлах кристаллической решетки (нумеруются индексом n), энергии которых известны (на-
пример из решения атомной задачи) h n|H| ni = E. Рассмотрим для простоты 1D цепочку,
в которой h n±1|H| ni = t, тогда выполняя Фурье преобразование легко видеть, что

h k|H| ki =
1

N

X

mn

e
i(n�m)kah m|H| ni = E � 2tcos(ka), (3.77)

где a - параметр решетки.

FM

�EDE ⇠ �Wx

Examples:

CrO2, CMR  
manganates etc.

Proposed: 
  C. Zener on examples of Mn-Mn dimer C. Zener, Phys. Rev. 82, 403 (1951)

      (1) metallic system;  
      (2) noninteger number of electrons per site;  
      (3) there are two types carriers: itinerant and localized.

Let’s consider

2. Orbital-selective effects 
Orbital-selective Mott (OSM) transition
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2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism

mobile 
electron -tc

c
d

“FM” Stot=3/2
localized 
electrons

E.g. 1.5 electron per site

For an isolated dimer:              “double exchange” = maximum Stot state

Maximum gain in Hund’s energy,

Important ingredients: • two sets of orbitals -  
   localized “d ” and molecular “c”

•   JH ! 1

Double exchange  
in case of an  

isolated dimer
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Isolated dimer 
(e.g. 1.5 e/site)

-tc

c
d

4d-5d transition  
metal oxides

The double exchange (maximum Stot) state can be suppressed!

Max. S

“Double exchange”

3d transition metal  
oxides

Stot=3/2

-tc

c
d

“Molecular-Orbital state”

Stot=1/2

JH ! 1

Competition

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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Exact diag. (T=0) for a dimer

4 6 8 10 12 14
U/tc
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DE state, Stot=3/2

MO state
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d
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d d
ccStot=1/2
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†
2d1 +H.c.
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X

j
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U
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0
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X

j
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0i�

(Umm
0
� J
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0
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)n�

j,m
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�
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H = H0 +HU

Transition from molecular-orbital to 
double exchange regime 

is discontinues

Max. S

c
d

-tc

-td

Dimer: 2 orbitals/site;  
            1.5 electrons/site

Model:
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(Dated: February 3, 2016)

I. DETAILS OF THE EXACT DIAGONALIZATION AND CLUSTER DMFT

In order to study suppression of the DE we considered dimers and dimerized chain, described by the Hamiltonian,
which reads as

H = H0 +Hinter +HU , (1)

where H0 noninteracting intra-dimer part, Hinter inter-dimer part (only for chain) and HU is the interaction, defined
by intra-orbital Hubbard repulsion U and Hund’s rule exchange JH :

H0 =
X

i

⇣
tcc

†
i,2ci,1 + tdd

†
i,2di,1 +H.c.

⌘
,

Hinter =
X

i

⇣
t
0
cc

†
i,2c(i+1),1 + t

0
dd

†
i,2d(i+1),1 +H.c.

⌘
,

HU =
1

2

X

j
mm0�

U
mm0

n
�
j,mn

��
j,m0 +

1

2

X

j
hmm0i�

(Umm0
� J

mm0

H )n�
j,mn

�
j,m0 .

Here, m,m
0 are orbital, and � - spin indexes, 1 and 2 are labels of two ions in a dimer, i - numerates dimers and j -

all sites in the lattice. In numerical calculations we used the Kanamori parametrization of Umm0
and J

mm0

H , so that
Umm = U , Umm0 = U � 2J , if m 6= m

0, and Jmm0 = J .
We used the exact diagonalization technique to treat a dimer and cluster DMFT[1] with Hirsch-Fye solver [2] to

study dimerized chain.

II. DETAILS OF THE ab initio CALCULATIONS

All ab initio band structure calculations were performed within the generalised gradient approximation (GGA)[3]
and full-potential linearized augmented plane wave method using Wien2k code [4]. The crystal structure of Nb2O2F3

were taken from Ref. [5] and for Ba5AlIr2O11 from Ref. [6]. The parameter of the plane-wave expansion was chosen
to be RMTKmax = 7, where RMT is the smallest atomic sphere radii and Kmax - plane wave cut-o↵.

Mu�n-tin (MT) radii were chosen to be RNb = 1.95, RF = 1.83, and RO = 1.73 a.u. for Nb2O2F3 and RIr = 1.91
a.u., RBa = 2.35 a.u., RAl = 1.63 a.u., and RO = 1.63 a.u. for Ba5AlIr2O11. We used following k�meshes for the
Brillouin-zone integration: 7⇥6⇥7 for Nb2O2F3 and 3⇥10⇥5 for Ba5AlIr2O11.

III. Nb2O2F3

The crystal structure of Nb2O2F3 consists of Nb-Nb dimers, which are formed by two NbO3F3 octahedra sharing
their edges, see Fig. 1(a). Nb ions are inside octahedra formed by O (red balls) and F (grey balls) ions. As a result

⇤Electronic address: streltsov@imp.uran.ru

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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t’ t’
Dimerized chain:

tc, td

Each site has two orbitals:   “c” electrons are “hopping”

tc, td tc, td

“d” electrons are “localized”

Model: Hubbard model

Supplementary materials for the paper “Covalent bonds
against magnetism in 4d and 5d compounds”

Sergey V. Streltsov1,2 & Daniel I. Khomskii3

1Institute of Metal Physics, S. Kovalevskoy St. 18, 620990 Ekaterinburg, Russia

2Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia

3II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany

Details of the exact diagonalization and cluster DMFT

In order to study suppression of the DE we considered dimers and dimerized chain, described by

the Hamiltonian, which reads as

H = H0 +Hinter +HU , (1)

where H0 noninteracting intra-dimer part, Hinter inter-dimer part (only for chain) and HU is the

interaction, defined by intra-orbital Hubbard repulsion U and Hund’s rule exchange JH :

H0 =
X

i

⇣
tcc

†
i,2ci,1 + tdd

†
i,2di,1 +H.c.

⌘
,

Hinter =
X

i

⇣
t
0
cc

†
i,2c(i+1),1 + t

0
dd

†
i,2d(i+1),1 +H.c.

⌘
,

HU =
1
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X

j
mm0�

U
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n
�
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��
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2
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j
hmm0i�
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mm0

H )n�
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�
j,m0 .

Here, m,m
0 are orbital, and � - spin indexes, 1 and 2 are labels of two ions in a dimer, i - nu-

merates dimers and j - all sites in the lattice. In numerical calculations we used the Kanamori
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Details of the exact diagonalization and cluster DMFT

In order to study suppression of the DE we considered dimers and dimerized chain, described by

the Hamiltonian, which reads as

H = H0 +Hinter +HU , (1)

where H0 noninteracting intra-dimer part, Hinter inter-dimer part (only for chain) and HU is the

interaction, defined by intra-orbital Hubbard repulsion U and Hund’s rule exchange JH :

H0 =
X

i

⇣
tcc

†
i,2ci,1 + tdd

†
i,2di,1 +H.c.

⌘
,

Hinter =
X

i

⇣
t
0
cc

†
i,2c(i+1),1 + t

0
dd

†
i,2d(i+1),1 +H.c.

⌘
,

HU =
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2

X
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2
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j
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Here, m,m
0 are orbital, and � - spin indexes, 1 and 2 are labels of two ions in a dimer, i - nu-

merates dimers and j - all sites in the lattice. In numerical calculations we used the Kanamori

1

Solver: Dynamical mean field theory (DMFT)

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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Technical details:
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
JH/tc

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

sq
rt(
<S

z2 >
)

Double exchange

td=0.1eV, tc=0.6eV, U=5eV, t’=0.5td  
• Realistic values for 4d/5d TMO

• HF-QMC, T= 1100 K 
• 2 bands; 1.5 electrons/site;

         Streltsov & Khomskii PNAS 113, 10491 (2016) 
 

Molecular-orbital/Double exchange  
transition: smooth crossover

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism

Molecular-orbital
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Suppression of magnetic moments in Y5Mo2O12

Crystal structure: dimerized chains Why so small ?

JSSC 60, 332 (1985)

/dimer    Mo4.5+: 4d1.5                                          /dimer

c
d

-tc

-td

S=1/2 per dimer

Molecular-orbital state is realized !
“c” electrons (xy orbitals) form MO 
“d” (xz/yz orbitals) retain local moments

/dimer

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism



51

Elec. conf.
Ba3NdRu2O9      4d3.5   

Ba3LaRu2O9       4d3.5   

Ba3YRu2O9        4d3.5   

Theoretical

/Ru

/Ru

/Ru

Experimental
/Ru

/Ru

/Ru

(basing on ionic conf.)

Dimers made of the edge sharing  
RuO6 octahedra

Dimers are not “well isolated” 
(“strongly coupled dimers”)

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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Standard explanations

1. Hybridization effects - oxidation state of Ru is the same;
2. Spin-orbit coupling - (1) RuO6 octahedra are strongly distorted; 
                                       (2) GGA+SOC shows no orbital moment;

does NOT work!

Elec. conf.
Theoretical

Experimental

Ba3NdRu2O9      4d3.5   /Ru/Ru

Ba3LaRu2O9       4d3.5   /Ru/Ru

Ba3YRu2O9        4d3.5   /Ru/Ru

(basing on ionic conf.)

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
JH/tc

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

sq
rt(
<S

z2 >
)

Double 
exchange

Molecular - 
orbital

Elec. conf.
Theoretical

Experimental

Ba3NdRu2O9      4d3.5   /Ru/Ru

Ba3LaRu2O9       4d3.5   /Ru/Ru

Ba3YRu2O9        4d3.5   /Ru/Ru

(basing on ionic conf.)

Are we in the crossover  
MO/DE regime? 

Details of the crystal structure  
defines tc/td/t’/JH and what portion  

of magnetic moment is suppressed. 

2. Orbital-selective effects 
Orbital-selective behavior and suppression of magnetism
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1. Directional character of orbitals may 
result in a very different bandwidths (for 
different orbitals) and as a result to the 
orbital-selective Mott transition

2. Orbital-selective effects may 
strongly suppress magnetism 
(especially in dimerized systems)

2. Orbital-selective effects 
Take-home messages

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
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sq
rt(
<S

z2 >
) c

dDouble 
exchange

c
dMolecular - 

orbital
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Spin-orbit related effects

• jeff =1/2 and the spin-orbit-assisted Mott state

• Spin-orbit coupling versus Jahn-Teller effect

• Kitaev exchange



3. Spin-orbit related effects 
Introduction: SOC for d-orbitals, basics

Spin-orbit coupling (SOC):

Thus, if                 large enough
3d 1-2 eV
4d 3-4 eV
5d 4-4.5 eV

U
3-10 eV
2-5 eV
1-3 eV

At least 5d transition metals can be described with leff = 1 (jeff=1/2 and 3/2)
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HSOCdtsk = LxSxd + LySyd + LzSzd;HSOCdtsk = LxSxd + LySyd + LzSzd;HSOCdtsk = LxSxd + LySyd + LzSzd;

HSOCdtsk//MatrixFormHSOCdtsk//MatrixFormHSOCdtsk//MatrixForm
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HSOCptsk = �(LxSxp + LySyp + LzSzp);HSOCptsk = �(LxSxp + LySyp + LzSzp);HSOCptsk = �(LxSxp + LySyp + LzSzp);

HSOCt2g = ��(LxSxp + LySyp + LzSzp);HSOCt2g = ��(LxSxp + LySyp + LzSzp);HSOCt2g = ��(LxSxp + LySyp + LzSzp);

Print[“Hamiltonian=”,HSOCptsk//MatrixForm]Print[“Hamiltonian=”,HSOCptsk//MatrixForm]Print[“Hamiltonian=”,HSOCptsk//MatrixForm]

Eigenvalues[HSOCt2g]Eigenvalues[HSOCt2g]Eigenvalues[HSOCt2g]

Eigenvectors[HSOCt2g]//MatrixFormEigenvectors[HSOCt2g]//MatrixFormEigenvectors[HSOCt2g]//MatrixForm

j32u = Normalize[Eigenvectors[HSOCt2g][[1]]];j32u = Normalize[Eigenvectors[HSOCt2g][[1]]];j32u = Normalize[Eigenvectors[HSOCt2g][[1]]];

j32d = Normalize[Eigenvectors[HSOCt2g][[2]]];j32d = Normalize[Eigenvectors[HSOCt2g][[2]]];j32d = Normalize[Eigenvectors[HSOCt2g][[2]]];

(*je↵ = 1/2 : �yz(up) + ixz(up) + xy(dn)*)(*je↵ = 1/2 : �yz(up) + ixz(up) + xy(dn)*)(*je↵ = 1/2 : �yz(up) + ixz(up) + xy(dn)*)

Hamiltonian=

0

BBBBBB@

0 � i�
2 0 0 0 �

2
i�
2 0 0 0 0 � i�

2
0 0 0 ��

2
i�
2 0

0 0 ��
2 0 i�

2 0
0 0 � i�

2 � i�
2 0 0

�
2

i�
2 0 0 0 0

1

CCCCCCA

�
�,�,��

2 ,�
�
2 ,�

�
2 ,�

�
2

 

0

BBBBBBBBBBBBBB@

�1 i 0 0 0 1

0 0 �i �i 1 0

1 0 0 0 0 1

0 0 i 0 1 0

0 0 �1 1 0 0

�i 1 0 0 0 0

1

CCCCCCCCCCCCCCA

3

x y z x y z

Orbital moment for eg is quenched => we consider t2g-ions
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3. Spin-orbit related effects 
Introduction: one electron scheme of d-levels splitting 

d

t2g

eg

DCFS >>l

d

DCFS << l
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3. Spin-orbit related effects 
Spin-orbit-assisted Mott state

!ð! Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
ijyziÞ=
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and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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Figure 10: Scheme, illustrating level splitting in the presence
of cubic crystal-filed (CF) and of spin-orbit coupling.

according to the first Hund’s rule, see e.g.[1], one first
forms the total spin S =

P
i si, and the total orbital mo-

ment L =
P

i li, and then uses the spin-orbit interaction
for these total moments

HSOC = �LS. (19)

The energy contribution due to the SOC can be expressed
via the total moment J, defined as J = L+ S:

ESOC = h�LSi = �

2
(J(J + 1)� L(L+ 1)� S(S + 1)) ,

since J2 = L2 + S2 + 2LS. The SOC constant then is
� = ±⇣/2S, where one takes plus for the less-than-half-
filled shells and minus for th more-than-half-filled shells.
This finally leads to the second (or third) Hund’s rule: for
the less-than-half-filled shells (� > 0) we have a normal
order of multiplets (the terms with the smaller J have
lower ESOC), and the “inverted” multiplet order (the
lowest multiplets are those with the maximum J) for the
more-than-half-filled shells.

When dealing with the e↵ective moment l = 1 and the
e↵ective SOC for the t2g shell, the sign of �eff turns out
to be opposite [1, 60], so that we have a reversed multi-
plet order: multiplets with the larger J lie lower in energy
for the less-than-half-filled t2g shells, and we have a nor-
mal order for the more-than-half-filled shells. It is this
factor that finally gives an electron-hole asymmetry for
this case. Thus according to these rules for a d

1 config-
uration, with L = 1 and S = 1/2, the possible values of
the total moment are J = 1/2 and J = 3/2, and accord-
ing to the rules formulated above the lowest multiplet is
the quartet J = 3/2. However for five d-electrons (one
hole in the t2g shell) the multiplet order will be inverted,
so that the ground state of such ion would be a doublet
J = 1/2. This is the state often invoked nowadays for the
compounds containing Ir4+ (t52g), see discussion below.

This treatment is applicable for light elements, with
relatively weak SOC. In the opposite limit of very strong
SOC, realized for example for rare earths of for actinides,
one usually uses another approximation – the so called jj

coupling scheme (realized if the SOC constant � is larger
than the Hund’s exchange JH). In this scheme one first

couples for each electron its spin and angular moments
to the total moment of an electron,

ji = li + si, (20)

and then one forms the total moment out of those mo-
ments for individual electrons:

J =
X

i

ji, (21)

and then forms a total moment J out of these j’s for
indvidual electrons. In this scheme a strong SOC splits
the one-electron d-state into j = 5/2 and j = 3/2, and
then the other interactions may lift the degeneracy of
these levels. Note, that by this we violate the first Hund’s
rule, first of all taking care of the spin-orbit coupling
(assumed to be stronger than the Hund’s exchange). A
general scheme of the d-levels splittings in the presence
of crystal-field and SOC is shown in Fig. 10.
The 3d compounds are definitely better described by

the LS (Russel-Saunders) coupling scheme, and probably
so are the most of 4d systems. But with the 5d materials
the situation is not so clear. It might be that they are
already “in between” the LS and jj couplings.
For some d counts these two pictures give qualitatively

similar results, but for some others the conclusions might
be di↵erent. Thus, for example, for the low-spin d

4 con-
figuration in the LS scheme L = 1, S = 1, and the ground
state should be J = 0 singlet. The same conclusion would
one get in the jj scheme. In this scheme we have single-
particle states in the form of low-lying j = 3/2 quartet
and higher-lying j = 1/2 doublet, see Fig. 9. Four d-
electrons would then occupy all states of the 3/2 quartet,
i.e. the total J would be also zero.
The same is true for the most widely discussed case of

d
5 occupation, as in Ir4+. In the LS coupling scheme, as

mentioned above, we would have L = 1, S = 1/2, and the
ground state woud be a Kramers doublet J = 1/2. In the
jj scheme we should fill the levels shown in Fig. 9 by five
electrons, which would completely fill the lowest quartet,
and the fifth electron will be in the j = 1/2 doublet, as in
the LS scheme. But for example the situation would be
di↵erent for d3 occupation. In the LS scheme these three
electrons would fill all t2g levels (the high spin state), so
that the net orbital moment would be L = 0, and what
remains would be a pure spin S = 3/2 state, without any
influence of the SOC. In the jj scheme we also would
have three electrons on a quartet, but not a quartet S =
3/2, but j = 3/2 quartet, Fig. 9. Consequently the form
of corresponding wave functions, the values of g factors
etc., would be di↵erent, see e.g. [62]. Very recently these
e↵ects were indeed observed for 5d3 systems Ca3LiOsO6

and Ba2YOsO6[63].
It is also worth mentioning that all the band struc-

ture calculations based on the density functional theory
(DFT)[64] are in fact dealing with one-electron states
(one Slater determinant). In this sense they describe the
SOC in the jj scheme, which also operates with one-
electron states, before combining them into a total J

!ð! Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
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and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
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angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
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(e) 5d level splittings by the crystal field and SO coupling.
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3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange

1) Hopping only via ligand p-orbitals 
2) SOC is the strongest coupling 
3) Conf: d5 (jeff=1/2 is half-filled)

Let’s consider

txy/xy =0; 
(txy/xz =0;  txy/yz =0; tyz/yz =0; txz/xz =0;)   
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Let’s consider

txy/xy =0; 
(txy/xz =0;  txy/yz =0; tyz/yz =0; txz/xz =0;)   
tyz/xz =t; tyz/xz =t;
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a b

There will be only higher order  
(FM) terms!

Strong SOC =>

with K < 0 (FM)
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3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange

1) Hopping only via ligand p-orbitals 
2) SOC is the strongest coupling 
3) Conf: d5 (jeff=1/2 is half-filled)
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Exactly solvable

Kitaev Ann. Phys. 321, 2 (2006)

Jackeli-Khaliullin: d5 systems on honeycomb 
lattice can be a realization of the Kitaev model

Highly frustrated model (spin liquid GS)

G. Jackeli and G. Khaliullin, PRL 102, 17205 (2009).

3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange

Possible physical  
realizationes of Kitaev model:
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TABLE II. Summary of magnetic parameters for honeycomb
Na2IrO3, ↵-Li2IrO3, Li2RhO3, and ↵-RuCl3. The latter ma-
terial is discussed in section III B. See text for relevant refer-
ences.

Property Na2IrO3 ↵-Li2IrO3 Li2RhO3 ↵-RuCl3

µe↵ (µB) 1.79 1.83 2.03 2.0 to 2.7

⇥iso (K) ⇠ �120 �33 to �100 ⇠ �50 ⇠ +40

⇥ab (K) -176 ⇥ab > ⇥c � +38 to +68

⇥c (K) �40 � � �100 to �150

TN (K) 13� 18 ⇠ 15 (6) 7 to 14

Order Zigzag Spiral Glassy Zigzag

k-vector (0, 1, 1
2 ) (0.32, 0, 0) � (0, 1, 1

2 )

tion include large release of the magnetic entropy above
TN

113 and significant reduction in the ordered moments,
0.22(1)µB in Na2IrO3

76 and 0.40(5)µB in ↵-Li2IrO3,109

both well below 1µB expected for je↵ = 1
2 , although co-

valency e↵ects should also play a role here.

Below TN , Na2IrO3 develops zigzag order76,110 with
the propagation vector k = (0, 1, 1

2 ) and spins lying at the
intersection of the crystallographic ac-plane, and the cu-
bic xy-plane.114 The onset of long-range magnetic order
below TN ⇡ 15 K is also confirmed via zero-field muon-
spin rotation experiments.77 This zigzag state may arise
from several microscopic scenarios, including Heisenberg
interactions beyond nearest neighbors,115 leading to sig-
nificant discussion regarding the underlying magnetic in-
teractions in Na2IrO3. Experimentally, di↵use resonant
x-ray scattering has provided direct evidence for the rele-
vance of the Kitaev terms in the spin Hamiltonian by pin-
pointing predominant correlations between Sx, Sy, and
Sz components on di↵erent bonds of the honeycomb.114

From the theoretical perspective, there have been
several ab-initio calculations seeking to establish pa-
rameters of the je↵ = 1

2 spin Hamiltonian, employ-
ing di↵ering methods from fully ab-initio quantum
chemistry methods41 to perturbation theory42 and ex-
act diagonalization43 (based on hopping integrals de-
rived from DFT and experimental Coulomb parame-
ters). These results are summarized in Table III, and
reviewed in Ref. 43. Initially, the observation of zigzag
magnetic order and an antiferromagnetic Weiss constant
led to the suggestion that the Kitaev term may become
antiferromagnetic.22 Indeed, a ferromagnetic Kitaev term
is not compatible with zigzag order within the pure near-
est neighbour Heisenberg-Kitaev model that was featured
in many early theoretical works.21,26,29 However, the ab-
initio results tell a di↵erent story.

In accordance with the original work of Jackeli and
Khaliullin, the dominant oxygen-assisted hopping leads
to a large ferromagnetic nearest neighbour Kitaev inter-
action (K1 < 0). This is supplemented by several smaller
interactions, which enforce the zigzag order, moment di-
rection, and ⇥ < 0. The most significant of such in-

TABLE III. Bond-averaged values of the largest magnetic
interactions (in units of meV) within the plane for Na2IrO3

computed using various methods. “Pert. Theo.” refers to sec-
ond order perturbation theory, “QC” = quantum chemistry
methods, “ED” = exact diagonalization.

Method J1 K1 �1 �0
1 K2 J3

Pert. Theo.42 +3.2 �29.4 +1.1 �3.5 �0.4 +1.7

QC (2-site)41 +2.7 �16.9 +1.0 � � �

ED (6-site)43 +0.5 �16.8 +1.4 �2.1 �1.4 +6.7

teractions is expected to be a third neighbour Heisen-
berg (J3 > 0) term coupling sites across the face of each
hexagon.41,43 This interaction is estimated to be as much
as 30% of the Kitaev exchange, as suggested by early
analysis of the magnetic susceptibility.35 The direction of
the ordered moment is then selected54 by the o↵-diagonal
�1 and �0

1 terms, on the order of 10% of K1. The order-
ing wavevector, parallel to the b-axis within the plane, is
favoured by small bond-dependency of the Kitaev term,
i.e. |KZ

1 | > |KX,Y

1 |. In this sense, the key aspects of the
magnetic response of Na2IrO3 appear to be well under-
stood: the Jackeli-Khaliullin mechanism applies, leading
to dominant Kitaev interactions at the nearest neighbour
level. However, zigzag magnetic order is ultimately es-
tablished at low temperatures by additional interactions.

In the case of ↵-Li2IrO3, indications for anisotropic
bond-dependent interactions are ingrained in the spin ar-
rangement itself. The Néel temperature of about 15K
marks a transition to an incommensurate state,109 with
the propagation vector k = (0.32(1), 0, 0). RXS studies
have established that the magnetic structure is described
by the basis vector combination (�iAx, Fy,�iAz) that in
real space corresponds to counter-rotating spirals for the
Ir1 and Ir2 atoms in the unit cell (shown in Fig. 21).109

This counter-rotation requires a large Kitaev term in the
spin Hamiltonian, but leaves a multiple choice for other
interactions.109

There have been at least two proposals consistent
with the observed order. The authors of Ref. 48 noted
that the spiral state might emerge from significantly
bond-dependent interactions allowed within the crystal-
lographic C2/m symmetry. They introduced a three pa-
rameter (J,K, Ic) Hamiltonian, where Ic controls the de-
gree of bond-dependence; this is equivalent to the choice
(J1,K1) = (J,K) for the nearest neighbour X- and Y-
bonds, while (J1,K1,�1) = (J + 1

2Ic,K � 1
2Ic,�

1
2Ic) for

the Z-bond. For dominant ferromagnetic Kitaev K < 0
and bond-dependent Ic < 0 terms, the ground state was
found to be an incommensurate state consistent with the
experiment. This view was challenged by the authors
of Ref. 49, who argued that incommensurate states also
arise in the Kitaev materials if the bond-dependence is
removed, but the o↵-diagonal �1 > 0 and large K1 < 0
couplings are retained on all bonds. Indeed, the bond-
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rangement itself. The Néel temperature of about 15K
marks a transition to an incommensurate state,109 with
the propagation vector k = (0.32(1), 0, 0). RXS studies
have established that the magnetic structure is described
by the basis vector combination (�iAx, Fy,�iAz) that in
real space corresponds to counter-rotating spirals for the
Ir1 and Ir2 atoms in the unit cell (shown in Fig. 21).109

This counter-rotation requires a large Kitaev term in the
spin Hamiltonian, but leaves a multiple choice for other
interactions.109

There have been at least two proposals consistent
with the observed order. The authors of Ref. 48 noted
that the spiral state might emerge from significantly
bond-dependent interactions allowed within the crystal-
lographic C2/m symmetry. They introduced a three pa-
rameter (J,K, Ic) Hamiltonian, where Ic controls the de-
gree of bond-dependence; this is equivalent to the choice
(J1,K1) = (J,K) for the nearest neighbour X- and Y-
bonds, while (J1,K1,�1) = (J + 1

2Ic,K � 1
2Ic,�

1
2Ic) for

the Z-bond. For dominant ferromagnetic Kitaev K < 0
and bond-dependent Ic < 0 terms, the ground state was
found to be an incommensurate state consistent with the
experiment. This view was challenged by the authors
of Ref. 49, who argued that incommensurate states also
arise in the Kitaev materials if the bond-dependence is
removed, but the o↵-diagonal �1 > 0 and large K1 < 0
couplings are retained on all bonds. Indeed, the bond-



62

3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange

3

where Jij is the isotropic Heisenberg coupling, Dij is
the Dzyalloshinskii-Moriya (DM) vector, and �ij is the
symmetric pseudo-dipolar tensor. Realization of the
pure Kitaev model requires that Jij ,Dij ! 0 for ev-
ery bond, while only one component of the �ij tensor
remains nonzero (i.e. �zz 6= 0 for the Z-bond). At first,
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symmetry19,20 �ij / Dij⌦Dij . That is, for bonds where
the DM interaction is vanishing, the coupling tends to be
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2

component of the je↵ = 3
2 quartet on an adjacent site
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the je↵ = 1

2 and excited 3
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ating ferromagnetic interactions in the ground state /
t
2
JH/U

2. Importantly, since only the extremal mj = ± 3
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components contribute, these couplings become Ising-like
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j
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of the bond. This renders precisely the desired Kitaev
interaction. For edge-sharing octahedra, the three bonds
emerging from each metal site naturally have orthogonal
Ising axes.
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(8)

where {↵,�, �} = {y, z, x}, {z, x, y} and {x, y, z}, for the
X-, Y-, and Z-bonds, respectively. For lower symmetry
local environments, further terms may also be required
to fully parameterize the interactions. For example, a
finite Dzyalloshinskii-Moriya interaction Dij · (Si ⇥ Sj)
is symmetry permitted for second-neighbour interactions
in all Kitaev candidate lattices, as well as certain first-
neighbour bonds in the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of Eq. (8) has
been studied in detail in various parameter regimes. The
first works considered the simplest extension to Kitaev’s
model on the honeycomb lattice, namely the addition
of a nearest neighbour J1 term to yield the Heisenberg-
Kitaev (HK) model, which has now been studied at the
classical and quantum levels, both at zero,21–25 and finite
temperature,26–28 as well as finite magnetic field.29–31

The e↵ects of finite o↵-diagonal nearest-neighbour in-
teractions �1 and �0

1 were later considered,22,32,33 along
with longer range second neighbour Kitaev K2 terms,34

and Heisenberg J2, J3 interactions.35,36 These works have
revealed, in addition to the Kitaev spin-liquid states ap-
pearing for large nearest neighbour Kitaev |K1| interac-
tions, a complex variety of interesting magnetically or-
dered states, which are selected by the various compet-
ing anisotropic interactions. A relatively comprehensive
view of these phases, in relation to the real materials,
has now emerged from detailed analysis of the parameter
regimes thought to be relevant to various materials.37–43

The interested reader is referred to these works. Finally,
significant interest in Kitaev-like models on other lattices
has been prompted by the study of materials detailed in
sections III C and IV. For example, a variety of theoreti-
cal works focusing on the 3D honeycomb derivatives44–49

have now appeared, along with studies on the 2D trian-
gular lattice,50–52 and others.53

Kitaev-Heisenberg model
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TABLE II. Summary of magnetic parameters for honeycomb
Na2IrO3, ↵-Li2IrO3, Li2RhO3, and ↵-RuCl3. The latter ma-
terial is discussed in section III B. See text for relevant refer-
ences.

Property Na2IrO3 ↵-Li2IrO3 Li2RhO3 ↵-RuCl3

µe↵ (µB) 1.79 1.83 2.03 2.0 to 2.7

⇥iso (K) ⇠ �120 �33 to �100 ⇠ �50 ⇠ +40

⇥ab (K) -176 ⇥ab > ⇥c � +38 to +68

⇥c (K) �40 � � �100 to �150

TN (K) 13� 18 ⇠ 15 (6) 7 to 14

Order Zigzag Spiral Glassy Zigzag

k-vector (0, 1, 1
2 ) (0.32, 0, 0) � (0, 1, 1

2 )

tion include large release of the magnetic entropy above
TN

113 and significant reduction in the ordered moments,
0.22(1)µB in Na2IrO3

76 and 0.40(5)µB in ↵-Li2IrO3,109

both well below 1µB expected for je↵ = 1
2 , although co-

valency e↵ects should also play a role here.

Below TN , Na2IrO3 develops zigzag order76,110 with
the propagation vector k = (0, 1, 1

2 ) and spins lying at the
intersection of the crystallographic ac-plane, and the cu-
bic xy-plane.114 The onset of long-range magnetic order
below TN ⇡ 15 K is also confirmed via zero-field muon-
spin rotation experiments.77 This zigzag state may arise
from several microscopic scenarios, including Heisenberg
interactions beyond nearest neighbors,115 leading to sig-
nificant discussion regarding the underlying magnetic in-
teractions in Na2IrO3. Experimentally, di↵use resonant
x-ray scattering has provided direct evidence for the rele-
vance of the Kitaev terms in the spin Hamiltonian by pin-
pointing predominant correlations between Sx, Sy, and
Sz components on di↵erent bonds of the honeycomb.114

From the theoretical perspective, there have been
several ab-initio calculations seeking to establish pa-
rameters of the je↵ = 1

2 spin Hamiltonian, employ-
ing di↵ering methods from fully ab-initio quantum
chemistry methods41 to perturbation theory42 and ex-
act diagonalization43 (based on hopping integrals de-
rived from DFT and experimental Coulomb parame-
ters). These results are summarized in Table III, and
reviewed in Ref. 43. Initially, the observation of zigzag
magnetic order and an antiferromagnetic Weiss constant
led to the suggestion that the Kitaev term may become
antiferromagnetic.22 Indeed, a ferromagnetic Kitaev term
is not compatible with zigzag order within the pure near-
est neighbour Heisenberg-Kitaev model that was featured
in many early theoretical works.21,26,29 However, the ab-
initio results tell a di↵erent story.

In accordance with the original work of Jackeli and
Khaliullin, the dominant oxygen-assisted hopping leads
to a large ferromagnetic nearest neighbour Kitaev inter-
action (K1 < 0). This is supplemented by several smaller
interactions, which enforce the zigzag order, moment di-
rection, and ⇥ < 0. The most significant of such in-

TABLE III. Bond-averaged values of the largest magnetic
interactions (in units of meV) within the plane for Na2IrO3

computed using various methods. “Pert. Theo.” refers to sec-
ond order perturbation theory, “QC” = quantum chemistry
methods, “ED” = exact diagonalization.

Method J1 K1 �1 �0
1 K2 J3

Pert. Theo.42 +3.2 �29.4 +1.1 �3.5 �0.4 +1.7

QC (2-site)41 +2.7 �16.9 +1.0 � � �

ED (6-site)43 +0.5 �16.8 +1.4 �2.1 �1.4 +6.7

teractions is expected to be a third neighbour Heisen-
berg (J3 > 0) term coupling sites across the face of each
hexagon.41,43 This interaction is estimated to be as much
as 30% of the Kitaev exchange, as suggested by early
analysis of the magnetic susceptibility.35 The direction of
the ordered moment is then selected54 by the o↵-diagonal
�1 and �0

1 terms, on the order of 10% of K1. The order-
ing wavevector, parallel to the b-axis within the plane, is
favoured by small bond-dependency of the Kitaev term,
i.e. |KZ

1 | > |KX,Y

1 |. In this sense, the key aspects of the
magnetic response of Na2IrO3 appear to be well under-
stood: the Jackeli-Khaliullin mechanism applies, leading
to dominant Kitaev interactions at the nearest neighbour
level. However, zigzag magnetic order is ultimately es-
tablished at low temperatures by additional interactions.

In the case of ↵-Li2IrO3, indications for anisotropic
bond-dependent interactions are ingrained in the spin ar-
rangement itself. The Néel temperature of about 15K
marks a transition to an incommensurate state,109 with
the propagation vector k = (0.32(1), 0, 0). RXS studies
have established that the magnetic structure is described
by the basis vector combination (�iAx, Fy,�iAz) that in
real space corresponds to counter-rotating spirals for the
Ir1 and Ir2 atoms in the unit cell (shown in Fig. 21).109

This counter-rotation requires a large Kitaev term in the
spin Hamiltonian, but leaves a multiple choice for other
interactions.109

There have been at least two proposals consistent
with the observed order. The authors of Ref. 48 noted
that the spiral state might emerge from significantly
bond-dependent interactions allowed within the crystal-
lographic C2/m symmetry. They introduced a three pa-
rameter (J,K, Ic) Hamiltonian, where Ic controls the de-
gree of bond-dependence; this is equivalent to the choice
(J1,K1) = (J,K) for the nearest neighbour X- and Y-
bonds, while (J1,K1,�1) = (J + 1

2Ic,K � 1
2Ic,�

1
2Ic) for

the Z-bond. For dominant ferromagnetic Kitaev K < 0
and bond-dependent Ic < 0 terms, the ground state was
found to be an incommensurate state consistent with the
experiment. This view was challenged by the authors
of Ref. 49, who argued that incommensurate states also
arise in the Kitaev materials if the bond-dependence is
removed, but the o↵-diagonal �1 > 0 and large K1 < 0
couplings are retained on all bonds. Indeed, the bond-
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into question the relevance of the Kitaev model for ↵-
RuCl3. In this sense, identifying the specific magnetic
interactions in ↵-RuCl3, and their relationship to the
high-energy continuum, has become a key challenge for
the field.

In the last several years, one of the major barriers
to understanding ↵-RuCl3 has been the wide variety of
claims regarding the magnetic interactions, as summa-
rized in Table V and Fig. 19. From the standpoint of the-
oretical approaches, discrepancies between various stud-
ies have arisen mainly from two factors: i) experimental
uncertainty regarding the crystal structure of ↵-RuCl3,
and ii) inherent complications that arise in the absence
of a small parameter, i.e. when � ⇠ � ⇠ JH . This latter
condition increases the sensitivity of ab-initio estimates
of the interactions to methodological details.

As with Na2IrO3, the first inelastic neutron
experiments161 on ↵-RuCl3 were analyzed in terms of
a Heisenberg-Kitaev model with K1 > 0 and J1 < 0, as
required to stabilize zigzag order in the absence of other
terms. However, such a combination of interactions is
impossible from a microscopic perspective; an antiferro-
magnetic K1 is only realized in conjunction with a large
o↵-diagonal �1 interaction, as both rely on large direct
metal-metal hopping. Interestingly, the first ab-initio
studies of ↵-RuCl3, carried out on the outdated P3112
structure, predicted precisely this situation.39,43,146 The
anomalously small Ru-Cl-Ru bond angle of 89� in this
structure likely overestimates direct hopping e↵ects, lead-
ing to K1 > 0, and |�1| ⇠ |J1| ⇠ |K1|. However, since
the availability of the updated C2/m or R3̄ structures,
all ab-initio estimates have been in line with the origi-
nal Jackeli-Khaliullin mechanism.39,43,146,175 That is, K1

is expected to be ferromagnetic, and to represent the
largest term in the Hamiltonian. This is likely supple-
mented primarily by a large �1 > 0 with |�1/K1| ⇠ 0.5,
which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
matching the continuum observed in ↵-RuCl3. Since
this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
citation continua may appear in all materials discussed
in this review. An interesting question is to what ex-
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ab-initio: C2/m
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FIG. 19. Phase diagram of the (J1,K1,�1) model (with
J3 = 0) from Ref. 176, using J1 = cos� sin ✓,K1 = sin� sin ✓,
and �1 = cos ✓. Here, “FM” = ferromagnet, “AFM” =
Neel antiferromagnet, “IC” = incommensurate spiral, “SS” =
stripy order, and the white regions near ✓ = ⇡/2,� = ±⇡/2
are the Kitaev spin-liquids. Reported interactions for ↵-
RuCl3 in Table V are marked by numbered points, corre-
sponding to references: (1)161, (2)146, (3)39, (4)43, (5)146,
(6)43, (7)39, (8)175, and (9)176. For (5), the range of val-
ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.

tent such overdamped magnons resemble the Majorana
excitations of the pure Kitaev model?16

Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-
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which leads to the observed anisotropy in the Weiss con-
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most recent works (5-9) agree K1 < 0, with �1 > 0.

tent such overdamped magnons resemble the Majorana
excitations of the pure Kitaev model?16

Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-

17

into question the relevance of the Kitaev model for ↵-
RuCl3. In this sense, identifying the specific magnetic
interactions in ↵-RuCl3, and their relationship to the
high-energy continuum, has become a key challenge for
the field.

In the last several years, one of the major barriers
to understanding ↵-RuCl3 has been the wide variety of
claims regarding the magnetic interactions, as summa-
rized in Table V and Fig. 19. From the standpoint of the-
oretical approaches, discrepancies between various stud-
ies have arisen mainly from two factors: i) experimental
uncertainty regarding the crystal structure of ↵-RuCl3,
and ii) inherent complications that arise in the absence
of a small parameter, i.e. when � ⇠ � ⇠ JH . This latter
condition increases the sensitivity of ab-initio estimates
of the interactions to methodological details.

As with Na2IrO3, the first inelastic neutron
experiments161 on ↵-RuCl3 were analyzed in terms of
a Heisenberg-Kitaev model with K1 > 0 and J1 < 0, as
required to stabilize zigzag order in the absence of other
terms. However, such a combination of interactions is
impossible from a microscopic perspective; an antiferro-
magnetic K1 is only realized in conjunction with a large
o↵-diagonal �1 interaction, as both rely on large direct
metal-metal hopping. Interestingly, the first ab-initio
studies of ↵-RuCl3, carried out on the outdated P3112
structure, predicted precisely this situation.39,43,146 The
anomalously small Ru-Cl-Ru bond angle of 89� in this
structure likely overestimates direct hopping e↵ects, lead-
ing to K1 > 0, and |�1| ⇠ |J1| ⇠ |K1|. However, since
the availability of the updated C2/m or R3̄ structures,
all ab-initio estimates have been in line with the origi-
nal Jackeli-Khaliullin mechanism.39,43,146,175 That is, K1

is expected to be ferromagnetic, and to represent the
largest term in the Hamiltonian. This is likely supple-
mented primarily by a large �1 > 0 with |�1/K1| ⇠ 0.5,
which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
matching the continuum observed in ↵-RuCl3. Since
this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
citation continua may appear in all materials discussed
in this review. An interesting question is to what ex-

FIG. 19. Phase diagram of the (J1,K1,�1) model (with
J3 = 0) from Ref. 176, using J1 = cos� sin ✓,K1 = sin� sin ✓,
and �1 = cos ✓. Here, “FM” = ferromagnet, “AFM” =
Neel antiferromagnet, “IC” = incommensurate spiral, “SS” =
stripy order, and the white regions near ✓ = ⇡/2,� = ±⇡/2
are the Kitaev spin-liquids. Reported interactions for ↵-
RuCl3 in Table V are marked by numbered points, corre-
sponding to references: (1)161, (2)146, (3)39, (4)43, (5)146,
(6)43, (7)39, (8)175, and (9)176. For (5), the range of val-
ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.

tent such overdamped magnons resemble the Majorana
excitations of the pure Kitaev model?16

Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-
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RuCl3. In this sense, identifying the specific magnetic
interactions in ↵-RuCl3, and their relationship to the
high-energy continuum, has become a key challenge for
the field.

In the last several years, one of the major barriers
to understanding ↵-RuCl3 has been the wide variety of
claims regarding the magnetic interactions, as summa-
rized in Table V and Fig. 19. From the standpoint of the-
oretical approaches, discrepancies between various stud-
ies have arisen mainly from two factors: i) experimental
uncertainty regarding the crystal structure of ↵-RuCl3,
and ii) inherent complications that arise in the absence
of a small parameter, i.e. when � ⇠ � ⇠ JH . This latter
condition increases the sensitivity of ab-initio estimates
of the interactions to methodological details.

As with Na2IrO3, the first inelastic neutron
experiments161 on ↵-RuCl3 were analyzed in terms of
a Heisenberg-Kitaev model with K1 > 0 and J1 < 0, as
required to stabilize zigzag order in the absence of other
terms. However, such a combination of interactions is
impossible from a microscopic perspective; an antiferro-
magnetic K1 is only realized in conjunction with a large
o↵-diagonal �1 interaction, as both rely on large direct
metal-metal hopping. Interestingly, the first ab-initio
studies of ↵-RuCl3, carried out on the outdated P3112
structure, predicted precisely this situation.39,43,146 The
anomalously small Ru-Cl-Ru bond angle of 89� in this
structure likely overestimates direct hopping e↵ects, lead-
ing to K1 > 0, and |�1| ⇠ |J1| ⇠ |K1|. However, since
the availability of the updated C2/m or R3̄ structures,
all ab-initio estimates have been in line with the origi-
nal Jackeli-Khaliullin mechanism.39,43,146,175 That is, K1

is expected to be ferromagnetic, and to represent the
largest term in the Hamiltonian. This is likely supple-
mented primarily by a large �1 > 0 with |�1/K1| ⇠ 0.5,
which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
matching the continuum observed in ↵-RuCl3. Since
this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
citation continua may appear in all materials discussed
in this review. An interesting question is to what ex-

FIG. 19. Phase diagram of the (J1,K1,�1) model (with
J3 = 0) from Ref. 176, using J1 = cos� sin ✓,K1 = sin� sin ✓,
and �1 = cos ✓. Here, “FM” = ferromagnet, “AFM” =
Neel antiferromagnet, “IC” = incommensurate spiral, “SS” =
stripy order, and the white regions near ✓ = ⇡/2,� = ±⇡/2
are the Kitaev spin-liquids. Reported interactions for ↵-
RuCl3 in Table V are marked by numbered points, corre-
sponding to references: (1)161, (2)146, (3)39, (4)43, (5)146,
(6)43, (7)39, (8)175, and (9)176. For (5), the range of val-
ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.
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structure likely overestimates direct hopping e↵ects, lead-
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the availability of the updated C2/m or R3̄ structures,
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which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
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this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
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ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.
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Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-

3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange
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where Jij is the isotropic Heisenberg coupling, Dij is
the Dzyalloshinskii-Moriya (DM) vector, and �ij is the
symmetric pseudo-dipolar tensor. Realization of the
pure Kitaev model requires that Jij ,Dij ! 0 for ev-
ery bond, while only one component of the �ij tensor
remains nonzero (i.e. �zz 6= 0 for the Z-bond). At first,
such strict conditions may appear di�cult to engineer
in real materials, particularly because the leading contri-
butions to the interactions obtained in lowest orders of
perturbation theory in t/U are known to satisfy a hidden
symmetry19,20 �ij / Dij⌦Dij . That is, for bonds where
the DM interaction is vanishing, the coupling tends to be
dominated by the isotropic Jij Heisenberg terms.

It is in this context that the importance of the seminal
observation of Jackeli and Khaliullin4 can be understood.
They showed, for idealized edge-sharing octahedra with
inversion symmetry, that (i) all leading order contribu-
tions to the interactions vanish, (ii) Jij and Dij are iden-
tically zero up to the next higher order, and (iii) the only
nonzero component of �ij arising from higher order ef-
fects is precisely the desired Kitaev term. This amazing
insight spawned the entire field of research reviewed in
this work.

In particular, Jackeli and Khaliullin considered the
case where hopping between edge-sharing metal sites oc-
curs only via hybridization with the intervening ligand
p-orbitals. In this case, the hopping paths shown in
Fig. 2(b) interfere, so that hopping of holes between
je↵ = 1

2 states vanishes. In fact, the only relevant hop-
ping takes a hole from a je↵ = 1

2 state to an mj = ± 3
2

component of the je↵ = 3
2 quartet on an adjacent site

(Fig. 2(c)). In such a virtual configuration, with two
holes on a given site, Hund’s coupling (JH) acts between
the je↵ = 1

2 and excited 3
2 moments, ultimately gener-

ating ferromagnetic interactions in the ground state /
t
2
JH/U

2. Importantly, since only the extremal mj = ± 3
2

components contribute, these couplings become Ising-like
S
�

i
S
�

j
, with principle axis (�) perpendicular to the plane

of the bond. This renders precisely the desired Kitaev
interaction. For edge-sharing octahedra, the three bonds
emerging from each metal site naturally have orthogonal
Ising axes.

While experimental studies, reviewed below, demon-
strate the validity of Jackeli and Khaliullin’s observa-
tions, it remains essential to understand the modifica-
tions to the Jackeli-Khaliullin picture in real materials.
Deviations from the ideal scenario result in a variety of
complex phenomena.

C. Extensions for Real Materials

Microscopically, plausible extensions of the Jackeli-
Khaliullin mechanism to real materials are based mostly
on two observations: (i) a more accurate consideration
of the coupling on each bond must include the e↵ects of
local distortions of the crystal field, direct d-d hopping,
and mixing with higher lying states outside the t2g man-

ifold, and (ii) the 4d and 5d orbitals are spatially rather
extended, which may generate substantial longer-range
exchange beyond nearest neighbours. In this section, we
review the current understanding of each of these e↵ects.

In the most general case, anisotropic magnetic inter-
actions between sites i and j is described by the Hamil-
tonian:

Hij = Si · Jij · Sj (7)

where Jij is a 3⇥ 3 exchange tensor. There are di↵erent
schemes to parametrize this tensor, which are appropri-
ate for di↵erent local symmetries. Assuming local C2h

symmetry of the ij-bond, the convention is to write the
interactions:
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where {↵,�, �} = {y, z, x}, {z, x, y} and {x, y, z}, for the
X-, Y-, and Z-bonds, respectively. For lower symmetry
local environments, further terms may also be required
to fully parameterize the interactions. For example, a
finite Dzyalloshinskii-Moriya interaction Dij · (Si ⇥ Sj)
is symmetry permitted for second-neighbour interactions
in all Kitaev candidate lattices, as well as certain first-
neighbour bonds in the 3D materials.

Before reviewing the origin of these additional interac-
tions, we remark that the phase diagram of Eq. (8) has
been studied in detail in various parameter regimes. The
first works considered the simplest extension to Kitaev’s
model on the honeycomb lattice, namely the addition
of a nearest neighbour J1 term to yield the Heisenberg-
Kitaev (HK) model, which has now been studied at the
classical and quantum levels, both at zero,21–25 and finite
temperature,26–28 as well as finite magnetic field.29–31

The e↵ects of finite o↵-diagonal nearest-neighbour in-
teractions �1 and �0

1 were later considered,22,32,33 along
with longer range second neighbour Kitaev K2 terms,34

and Heisenberg J2, J3 interactions.35,36 These works have
revealed, in addition to the Kitaev spin-liquid states ap-
pearing for large nearest neighbour Kitaev |K1| interac-
tions, a complex variety of interesting magnetically or-
dered states, which are selected by the various compet-
ing anisotropic interactions. A relatively comprehensive
view of these phases, in relation to the real materials,
has now emerged from detailed analysis of the parameter
regimes thought to be relevant to various materials.37–43

The interested reader is referred to these works. Finally,
significant interest in Kitaev-like models on other lattices
has been prompted by the study of materials detailed in
sections III C and IV. For example, a variety of theoreti-
cal works focusing on the 3D honeycomb derivatives44–49

have now appeared, along with studies on the 2D trian-
gular lattice,50–52 and others.53

Kitaev-Heisenberg model
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into question the relevance of the Kitaev model for ↵-
RuCl3. In this sense, identifying the specific magnetic
interactions in ↵-RuCl3, and their relationship to the
high-energy continuum, has become a key challenge for
the field.

In the last several years, one of the major barriers
to understanding ↵-RuCl3 has been the wide variety of
claims regarding the magnetic interactions, as summa-
rized in Table V and Fig. 19. From the standpoint of the-
oretical approaches, discrepancies between various stud-
ies have arisen mainly from two factors: i) experimental
uncertainty regarding the crystal structure of ↵-RuCl3,
and ii) inherent complications that arise in the absence
of a small parameter, i.e. when � ⇠ � ⇠ JH . This latter
condition increases the sensitivity of ab-initio estimates
of the interactions to methodological details.

As with Na2IrO3, the first inelastic neutron
experiments161 on ↵-RuCl3 were analyzed in terms of
a Heisenberg-Kitaev model with K1 > 0 and J1 < 0, as
required to stabilize zigzag order in the absence of other
terms. However, such a combination of interactions is
impossible from a microscopic perspective; an antiferro-
magnetic K1 is only realized in conjunction with a large
o↵-diagonal �1 interaction, as both rely on large direct
metal-metal hopping. Interestingly, the first ab-initio
studies of ↵-RuCl3, carried out on the outdated P3112
structure, predicted precisely this situation.39,43,146 The
anomalously small Ru-Cl-Ru bond angle of 89� in this
structure likely overestimates direct hopping e↵ects, lead-
ing to K1 > 0, and |�1| ⇠ |J1| ⇠ |K1|. However, since
the availability of the updated C2/m or R3̄ structures,
all ab-initio estimates have been in line with the origi-
nal Jackeli-Khaliullin mechanism.39,43,146,175 That is, K1

is expected to be ferromagnetic, and to represent the
largest term in the Hamiltonian. This is likely supple-
mented primarily by a large �1 > 0 with |�1/K1| ⇠ 0.5,
which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
matching the continuum observed in ↵-RuCl3. Since
this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
citation continua may appear in all materials discussed
in this review. An interesting question is to what ex-

FIG. 19. Phase diagram of the (J1,K1,�1) model (with
J3 = 0) from Ref. 176, using J1 = cos� sin ✓,K1 = sin� sin ✓,
and �1 = cos ✓. Here, “FM” = ferromagnet, “AFM” =
Neel antiferromagnet, “IC” = incommensurate spiral, “SS” =
stripy order, and the white regions near ✓ = ⇡/2,� = ±⇡/2
are the Kitaev spin-liquids. Reported interactions for ↵-
RuCl3 in Table V are marked by numbered points, corre-
sponding to references: (1)161, (2)146, (3)39, (4)43, (5)146,
(6)43, (7)39, (8)175, and (9)176. For (5), the range of val-
ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.

tent such overdamped magnons resemble the Majorana
excitations of the pure Kitaev model?16

Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-
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TABLE V. Bond-averaged values of the largest magnetic interactions (in units of meV) within the plane for ↵-RuCl3 obtained
from various methods. For Ref. 146, the two numbers represent the range of values found in various relaxed structures. “Pert.
Theo.” refers to second order perturbation theory, “QC” = quantum chemistry methods, “ED” = exact diagonalization, “DFT”
= density functional theory total energy, “Exp. An.” = experimental analysis. See also Fig. 19.

Method Structure J1 K1 �1 J3

Exp. An.161 � �4.6 +7.0 � �
Pert. Theo.146 P3112 �3.5 +4.6 +6.4 �
QC (2-site)39 P3112 �1.2 -0.5 +1.0 �
ED (6-site)43 P3112 �5.5 +7.6 +8.4 +2.3

Pert. Theo.146 Relaxed �2.8/� 0.7 �9.1/� 3.0 +3.7/+7.3 �
ED (6-site)43 C2/m �1.7 �6.7 +6.6 +2.7

QC (2-site)39 C2/m +0.7 �5.1 +1.2 �
DFT175 C2/m �1.8 �10.6 +3.8 +1.3

Exp. An.176 � �0.5 �5.0 +2.5 +0.5

(a) (b)

Li OIr

FIG. 20. Structures of (a) �- and (b) �-phases of Li2IrO3.
The structures feature crossed zigzag and honeycomb chains,
respectively, running in the ab-plane. These are emphasized
in each case.

liquid.178 This assignment is not unique, however, as
a simple field-polarized ferromagnetic state would show
similar behaviour. In this case, the symmetry breaking of
the strong magnetic field prevents a true thermodynamic
phase transition. As for the zero-field state, dynamical
probes, such as inelastic light and neutron scattering,
will be vital for establishing the character of the high-
field state. We, therefore, refer the reader to the initial
reports in this rapidly developing direction.

C. Beyond 2D: �- and �-Li2IrO3

The planar honeycomb iridate ↵-Li2IrO3 can be seen
as a toolbox for designing Kitaev materials. Its �-
and �-polymorphs represent three-dimensional (3D) va-
rieties of the honeycomb lattice. Similar to the orig-

inal (planar) honeycomb version, each site of the lat-
tice is three-coordinated, but the bonds are no longer
coplanar - forming, instead, 3D networks that are coined
“hyper”-honeycomb (�-Li2IrO3, H0) and “stripy”- or
“harmonic”-honeycomb (�-Li2IrO3, H1) lattices. Here,
H stands for a single stripe of hexagons, and H1 denotes
planar honeycomb lattice. By changing the superscript
at H, an infinitely large number of such lattices can be
constructed.183

1. Crystal structures and synthesis

On the structural level, the polymorphism of Li2IrO3

stems from the fact that the A2MO3 oxides are ordered
versions of the rocksalt structure, where oxygen ions form
close packing, with A and B cations occupying octahedral
voids.184 By changing the sequence of the A and B ions,
crystal structures hosting any given Hn spin lattice can
be generated, although under real thermodynamic condi-
tions only a few of them are stable. The discovery of three
di↵erent well-ordered polymorphs in Li2IrO3 seems to
be a result of extensive crystal growth attempts inspired
by prospects of studying Kitaev physics. Other A2MO3

compounds are also known in multiple polymorphs, al-
though many of them are fully or partially disordered
version of the ↵- and �-type structures184.
The hyperhoneycomb �-phase of Li2IrO3 is a high-

temperature polymorph that forms upon heating the ↵-
phase above 1000 �C.71 Tiny single crystals with the size
of few hundred µm are obtained by annealing in air, sim-
ilar to Na2IrO3.185–187 �-Li2IrO3 crystallizes in the or-
thorhombic space group Fddd, with zigzag chains run-
ning in alternating directions in the ac-plane.185,186 In
the language of the Kitaev interactions, these chains form
the X- and Y-bonds, while the Z-bonds (parallel to the
b-axis) link together adjacent layers of chains. For the
initially reported structure of Ref. 186, the Ir-O-Ir bond
angles are all ⇠ 94�, indicating a similar degree of trig-
onal compression of the local IrO6 octahedra as in the
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TABLE II. Summary of magnetic parameters for honeycomb
Na2IrO3, ↵-Li2IrO3, Li2RhO3, and ↵-RuCl3. The latter ma-
terial is discussed in section III B. See text for relevant refer-
ences.

Property Na2IrO3 ↵-Li2IrO3 Li2RhO3 ↵-RuCl3

µe↵ (µB) 1.79 1.83 2.03 2.0 to 2.7

⇥iso (K) ⇠ �120 �33 to �100 ⇠ �50 ⇠ +40

⇥ab (K) -176 ⇥ab > ⇥c � +38 to +68

⇥c (K) �40 � � �100 to �150

TN (K) 13� 18 ⇠ 15 (6) 7 to 14

Order Zigzag Spiral Glassy Zigzag

k-vector (0, 1, 1
2 ) (0.32, 0, 0) � (0, 1, 1

2 )

tion include large release of the magnetic entropy above
TN

113 and significant reduction in the ordered moments,
0.22(1)µB in Na2IrO3

76 and 0.40(5)µB in ↵-Li2IrO3,109

both well below 1µB expected for je↵ = 1
2 , although co-

valency e↵ects should also play a role here.

Below TN , Na2IrO3 develops zigzag order76,110 with
the propagation vector k = (0, 1, 1

2 ) and spins lying at the
intersection of the crystallographic ac-plane, and the cu-
bic xy-plane.114 The onset of long-range magnetic order
below TN ⇡ 15 K is also confirmed via zero-field muon-
spin rotation experiments.77 This zigzag state may arise
from several microscopic scenarios, including Heisenberg
interactions beyond nearest neighbors,115 leading to sig-
nificant discussion regarding the underlying magnetic in-
teractions in Na2IrO3. Experimentally, di↵use resonant
x-ray scattering has provided direct evidence for the rele-
vance of the Kitaev terms in the spin Hamiltonian by pin-
pointing predominant correlations between Sx, Sy, and
Sz components on di↵erent bonds of the honeycomb.114

From the theoretical perspective, there have been
several ab-initio calculations seeking to establish pa-
rameters of the je↵ = 1

2 spin Hamiltonian, employ-
ing di↵ering methods from fully ab-initio quantum
chemistry methods41 to perturbation theory42 and ex-
act diagonalization43 (based on hopping integrals de-
rived from DFT and experimental Coulomb parame-
ters). These results are summarized in Table III, and
reviewed in Ref. 43. Initially, the observation of zigzag
magnetic order and an antiferromagnetic Weiss constant
led to the suggestion that the Kitaev term may become
antiferromagnetic.22 Indeed, a ferromagnetic Kitaev term
is not compatible with zigzag order within the pure near-
est neighbour Heisenberg-Kitaev model that was featured
in many early theoretical works.21,26,29 However, the ab-
initio results tell a di↵erent story.

In accordance with the original work of Jackeli and
Khaliullin, the dominant oxygen-assisted hopping leads
to a large ferromagnetic nearest neighbour Kitaev inter-
action (K1 < 0). This is supplemented by several smaller
interactions, which enforce the zigzag order, moment di-
rection, and ⇥ < 0. The most significant of such in-

TABLE III. Bond-averaged values of the largest magnetic
interactions (in units of meV) within the plane for Na2IrO3

computed using various methods. “Pert. Theo.” refers to sec-
ond order perturbation theory, “QC” = quantum chemistry
methods, “ED” = exact diagonalization.

Method J1 K1 �1 �0
1 K2 J3

Pert. Theo.42 +3.2 �29.4 +1.1 �3.5 �0.4 +1.7

QC (2-site)41 +2.7 �16.9 +1.0 � � �

ED (6-site)43 +0.5 �16.8 +1.4 �2.1 �1.4 +6.7

teractions is expected to be a third neighbour Heisen-
berg (J3 > 0) term coupling sites across the face of each
hexagon.41,43 This interaction is estimated to be as much
as 30% of the Kitaev exchange, as suggested by early
analysis of the magnetic susceptibility.35 The direction of
the ordered moment is then selected54 by the o↵-diagonal
�1 and �0

1 terms, on the order of 10% of K1. The order-
ing wavevector, parallel to the b-axis within the plane, is
favoured by small bond-dependency of the Kitaev term,
i.e. |KZ

1 | > |KX,Y

1 |. In this sense, the key aspects of the
magnetic response of Na2IrO3 appear to be well under-
stood: the Jackeli-Khaliullin mechanism applies, leading
to dominant Kitaev interactions at the nearest neighbour
level. However, zigzag magnetic order is ultimately es-
tablished at low temperatures by additional interactions.

In the case of ↵-Li2IrO3, indications for anisotropic
bond-dependent interactions are ingrained in the spin ar-
rangement itself. The Néel temperature of about 15K
marks a transition to an incommensurate state,109 with
the propagation vector k = (0.32(1), 0, 0). RXS studies
have established that the magnetic structure is described
by the basis vector combination (�iAx, Fy,�iAz) that in
real space corresponds to counter-rotating spirals for the
Ir1 and Ir2 atoms in the unit cell (shown in Fig. 21).109

This counter-rotation requires a large Kitaev term in the
spin Hamiltonian, but leaves a multiple choice for other
interactions.109

There have been at least two proposals consistent
with the observed order. The authors of Ref. 48 noted
that the spiral state might emerge from significantly
bond-dependent interactions allowed within the crystal-
lographic C2/m symmetry. They introduced a three pa-
rameter (J,K, Ic) Hamiltonian, where Ic controls the de-
gree of bond-dependence; this is equivalent to the choice
(J1,K1) = (J,K) for the nearest neighbour X- and Y-
bonds, while (J1,K1,�1) = (J + 1

2Ic,K � 1
2Ic,�

1
2Ic) for

the Z-bond. For dominant ferromagnetic Kitaev K < 0
and bond-dependent Ic < 0 terms, the ground state was
found to be an incommensurate state consistent with the
experiment. This view was challenged by the authors
of Ref. 49, who argued that incommensurate states also
arise in the Kitaev materials if the bond-dependence is
removed, but the o↵-diagonal �1 > 0 and large K1 < 0
couplings are retained on all bonds. Indeed, the bond-
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found to be an incommensurate state consistent with the
experiment. This view was challenged by the authors
of Ref. 49, who argued that incommensurate states also
arise in the Kitaev materials if the bond-dependence is
removed, but the o↵-diagonal �1 > 0 and large K1 < 0
couplings are retained on all bonds. Indeed, the bond-
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into question the relevance of the Kitaev model for ↵-
RuCl3. In this sense, identifying the specific magnetic
interactions in ↵-RuCl3, and their relationship to the
high-energy continuum, has become a key challenge for
the field.

In the last several years, one of the major barriers
to understanding ↵-RuCl3 has been the wide variety of
claims regarding the magnetic interactions, as summa-
rized in Table V and Fig. 19. From the standpoint of the-
oretical approaches, discrepancies between various stud-
ies have arisen mainly from two factors: i) experimental
uncertainty regarding the crystal structure of ↵-RuCl3,
and ii) inherent complications that arise in the absence
of a small parameter, i.e. when � ⇠ � ⇠ JH . This latter
condition increases the sensitivity of ab-initio estimates
of the interactions to methodological details.

As with Na2IrO3, the first inelastic neutron
experiments161 on ↵-RuCl3 were analyzed in terms of
a Heisenberg-Kitaev model with K1 > 0 and J1 < 0, as
required to stabilize zigzag order in the absence of other
terms. However, such a combination of interactions is
impossible from a microscopic perspective; an antiferro-
magnetic K1 is only realized in conjunction with a large
o↵-diagonal �1 interaction, as both rely on large direct
metal-metal hopping. Interestingly, the first ab-initio
studies of ↵-RuCl3, carried out on the outdated P3112
structure, predicted precisely this situation.39,43,146 The
anomalously small Ru-Cl-Ru bond angle of 89� in this
structure likely overestimates direct hopping e↵ects, lead-
ing to K1 > 0, and |�1| ⇠ |J1| ⇠ |K1|. However, since
the availability of the updated C2/m or R3̄ structures,
all ab-initio estimates have been in line with the origi-
nal Jackeli-Khaliullin mechanism.39,43,146,175 That is, K1

is expected to be ferromagnetic, and to represent the
largest term in the Hamiltonian. This is likely supple-
mented primarily by a large �1 > 0 with |�1/K1| ⇠ 0.5,
which leads to the observed anisotropy in the Weiss con-
stant ⇥. These conclusions are strongly supported by the
analysis of Ref. 176, which demonstrated close theoreti-
cal agreement with the observed neutron response, when
such terms are included.

In Ref. 176, the authors also o↵ered an alternative
interpretation of the observed neutron spectra. They
noted that the presence of o↵-diagonal �1 interactions
lifts underlying symmetries that would otherwise pro-
tect conventional magnon excitations. In the absence of
such symmetries, the magnons may decay into a broad
continuum of multi-magnon states, with characteristics
matching the continuum observed in ↵-RuCl3. Since
this e↵ect occurs independent of proximity to the Ki-
taev spin-liquid, the authors concluded that proximity
to the Kitaev state does not appear necessary to explain
the unconventional continuum in ↵-RuCl3 – in contrast
with previous assertions.148,161 In fact, strong damping
of the magnons should be considered a general feature of
anisotropic magnetic interactions, suggesting similar ex-
citation continua may appear in all materials discussed
in this review. An interesting question is to what ex-

FIG. 19. Phase diagram of the (J1,K1,�1) model (with
J3 = 0) from Ref. 176, using J1 = cos� sin ✓,K1 = sin� sin ✓,
and �1 = cos ✓. Here, “FM” = ferromagnet, “AFM” =
Neel antiferromagnet, “IC” = incommensurate spiral, “SS” =
stripy order, and the white regions near ✓ = ⇡/2,� = ±⇡/2
are the Kitaev spin-liquids. Reported interactions for ↵-
RuCl3 in Table V are marked by numbered points, corre-
sponding to references: (1)161, (2)146, (3)39, (4)43, (5)146,
(6)43, (7)39, (8)175, and (9)176. For (5), the range of val-
ues for various relaxed structures is indicated. Although the
interactions in the real material are still under debate, the
most recent works (5-9) agree K1 < 0, with �1 > 0.

tent such overdamped magnons resemble the Majorana
excitations of the pure Kitaev model?16

Finally, we note that more recent interest has turned
to the response of ↵-RuCl3 in an external magnetic
field, which suppresses the zigzag order at roughly
Bc ⇠ 7 T for in-plane fields.139 Interest in the high-
field phase is partially motivated by predictions of a
field-induced spin-liquid state.39 A picture of this high-
field state is now emerging from neutron,177 NMR,178,179

specific heat,177,178,180 magnetization,139,149 and ther-
mal transport measurements.181,182 In the vicinity of the
critical field, phononic heat transport is strongly sup-
pressed, indicating a multitude of low-lying magnetic
excitations consistent with the closure of an excitation
gap.181,182 This result is supported both by specific heat
data177,178,180 and a strong increase of the NMR relax-
ation rate near Bc at low temperatures.178 The closure
of the gap likely demonstrates the existence of a field-
induced quantum critical point, which has been suggested
to be of Ising type180 based on the magnetic interactions
of Ref. 176. For B > Bc, NMR,178 thermal transport,181

and specific heat177,178,180 measurements all demonstrate
the opening of an excitation gap that increases linearly
with field. In this field range, the specific heat shows
no peak on decreasing the temperature, which has been
suggested as evidence that this gapped state is a spin-
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3. Spin-orbit related effects 
Spin-orbit and Kitaev exchange

1 5  F E B R U A R Y  2 0 1 8  |  V O L  5 5 4  |  N A T U R E  |  3 4 1

LETTER
doi:10.1038/nature25482
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The honeycomb lattice is one of the simplest lattice structures. 
Electrons and spins on this simple lattice, however, often form 
exotic phases with non-trivial excitations. Massless Dirac 
fermions can emerge out of itinerant electrons, as demonstrated 
experimentally in graphene1, and a topological quantum spin liquid 
with exotic quasiparticles can be realized in spin-1/2 magnets, as 
proposed theoretically in the Kitaev model2. The quantum spin 
liquid is a long-sought exotic state of matter, in which interacting 
spins remain quantum-disordered without spontaneous symmetry 
breaking3. The Kitaev model describes one example of a quantum 
spin liquid, and can be solved exactly by introducing two types of 
Majorana fermion2. Realizing a Kitaev model in the laboratory, 
however, remains a challenge in materials science. Mott insulators 
with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 
moments have been proposed4, including the 5d-electron systems 
α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron 
system α-RuCl3 (ref. 7). However, these candidates were found to 
magnetically order rather than form a liquid at sufficiently low 
temperatures8–10, owing to non-Kitaev interactions6,11–13. Here 
we report a quantum-liquid state of pseudospin-1/2 moments in 
the 5d-electron honeycomb compound H3LiIr2O6. This iridate 
does not display magnetic ordering down to 0.05 kelvin, despite 
an interaction energy of about 100 kelvin. We observe signatures 
of low-energy fermionic excitations that originate from a small 
number of spin defects in the nuclear-magnetic-resonance 
relaxation and the specific heat. We therefore conclude that 
H3LiIr2O6 is a quantum spin liquid. This result opens the door 
to finding exotic quasiparticles in a strongly spin–orbit-coupled  
5d-electron transition-metal oxide.

According to the third law of thermodynamics, magnets with many 
spin degrees of freedom must have zero entropy in the ground state. 
The conventional way of releasing the entropy is to form a magnetically 
ordered state. However, there is another way of forming a macroscopi-
cally non-degenerate state: through quantum effects, which hinder 
long-range order. This exotic state of matter is called a quantum spin 
liquid3. Since the first conjecture of the resonant-valence-bond state14 , 
geometrically frustrated S =  1/2 antiferromagnets (where S is the 
spin) on a triangular-based lattice have been studied experimentally 
and theoretically to explore the quantum-spin-liquid state. Although 
the resonant-valence-bond state is believed to be a quantum super-
position of spin singlets, it has not been obtained as an exact  solution 
of any model Hamiltonian. Despite the theoretical challenges, it has 
been argued on the basis of experiments that certain antiferromag-
netic, S =  1/2 triangular and kagome materials are quantum spin  
liquids, including the organic materials κ -(BEDT-TTF)2Cu2(CN)3  
(ref. 15) and EtMe3Sb[Pd(dmit)2]2 (refs 16 , 17 ) and the inorganic  
material ZnCu3(OH)6Cl2 (refs 18–20 ).

Recently, the simple honeycomb lattice has become important 
in the exploration of quantum spin liquids, owing to a theoretical 
breakthrough2. Kitaev2 proposed a model in which S =  1/2 spins on 
a honeycomb lattice are coupled to their three nearest neighbours 
by ferromagnetic Ising interactions, with bond-dependent easy axes  
parallel to the x, y and z axes (Fig. 1a). The orthogonal anisotropy of the 
three nearest-neighbour bonds creates a conflict between these bonds, 
giving rise to strong magnetic frustration. By introducing Majorana 
operators, Kitaev showed rigorously that the ground state of the asso-
ciated Hamiltonian is a quantum spin liquid. Topological excitations 
are anticipated, originating from the itinerant Majorana fermions with 
Dirac dispersion and from the localized Majorana fermions that give 
rise to Z2 gauge flux. The Kitaev model provides an alternative pathway 
to a quantum spin liquid compared to the resonant-valence-bond case, 
with the advantage that it has an exactly solvable ground state.

The Kitaev model was thought to be a toy model for theorists 
because pure S =  1/2 spins in general do not accommodate strong 
Ising  anisotropy. However, 5d transition-metal oxides, in  particular 
Ir4+ oxides with five d electrons, were recently shown to be  promising 
 candidates for Kitaev spin liquids. In complex Ir4+ oxides with 
 octahedral coordination of oxygen ions, a spin–orbital Mott state with 
pseudospin Jeff =  1/2 moments is often formed21. If neighbouring IrO6 
 octahedra share an edge, then super-exchange interactions give rise to 
a  ferromagnetic Ising interaction of Jeff =  1/2 moments with easy axes 
perpendicular to the Ir–O2–Ir plane—the essential ingredient of the 
Kitaev model4 .

The spin–orbital Mott insulators α -Na2IrO3 and α -Li2IrO3 crystallize 
in a layered structure, in which IrO6 octahedra form a honeycomb net-
work by sharing the three orthogonal edges of an octahedron (Fig. 1b).  
These honeycomb iridates, and more recently the closely related com-
pound α -RuCl3 , have been studied extensively as possible materiali-
zations of the Kitaev model5–7 . However, their ground states were 
found to be magnetically ordered8–10  rather than forming quantum 
spin liquids, although signatures of the existence of Kitaev interactions 
were captured22,23 . It was argued that additional interactions, such as 
Heisenberg interactions generated by d–d exchange coupling, compete 
with Kitaev-type interactions and stabilize the magnetically ordered 
state6 ,11. Indeed, the Curie–Weiss temperature θCW estimated from the 
magnetic susceptibilities of α -Na2IrO3 and α -Li2IrO3 is not positive, as 
would be expected for Kitaev-type ferromagnetic interactions, which 
points to the presence of additional antiferromagnetic interactions.

The difficulty in realizing a Kitaev spin liquid in the aforementioned 
candidates motivated us to explore other honeycomb-based Ir4+ oxides. 
During this exploration, we discovered a quantum-spin-liquid state 
in the honeycomb Ir oxide H3LiIr2O6, in which all of the interlayer 
Li+ ions of α -Li2IrO3 are replaced with H+ ions in an ion-exchange 
reaction24  (Fig. 1d), but the LiIr2O6 honeycomb plane remains as it 
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exotic phases with non-trivial excitations. Massless Dirac 
fermions can emerge out of itinerant electrons, as demonstrated 
experimentally in graphene1, and a topological quantum spin liquid 
with exotic quasiparticles can be realized in spin-1/2 magnets, as 
proposed theoretically in the Kitaev model2. The quantum spin 
liquid is a long-sought exotic state of matter, in which interacting 
spins remain quantum-disordered without spontaneous symmetry 
breaking3. The Kitaev model describes one example of a quantum 
spin liquid, and can be solved exactly by introducing two types of 
Majorana fermion2. Realizing a Kitaev model in the laboratory, 
however, remains a challenge in materials science. Mott insulators 
with a honeycomb lattice of spin–orbital-entangled pseudospin-1/2 
moments have been proposed4, including the 5d-electron systems 
α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron 
system α-RuCl3 (ref. 7). However, these candidates were found to 
magnetically order rather than form a liquid at sufficiently low 
temperatures8–10, owing to non-Kitaev interactions6,11–13. Here 
we report a quantum-liquid state of pseudospin-1/2 moments in 
the 5d-electron honeycomb compound H3LiIr2O6. This iridate 
does not display magnetic ordering down to 0.05 kelvin, despite 
an interaction energy of about 100 kelvin. We observe signatures 
of low-energy fermionic excitations that originate from a small 
number of spin defects in the nuclear-magnetic-resonance 
relaxation and the specific heat. We therefore conclude that 
H3LiIr2O6 is a quantum spin liquid. This result opens the door 
to finding exotic quasiparticles in a strongly spin–orbit-coupled  
5d-electron transition-metal oxide.

According to the third law of thermodynamics, magnets with many 
spin degrees of freedom must have zero entropy in the ground state. 
The conventional way of releasing the entropy is to form a magnetically 
ordered state. However, there is another way of forming a macroscopi-
cally non-degenerate state: through quantum effects, which hinder 
long-range order. This exotic state of matter is called a quantum spin 
liquid3. Since the first conjecture of the resonant-valence-bond state14 , 
geometrically frustrated S =  1/2 antiferromagnets (where S is the 
spin) on a triangular-based lattice have been studied experimentally 
and theoretically to explore the quantum-spin-liquid state. Although 
the resonant-valence-bond state is believed to be a quantum super-
position of spin singlets, it has not been obtained as an exact  solution 
of any model Hamiltonian. Despite the theoretical challenges, it has 
been argued on the basis of experiments that certain antiferromag-
netic, S =  1/2 triangular and kagome materials are quantum spin  
liquids, including the organic materials κ -(BEDT-TTF)2Cu2(CN)3  
(ref. 15) and EtMe3Sb[Pd(dmit)2]2 (refs 16 , 17 ) and the inorganic  
material ZnCu3(OH)6Cl2 (refs 18–20 ).

Recently, the simple honeycomb lattice has become important 
in the exploration of quantum spin liquids, owing to a theoretical 
breakthrough2. Kitaev2 proposed a model in which S =  1/2 spins on 
a honeycomb lattice are coupled to their three nearest neighbours 
by ferromagnetic Ising interactions, with bond-dependent easy axes  
parallel to the x, y and z axes (Fig. 1a). The orthogonal anisotropy of the 
three nearest-neighbour bonds creates a conflict between these bonds, 
giving rise to strong magnetic frustration. By introducing Majorana 
operators, Kitaev showed rigorously that the ground state of the asso-
ciated Hamiltonian is a quantum spin liquid. Topological excitations 
are anticipated, originating from the itinerant Majorana fermions with 
Dirac dispersion and from the localized Majorana fermions that give 
rise to Z2 gauge flux. The Kitaev model provides an alternative pathway 
to a quantum spin liquid compared to the resonant-valence-bond case, 
with the advantage that it has an exactly solvable ground state.

The Kitaev model was thought to be a toy model for theorists 
because pure S =  1/2 spins in general do not accommodate strong 
Ising  anisotropy. However, 5d transition-metal oxides, in  particular 
Ir4+ oxides with five d electrons, were recently shown to be  promising 
 candidates for Kitaev spin liquids. In complex Ir4+ oxides with 
 octahedral coordination of oxygen ions, a spin–orbital Mott state with 
pseudospin Jeff =  1/2 moments is often formed21. If neighbouring IrO6 
 octahedra share an edge, then super-exchange interactions give rise to 
a  ferromagnetic Ising interaction of Jeff =  1/2 moments with easy axes 
perpendicular to the Ir–O2–Ir plane—the essential ingredient of the 
Kitaev model4 .

The spin–orbital Mott insulators α -Na2IrO3 and α -Li2IrO3 crystallize 
in a layered structure, in which IrO6 octahedra form a honeycomb net-
work by sharing the three orthogonal edges of an octahedron (Fig. 1b).  
These honeycomb iridates, and more recently the closely related com-
pound α -RuCl3 , have been studied extensively as possible materiali-
zations of the Kitaev model5–7 . However, their ground states were 
found to be magnetically ordered8–10  rather than forming quantum 
spin liquids, although signatures of the existence of Kitaev interactions 
were captured22,23 . It was argued that additional interactions, such as 
Heisenberg interactions generated by d–d exchange coupling, compete 
with Kitaev-type interactions and stabilize the magnetically ordered 
state6 ,11. Indeed, the Curie–Weiss temperature θCW estimated from the 
magnetic susceptibilities of α -Na2IrO3 and α -Li2IrO3 is not positive, as 
would be expected for Kitaev-type ferromagnetic interactions, which 
points to the presence of additional antiferromagnetic interactions.

The difficulty in realizing a Kitaev spin liquid in the aforementioned 
candidates motivated us to explore other honeycomb-based Ir4+ oxides. 
During this exploration, we discovered a quantum-spin-liquid state 
in the honeycomb Ir oxide H3LiIr2O6, in which all of the interlayer 
Li+ ions of α -Li2IrO3 are replaced with H+ ions in an ion-exchange 
reaction24  (Fig. 1d), but the LiIr2O6 honeycomb plane remains as it 
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characteristic temperature T*. T*, at which a knee-like structure is 
observed, increases linearly with B as kBT* ≈  µBB, where kB is the 
Boltzmann constant. This behaviour can be understood as a suppres-
sion of low-lying spin excitations with the application of a magnetic 
field over an energy scale of the Zeeman energy, µBB. We note that K(T) 
does not depend on magnetic field at low temperatures, in marked 
contrast to the strong B dependence of (T1T)−1. The temperature- 
independent and non-zero static susceptibility K(T) at low tempera-
tures must be dominated by different physics from T1, indicative of the 
presence of a duality in the magnetic response.

The low-lying spin excitations are identified also in C(T) at low  
temperatures (Fig. 4a). On cooling in B =  0, C/T does not approach zero 
and shows a weak power-law increase of C/T ∝  T−1/2, which suggests 
the presence of highly degenerate low-lying excitations around energy 
E =  0. With the application of B, a peak emerges in C/T at roughly 
T*(B)/2, where T* is the knee temperature in (T1T)−1. Below the peak, 
C/T decreases rapidly with decreasing T, almost linearly with T in the 
low-T limit, consistent with T1. C/T ∝  T is expected for a V-shaped 
density of states D(E) ∝  | E|. The entropy S(T, B) shown in Fig. 4b is 
calculated from C/T and does not depend appreciably on B above T*, 
indicating the weight transfer of the intense low-lying excitations over 
the energy scale of µBB. The field dependence of S(T, B) is linked to 
the temperature dependence of the magnetization M(T, B) through the  
Maxwell relationship (∂ S/∂ B)T =  (∂ M/∂ T)B. In M(T, B)/B for the same 
sample, we observe a Curie-like increase in the low-B limit at low tem-
peratures, which is superposed on the intrinsic and T-independent 
susceptibility K(T) (Extended Data Fig. 2a). The T-dependent part of 
M(T, B)—the Curie-like contribution—is well reproduced from the 
B dependence of S(T, B), which means that the low-lying excitations 
observed in C originate from the Curie-like contribution in M/B.

We model the observed excitations in terms of an energy-symmetric 
fermionic density of states D(E, B) (Fig. 4c). In zero magnetic field, 
the density of states D(E, 0) =  Γ| E|−1/2 (where Γ is a constant) has an 
E =  0 singularity, giving rise to C/T ∝  T−1/2. At a non-zero field B,  

the low-energy region below αµΒB (| E|  <  αµΒB) (where α is a constant) 
is replaced with the V-shaped function D(E, B) =  4Γ|E| /(αµΒB)3/2, 
which represents the excitation gap. Because Γ is a constant, the total 
number of states is conserved. We found that, by Fermi-averaging over 
kBT, the simple model D(E, B) with α =  2.9 and Γ =  4.3 ×  108  J−1/2 per 
Ir atom reproduces both C(T, B) and T1(T, B) reasonably well at low 
temperatures, as indicated by the dashed lines in the insets of Figs 3b 
and 4a. Incidentally, the presence of an excitation gap scaled by αµΒB 
manifests as a scaling of C, T1 and M as a function of T/B (Extended 
Data Figs 2c, 5 ).

The NMR spin relaxation rate −T1
1 clearly captures the same 

 fermionic excitations as C, with an E =  0 singularity and a likely 
 particle–hole symmetry, which originates from the Curie-like contri-
bution in M/B. The absence of the Curie-like contribution in K(T) 
implies that these fermionic excitations are local and produced by 
 magnetic defects embedded in the bulk spin liquid, the density of which 
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Figure 2 | Evidence from NMR spectroscopy of a spin-liquid ground 
state in H3LiIr2O6 down to 1.0 K. a, b, 7Li (a) and 1H (b) NMR spectra 
for a magnetic field B =  5  T and 2 T, respectively, applied parallel to the 
honeycomb plane (‖). No appreciable broadening of the peak is observed 
down to 1.0 K, which provides evidence for intact paramagnetism and 
hence a spin-liquid state. The dotted vertical line indicates the spectral 
positions of nuclei without internal fields (K =  0). In 7Li NMR, only one 
peak, assigned to Li ions in the honeycomb layer, is observed, indicating 
that no Li ions are left in the interlayer sites after the ion-exchange process. 
The spectra are offset and coloured in various shades for clarity.
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Figure 3 | The Knight shift and relaxation rate for H3LiIr2O6 reveal the 
intrinsic static susceptibility and spin dynamics. a, Knight shift K, which 
represents the intrinsic spin susceptibility, for 7Li at fields B =  2 T and 5  T 
parallel to the honeycomb plane (‖) and 2 T perpendicular to the plane 
(⊥). No appreciable B dependence of K is observed. K remains non-zero 
and constant from 40 K to below 1 K. b, NMR relaxation rate −T1

1 plotted as 
(T1T)−1 as a function of T, measured for B parallel to the honeycomb 
plane. (T1T)−1 measures the momentum q-averaged imaginary part of 
susceptibility χ″ (q, ω0)/ω0 at a very low-energy ω0, which reflects the 
density of low-energy spin excitations. The almost temperature-
independent behaviour at low temperatures indicates the presence of a 
non-zero density of low-lying spin excitations. (T1T)−1 is particularly 
suppressed below T* ≈  µBB/kB, which indicates the opening of a B-induced 
excitation gap on an energy scale of the Zeeman energy. The error bars 
indicate the standard deviations in the fitting of the nuclear relaxation with 
a stretched exponential function (see Method). The inset shows a scaling 
plot: −T1

1 versus T/B. The data for 1H (green and light blue) are multiplied 
by a factor of 0.16 to overlap with those for 7Li (blue, dark blue and red). 
The dashed line indicates the T1 calculated for 7Li (see Extended Data  
Fig. 5 ) using the density of states model shown in Fig. 4c.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

3 4 2  |  N A T U R E  |  V O L  5 5 4  |  1 5  F E B R U A R Y  2 0 1 8

LETTERRESEARCH

was (Fig. 1b)25. Powder X-ray diffraction indicates the presence of 
 stacking faults between the honeycomb planes (Methods, Extended 
Data Fig. 1). The presence of magnetic defects with a density of 1%, 
which probably originate from impurities or vacancies, is indicated 
by the  temperature- and magnetic-field-dependent magnetization  
M(T, B) and the low-temperature specific heat C(T, B) (Extended  
Data Fig. 2).

The resistivity ρ(T) of H3LiIr2O6 (Extended Data Fig. 3)  exhibits 
insulating behaviour with an activation energy of approximately 
0.12 eV. In addition, Curie–Weiss behaviour is observed in the mag-
netic susceptibility χ(T) with an effective moment of approximately 
1.60µB per Ir atom (where µB is the Bohr magneton) at temperatures 
above 200 K (Fig. 1e). These findings indicate that H3LiIr2O6 is a  
spin–orbital Jeff =  1/2 Mott insulator. We find a negative value for θCW 
of −105 K, which implies overall antiferromagnetic interactions, as in 
other honeycomb Ir oxides5,6. The energy scale of magnetic interactions 
is of the order of 100 K, but no trace of magnetic ordering is observed 
in χ(T) down to 2 K, in sharp contrast to other Kitaev candidates5–7 . 
Accordingly, C(T) down to 0.05 K (Fig. 1f) does not show any signature 
of a phase transition. These results suggest that the ground state of 
H3LiIr2O6 is a liquid state of Jeff =  1/2 moments.

χ(T) and C(T) are not very sensitive to a weak or glassy magnetic 
ordering. We therefore conducted 7Li and 1H NMR measurements 
on aligned powders (Fig. 2a, b) to exclude the possibility of any 
 magnetic ordering. The absence of apparent peak splitting or broad-
ening on  cooling (see also Extended Data Fig. 4a) clearly indicates 
that the system remains paramagnetic down to 1 K, roughly 1% of the 

energy scale of magnetic interaction. We therefore conclude that a 
 quantum-spin-liquid state is realized in honeycomb H3LiIr2O6.

The Knight shift K(T) represents an intrinsic magnetic suscepti bility, 
free from magnetic defects. In Fig. 3a, K(T) is shown for 7Li with mag-
netic fields parallel and perpendicular to the honeycomb plane and no 
indication of magnetic ordering is observed. The sizable anisotropy 
in the susceptibility of up to around 2 between the two field orienta-
tions should originate from spin–orbit coupling, but is not expected 
for the Kitaev model with equal Ising couplings on the three bonds. Its 
existence probably implies an anisotropy in the magnitude of the three 
Ising couplings and/or the presence of off-diagonal interactions12,26. 
On cooling below about 200 K, K(T) deviates from the Curie–Weiss 
behaviour that is seen at higher temperatures, exhibiting a broad peak 
at around 130 K followed by a gradual decrease to a non-zero value. The 
non-zero susceptibility in the low-temperature limit is analogous to the 
susceptibilities observed in organic spin liquids15,16, which have been 
interpreted as evidence for gapless spin excitations. However, spin–orbit 
coupling can lead to a non-zero susceptibility even in a spin liquid with 
a finite excitation gap; because the spin–orbit coupling is strong for Ir 
(λSO ≈  0.5 eV), the non-zero susceptibility does not necessarily imply 
gapless excitations.

The presence of low-lying spin excitations is captured by the NMR 
spin relaxation rate −T1

1. In Fig. 3b we plot (T1T)−1, which measures the 
density of spin excitations. At a low magnetic field of B =  1 T, (T1T)−1 
for 1H and 7Li remains non-zero and shows only weak temperature 
dependence below about 40 K. With increasing B, however, (T1T)−1 at 
low temperatures is suppressed and decreases rapidly below a 
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Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6. 
a, Kitaev model on a honeycomb lattice. S =  1/2 spin moments (indicated 
by arrows) are present on the honeycomb lattice, coupled by bond-
dependent ferromagnetic Ising interactions. The three 120° bonds with 
orthogonal Ising axes compete with each other, giving rise to strong 
magnetic frustration and hence a quantum-spin-liquid state. b, LiIr2O6 
layer unit with an edge-shared network of IrO6 octahedra for α -Li2IrO3 
and H3LiIr2O6. Ir4+ ions with Jeff =  1/2 moments form a honeycomb 
sublattice, as indicated by the dotted lines. The edge-shared Ir–O2–Ir bond 
gives rise to ferromagnetic Ising interaction between the neighbouring 
Jeff =  1/2 moments. c, Layer stacking of α -Li2IrO3 (ref. 30). d, Layer 
stacking of H3LiIr2O6 (ref. 30), in which the interlayer Li+ ions are 
replaced with H+ ions. e, Magnetic susceptibility χ(T) for H3LiIr2O6 

measured at 1 T. The raw data (solid line and circles) is shown along with 
the presumed intrinsic χ (dotted line) after numerically subtracting a 
low-temperature Curie-like contribution, which probably originates from 
magnetic defects (see also Extended Data Fig. 2a). The inset shows 1/χ as 
a function of temperature to emphasize the high-temperature Curie–Weiss 
behaviour of localized Jeff =  1/2 moments. The extrapolation to T =  0 
provides an estimate of the antiferromagnetic Curie–Weiss temperature of 
θCW =  − 105 K. f, Specific heat C as a function of T (main panel) and C/T as 
a function T2 (inset) down to 0.05 K, indicating no signature of magnetic 
ordering. The large non-lattice contribution suggests the presence of low-
lying spin excitations. The nuclear Schottky contribution is subtracted  
(see Methods).
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was (Fig. 1b)25. Powder X-ray diffraction indicates the presence of 
 stacking faults between the honeycomb planes (Methods, Extended 
Data Fig. 1). The presence of magnetic defects with a density of 1%, 
which probably originate from impurities or vacancies, is indicated 
by the  temperature- and magnetic-field-dependent magnetization  
M(T, B) and the low-temperature specific heat C(T, B) (Extended  
Data Fig. 2).

The resistivity ρ(T) of H3LiIr2O6 (Extended Data Fig. 3)  exhibits 
insulating behaviour with an activation energy of approximately 
0.12 eV. In addition, Curie–Weiss behaviour is observed in the mag-
netic susceptibility χ(T) with an effective moment of approximately 
1.60µB per Ir atom (where µB is the Bohr magneton) at temperatures 
above 200 K (Fig. 1e). These findings indicate that H3LiIr2O6 is a  
spin–orbital Jeff =  1/2 Mott insulator. We find a negative value for θCW 
of −105 K, which implies overall antiferromagnetic interactions, as in 
other honeycomb Ir oxides5,6. The energy scale of magnetic interactions 
is of the order of 100 K, but no trace of magnetic ordering is observed 
in χ(T) down to 2 K, in sharp contrast to other Kitaev candidates5–7 . 
Accordingly, C(T) down to 0.05 K (Fig. 1f) does not show any signature 
of a phase transition. These results suggest that the ground state of 
H3LiIr2O6 is a liquid state of Jeff =  1/2 moments.

χ(T) and C(T) are not very sensitive to a weak or glassy magnetic 
ordering. We therefore conducted 7Li and 1H NMR measurements 
on aligned powders (Fig. 2a, b) to exclude the possibility of any 
 magnetic ordering. The absence of apparent peak splitting or broad-
ening on  cooling (see also Extended Data Fig. 4a) clearly indicates 
that the system remains paramagnetic down to 1 K, roughly 1% of the 

energy scale of magnetic interaction. We therefore conclude that a 
 quantum-spin-liquid state is realized in honeycomb H3LiIr2O6.

The Knight shift K(T) represents an intrinsic magnetic suscepti bility, 
free from magnetic defects. In Fig. 3a, K(T) is shown for 7Li with mag-
netic fields parallel and perpendicular to the honeycomb plane and no 
indication of magnetic ordering is observed. The sizable anisotropy 
in the susceptibility of up to around 2 between the two field orienta-
tions should originate from spin–orbit coupling, but is not expected 
for the Kitaev model with equal Ising couplings on the three bonds. Its 
existence probably implies an anisotropy in the magnitude of the three 
Ising couplings and/or the presence of off-diagonal interactions12,26. 
On cooling below about 200 K, K(T) deviates from the Curie–Weiss 
behaviour that is seen at higher temperatures, exhibiting a broad peak 
at around 130 K followed by a gradual decrease to a non-zero value. The 
non-zero susceptibility in the low-temperature limit is analogous to the 
susceptibilities observed in organic spin liquids15,16, which have been 
interpreted as evidence for gapless spin excitations. However, spin–orbit 
coupling can lead to a non-zero susceptibility even in a spin liquid with 
a finite excitation gap; because the spin–orbit coupling is strong for Ir 
(λSO ≈  0.5 eV), the non-zero susceptibility does not necessarily imply 
gapless excitations.

The presence of low-lying spin excitations is captured by the NMR 
spin relaxation rate −T1

1. In Fig. 3b we plot (T1T)−1, which measures the 
density of spin excitations. At a low magnetic field of B =  1 T, (T1T)−1 
for 1H and 7Li remains non-zero and shows only weak temperature 
dependence below about 40 K. With increasing B, however, (T1T)−1 at 
low temperatures is suppressed and decreases rapidly below a 
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Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6. 
a, Kitaev model on a honeycomb lattice. S =  1/2 spin moments (indicated 
by arrows) are present on the honeycomb lattice, coupled by bond-
dependent ferromagnetic Ising interactions. The three 120° bonds with 
orthogonal Ising axes compete with each other, giving rise to strong 
magnetic frustration and hence a quantum-spin-liquid state. b, LiIr2O6 
layer unit with an edge-shared network of IrO6 octahedra for α -Li2IrO3 
and H3LiIr2O6. Ir4+ ions with Jeff =  1/2 moments form a honeycomb 
sublattice, as indicated by the dotted lines. The edge-shared Ir–O2–Ir bond 
gives rise to ferromagnetic Ising interaction between the neighbouring 
Jeff =  1/2 moments. c, Layer stacking of α -Li2IrO3 (ref. 30). d, Layer 
stacking of H3LiIr2O6 (ref. 30), in which the interlayer Li+ ions are 
replaced with H+ ions. e, Magnetic susceptibility χ(T) for H3LiIr2O6 

measured at 1 T. The raw data (solid line and circles) is shown along with 
the presumed intrinsic χ (dotted line) after numerically subtracting a 
low-temperature Curie-like contribution, which probably originates from 
magnetic defects (see also Extended Data Fig. 2a). The inset shows 1/χ as 
a function of temperature to emphasize the high-temperature Curie–Weiss 
behaviour of localized Jeff =  1/2 moments. The extrapolation to T =  0 
provides an estimate of the antiferromagnetic Curie–Weiss temperature of 
θCW =  − 105 K. f, Specific heat C as a function of T (main panel) and C/T as 
a function T2 (inset) down to 0.05 K, indicating no signature of magnetic 
ordering. The large non-lattice contribution suggests the presence of low-
lying spin excitations. The nuclear Schottky contribution is subtracted  
(see Methods).
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was (Fig. 1b)25. Powder X-ray diffraction indicates the presence of 
 stacking faults between the honeycomb planes (Methods, Extended 
Data Fig. 1). The presence of magnetic defects with a density of 1%, 
which probably originate from impurities or vacancies, is indicated 
by the  temperature- and magnetic-field-dependent magnetization  
M(T, B) and the low-temperature specific heat C(T, B) (Extended  
Data Fig. 2).

The resistivity ρ(T) of H3LiIr2O6 (Extended Data Fig. 3)  exhibits 
insulating behaviour with an activation energy of approximately 
0.12 eV. In addition, Curie–Weiss behaviour is observed in the mag-
netic susceptibility χ(T) with an effective moment of approximately 
1.60µB per Ir atom (where µB is the Bohr magneton) at temperatures 
above 200 K (Fig. 1e). These findings indicate that H3LiIr2O6 is a  
spin–orbital Jeff =  1/2 Mott insulator. We find a negative value for θCW 
of −105 K, which implies overall antiferromagnetic interactions, as in 
other honeycomb Ir oxides5,6. The energy scale of magnetic interactions 
is of the order of 100 K, but no trace of magnetic ordering is observed 
in χ(T) down to 2 K, in sharp contrast to other Kitaev candidates5–7 . 
Accordingly, C(T) down to 0.05 K (Fig. 1f) does not show any signature 
of a phase transition. These results suggest that the ground state of 
H3LiIr2O6 is a liquid state of Jeff =  1/2 moments.

χ(T) and C(T) are not very sensitive to a weak or glassy magnetic 
ordering. We therefore conducted 7Li and 1H NMR measurements 
on aligned powders (Fig. 2a, b) to exclude the possibility of any 
 magnetic ordering. The absence of apparent peak splitting or broad-
ening on  cooling (see also Extended Data Fig. 4a) clearly indicates 
that the system remains paramagnetic down to 1 K, roughly 1% of the 

energy scale of magnetic interaction. We therefore conclude that a 
 quantum-spin-liquid state is realized in honeycomb H3LiIr2O6.

The Knight shift K(T) represents an intrinsic magnetic suscepti bility, 
free from magnetic defects. In Fig. 3a, K(T) is shown for 7Li with mag-
netic fields parallel and perpendicular to the honeycomb plane and no 
indication of magnetic ordering is observed. The sizable anisotropy 
in the susceptibility of up to around 2 between the two field orienta-
tions should originate from spin–orbit coupling, but is not expected 
for the Kitaev model with equal Ising couplings on the three bonds. Its 
existence probably implies an anisotropy in the magnitude of the three 
Ising couplings and/or the presence of off-diagonal interactions12,26. 
On cooling below about 200 K, K(T) deviates from the Curie–Weiss 
behaviour that is seen at higher temperatures, exhibiting a broad peak 
at around 130 K followed by a gradual decrease to a non-zero value. The 
non-zero susceptibility in the low-temperature limit is analogous to the 
susceptibilities observed in organic spin liquids15,16, which have been 
interpreted as evidence for gapless spin excitations. However, spin–orbit 
coupling can lead to a non-zero susceptibility even in a spin liquid with 
a finite excitation gap; because the spin–orbit coupling is strong for Ir 
(λSO ≈  0.5 eV), the non-zero susceptibility does not necessarily imply 
gapless excitations.

The presence of low-lying spin excitations is captured by the NMR 
spin relaxation rate −T1

1. In Fig. 3b we plot (T1T)−1, which measures the 
density of spin excitations. At a low magnetic field of B =  1 T, (T1T)−1 
for 1H and 7Li remains non-zero and shows only weak temperature 
dependence below about 40 K. With increasing B, however, (T1T)−1 at 
low temperatures is suppressed and decreases rapidly below a 
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Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6. 
a, Kitaev model on a honeycomb lattice. S =  1/2 spin moments (indicated 
by arrows) are present on the honeycomb lattice, coupled by bond-
dependent ferromagnetic Ising interactions. The three 120° bonds with 
orthogonal Ising axes compete with each other, giving rise to strong 
magnetic frustration and hence a quantum-spin-liquid state. b, LiIr2O6 
layer unit with an edge-shared network of IrO6 octahedra for α -Li2IrO3 
and H3LiIr2O6. Ir4+ ions with Jeff =  1/2 moments form a honeycomb 
sublattice, as indicated by the dotted lines. The edge-shared Ir–O2–Ir bond 
gives rise to ferromagnetic Ising interaction between the neighbouring 
Jeff =  1/2 moments. c, Layer stacking of α -Li2IrO3 (ref. 30). d, Layer 
stacking of H3LiIr2O6 (ref. 30), in which the interlayer Li+ ions are 
replaced with H+ ions. e, Magnetic susceptibility χ(T) for H3LiIr2O6 

measured at 1 T. The raw data (solid line and circles) is shown along with 
the presumed intrinsic χ (dotted line) after numerically subtracting a 
low-temperature Curie-like contribution, which probably originates from 
magnetic defects (see also Extended Data Fig. 2a). The inset shows 1/χ as 
a function of temperature to emphasize the high-temperature Curie–Weiss 
behaviour of localized Jeff =  1/2 moments. The extrapolation to T =  0 
provides an estimate of the antiferromagnetic Curie–Weiss temperature of 
θCW =  − 105 K. f, Specific heat C as a function of T (main panel) and C/T as 
a function T2 (inset) down to 0.05 K, indicating no signature of magnetic 
ordering. The large non-lattice contribution suggests the presence of low-
lying spin excitations. The nuclear Schottky contribution is subtracted  
(see Methods).
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was (Fig. 1b)25. Powder X-ray diffraction indicates the presence of 
 stacking faults between the honeycomb planes (Methods, Extended 
Data Fig. 1). The presence of magnetic defects with a density of 1%, 
which probably originate from impurities or vacancies, is indicated 
by the  temperature- and magnetic-field-dependent magnetization  
M(T, B) and the low-temperature specific heat C(T, B) (Extended  
Data Fig. 2).

The resistivity ρ(T) of H3LiIr2O6 (Extended Data Fig. 3)  exhibits 
insulating behaviour with an activation energy of approximately 
0.12 eV. In addition, Curie–Weiss behaviour is observed in the mag-
netic susceptibility χ(T) with an effective moment of approximately 
1.60µB per Ir atom (where µB is the Bohr magneton) at temperatures 
above 200 K (Fig. 1e). These findings indicate that H3LiIr2O6 is a  
spin–orbital Jeff =  1/2 Mott insulator. We find a negative value for θCW 
of −105 K, which implies overall antiferromagnetic interactions, as in 
other honeycomb Ir oxides5,6. The energy scale of magnetic interactions 
is of the order of 100 K, but no trace of magnetic ordering is observed 
in χ(T) down to 2 K, in sharp contrast to other Kitaev candidates5–7 . 
Accordingly, C(T) down to 0.05 K (Fig. 1f) does not show any signature 
of a phase transition. These results suggest that the ground state of 
H3LiIr2O6 is a liquid state of Jeff =  1/2 moments.

χ(T) and C(T) are not very sensitive to a weak or glassy magnetic 
ordering. We therefore conducted 7Li and 1H NMR measurements 
on aligned powders (Fig. 2a, b) to exclude the possibility of any 
 magnetic ordering. The absence of apparent peak splitting or broad-
ening on  cooling (see also Extended Data Fig. 4a) clearly indicates 
that the system remains paramagnetic down to 1 K, roughly 1% of the 

energy scale of magnetic interaction. We therefore conclude that a 
 quantum-spin-liquid state is realized in honeycomb H3LiIr2O6.

The Knight shift K(T) represents an intrinsic magnetic suscepti bility, 
free from magnetic defects. In Fig. 3a, K(T) is shown for 7Li with mag-
netic fields parallel and perpendicular to the honeycomb plane and no 
indication of magnetic ordering is observed. The sizable anisotropy 
in the susceptibility of up to around 2 between the two field orienta-
tions should originate from spin–orbit coupling, but is not expected 
for the Kitaev model with equal Ising couplings on the three bonds. Its 
existence probably implies an anisotropy in the magnitude of the three 
Ising couplings and/or the presence of off-diagonal interactions12,26. 
On cooling below about 200 K, K(T) deviates from the Curie–Weiss 
behaviour that is seen at higher temperatures, exhibiting a broad peak 
at around 130 K followed by a gradual decrease to a non-zero value. The 
non-zero susceptibility in the low-temperature limit is analogous to the 
susceptibilities observed in organic spin liquids15,16, which have been 
interpreted as evidence for gapless spin excitations. However, spin–orbit 
coupling can lead to a non-zero susceptibility even in a spin liquid with 
a finite excitation gap; because the spin–orbit coupling is strong for Ir 
(λSO ≈  0.5 eV), the non-zero susceptibility does not necessarily imply 
gapless excitations.

The presence of low-lying spin excitations is captured by the NMR 
spin relaxation rate −T1

1. In Fig. 3b we plot (T1T)−1, which measures the 
density of spin excitations. At a low magnetic field of B =  1 T, (T1T)−1 
for 1H and 7Li remains non-zero and shows only weak temperature 
dependence below about 40 K. With increasing B, however, (T1T)−1 at 
low temperatures is suppressed and decreases rapidly below a 
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Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6. 
a, Kitaev model on a honeycomb lattice. S =  1/2 spin moments (indicated 
by arrows) are present on the honeycomb lattice, coupled by bond-
dependent ferromagnetic Ising interactions. The three 120° bonds with 
orthogonal Ising axes compete with each other, giving rise to strong 
magnetic frustration and hence a quantum-spin-liquid state. b, LiIr2O6 
layer unit with an edge-shared network of IrO6 octahedra for α -Li2IrO3 
and H3LiIr2O6. Ir4+ ions with Jeff =  1/2 moments form a honeycomb 
sublattice, as indicated by the dotted lines. The edge-shared Ir–O2–Ir bond 
gives rise to ferromagnetic Ising interaction between the neighbouring 
Jeff =  1/2 moments. c, Layer stacking of α -Li2IrO3 (ref. 30). d, Layer 
stacking of H3LiIr2O6 (ref. 30), in which the interlayer Li+ ions are 
replaced with H+ ions. e, Magnetic susceptibility χ(T) for H3LiIr2O6 

measured at 1 T. The raw data (solid line and circles) is shown along with 
the presumed intrinsic χ (dotted line) after numerically subtracting a 
low-temperature Curie-like contribution, which probably originates from 
magnetic defects (see also Extended Data Fig. 2a). The inset shows 1/χ as 
a function of temperature to emphasize the high-temperature Curie–Weiss 
behaviour of localized Jeff =  1/2 moments. The extrapolation to T =  0 
provides an estimate of the antiferromagnetic Curie–Weiss temperature of 
θCW =  − 105 K. f, Specific heat C as a function of T (main panel) and C/T as 
a function T2 (inset) down to 0.05 K, indicating no signature of magnetic 
ordering. The large non-lattice contribution suggests the presence of low-
lying spin excitations. The nuclear Schottky contribution is subtracted  
(see Methods).
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was (Fig. 1b)25. Powder X-ray diffraction indicates the presence of 
 stacking faults between the honeycomb planes (Methods, Extended 
Data Fig. 1). The presence of magnetic defects with a density of 1%, 
which probably originate from impurities or vacancies, is indicated 
by the  temperature- and magnetic-field-dependent magnetization  
M(T, B) and the low-temperature specific heat C(T, B) (Extended  
Data Fig. 2).

The resistivity ρ(T) of H3LiIr2O6 (Extended Data Fig. 3)  exhibits 
insulating behaviour with an activation energy of approximately 
0.12 eV. In addition, Curie–Weiss behaviour is observed in the mag-
netic susceptibility χ(T) with an effective moment of approximately 
1.60µB per Ir atom (where µB is the Bohr magneton) at temperatures 
above 200 K (Fig. 1e). These findings indicate that H3LiIr2O6 is a  
spin–orbital Jeff =  1/2 Mott insulator. We find a negative value for θCW 
of −105 K, which implies overall antiferromagnetic interactions, as in 
other honeycomb Ir oxides5,6. The energy scale of magnetic interactions 
is of the order of 100 K, but no trace of magnetic ordering is observed 
in χ(T) down to 2 K, in sharp contrast to other Kitaev candidates5–7 . 
Accordingly, C(T) down to 0.05 K (Fig. 1f) does not show any signature 
of a phase transition. These results suggest that the ground state of 
H3LiIr2O6 is a liquid state of Jeff =  1/2 moments.

χ(T) and C(T) are not very sensitive to a weak or glassy magnetic 
ordering. We therefore conducted 7Li and 1H NMR measurements 
on aligned powders (Fig. 2a, b) to exclude the possibility of any 
 magnetic ordering. The absence of apparent peak splitting or broad-
ening on  cooling (see also Extended Data Fig. 4a) clearly indicates 
that the system remains paramagnetic down to 1 K, roughly 1% of the 

energy scale of magnetic interaction. We therefore conclude that a 
 quantum-spin-liquid state is realized in honeycomb H3LiIr2O6.

The Knight shift K(T) represents an intrinsic magnetic suscepti bility, 
free from magnetic defects. In Fig. 3a, K(T) is shown for 7Li with mag-
netic fields parallel and perpendicular to the honeycomb plane and no 
indication of magnetic ordering is observed. The sizable anisotropy 
in the susceptibility of up to around 2 between the two field orienta-
tions should originate from spin–orbit coupling, but is not expected 
for the Kitaev model with equal Ising couplings on the three bonds. Its 
existence probably implies an anisotropy in the magnitude of the three 
Ising couplings and/or the presence of off-diagonal interactions12,26. 
On cooling below about 200 K, K(T) deviates from the Curie–Weiss 
behaviour that is seen at higher temperatures, exhibiting a broad peak 
at around 130 K followed by a gradual decrease to a non-zero value. The 
non-zero susceptibility in the low-temperature limit is analogous to the 
susceptibilities observed in organic spin liquids15,16, which have been 
interpreted as evidence for gapless spin excitations. However, spin–orbit 
coupling can lead to a non-zero susceptibility even in a spin liquid with 
a finite excitation gap; because the spin–orbit coupling is strong for Ir 
(λSO ≈  0.5 eV), the non-zero susceptibility does not necessarily imply 
gapless excitations.

The presence of low-lying spin excitations is captured by the NMR 
spin relaxation rate −T1

1. In Fig. 3b we plot (T1T)−1, which measures the 
density of spin excitations. At a low magnetic field of B =  1 T, (T1T)−1 
for 1H and 7Li remains non-zero and shows only weak temperature 
dependence below about 40 K. With increasing B, however, (T1T)−1 at 
low temperatures is suppressed and decreases rapidly below a 
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Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6. 
a, Kitaev model on a honeycomb lattice. S =  1/2 spin moments (indicated 
by arrows) are present on the honeycomb lattice, coupled by bond-
dependent ferromagnetic Ising interactions. The three 120° bonds with 
orthogonal Ising axes compete with each other, giving rise to strong 
magnetic frustration and hence a quantum-spin-liquid state. b, LiIr2O6 
layer unit with an edge-shared network of IrO6 octahedra for α -Li2IrO3 
and H3LiIr2O6. Ir4+ ions with Jeff =  1/2 moments form a honeycomb 
sublattice, as indicated by the dotted lines. The edge-shared Ir–O2–Ir bond 
gives rise to ferromagnetic Ising interaction between the neighbouring 
Jeff =  1/2 moments. c, Layer stacking of α -Li2IrO3 (ref. 30). d, Layer 
stacking of H3LiIr2O6 (ref. 30), in which the interlayer Li+ ions are 
replaced with H+ ions. e, Magnetic susceptibility χ(T) for H3LiIr2O6 

measured at 1 T. The raw data (solid line and circles) is shown along with 
the presumed intrinsic χ (dotted line) after numerically subtracting a 
low-temperature Curie-like contribution, which probably originates from 
magnetic defects (see also Extended Data Fig. 2a). The inset shows 1/χ as 
a function of temperature to emphasize the high-temperature Curie–Weiss 
behaviour of localized Jeff =  1/2 moments. The extrapolation to T =  0 
provides an estimate of the antiferromagnetic Curie–Weiss temperature of 
θCW =  − 105 K. f, Specific heat C as a function of T (main panel) and C/T as 
a function T2 (inset) down to 0.05 K, indicating no signature of magnetic 
ordering. The large non-lattice contribution suggests the presence of low-
lying spin excitations. The nuclear Schottky contribution is subtracted  
(see Methods).
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3. Spin-orbit related effects 
Spin-orbit coupling vs. Jahn-Teller effect

Weak spin-orbit coupling (3d) and large spins
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Spin-orbit scenario

t2g xz/yz

xy

EJT = -DJT/3-l/2

Mean-field approximation for the SOC

Spin-orbit coupling competes with the Jahn-Teller effect!

t2g

Jahn-Teller scenario
xz/yz

-

DJT
3

xy
2DJT
3

EJT = -2DJT/3

E.g. for Fe2+, tetragonal distortions
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3. Spin-orbit related effects 
Spin-orbit coupling vs. Jahn-Teller effect

Strong spin-orbit coupling and small spins: d5

Spin-orbit scenario

t2g
xz/yz

xy

Ir4+ in octahedra (t2g5), or Cu2+ in tetrahedra (t2g5)

Jahn-Teller scenario

t2g jeff=3/2

jeff=1/2

Spin-orbit coupling suppresses the Jahn-Teller effect!

Is this what goes in CuAl2O4? 

All components have the same weights  
=> No distortions

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin"¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2ghopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is theS¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ ' JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyzi þ ijxziÞ state, lz ¼ 1 (right).

p yxy xy

p zxz xz

180 o

(a)

p z

p z

(b)

xz yz

yz xz

o90

FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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Abstract
CuAl2O4 is a normal spinel oxide having quantum spin, S  =  1/2 for Cu2+. It is a rather unique 
feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral 
position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a 
quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K 
in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic 
susceptibility while it displays logarithmic relaxation behavior in a time dependence of the 
magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts 
towards a higher temperature with magnetic fields. On the other hand, there is no evidence 
of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled 
from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, 
thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign 
of structural distortion either although Cu2+ is a Jahn–Teller active ion. Thus, we claim that 
an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also 
exhibits a large frustration parameter, f  =  |θCW/Tm| ~ 67, one of the largest values reported for 
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the analysis of our heat capacity data. We initially checked 
the quality of the sample by x-ray diffraction experiments 
(Miniflex II, Rigaku). There were small (less than 1%) impu-
rity of Al2O3. DC magnetization measurements were per-
formed using a SQUID magnetometer (MPMS, Quantum 
Design, USA) in fields up to 5 T in the temperature range of 
1.8–300 K. We also used a He3 insert of the SQUID magne-
tometer to measure dc magnetization data down to 0.5 K. In 
order to study further the frequency dependence, we measured 
ac susceptibility under an ac field of 0.3 mT using the SQUID 
magnetometer at different frequencies from 1 to 1000 Hz in 
the temperature range of 1.8–150 K with both zero and small 
dc bias fields. Magnetic relaxation measurements were carried 
out using the SQUID magnetometer under a standard proto-
col: we collected the data under 5 T as a function of time after 
zero-field cooling (ZFC).

Heat capacity was measured by a relaxation technique from 
0.5 to 300 K with a commercial system (PPMS, Quantum 
Design, USA). Powder neutron diffraction (ND) experiments 
were carried out down to 0.4 K using two neutron instru-
ments: one is the high-resolution time-of-flight diffractometer 
(HRPD) at the ISIS Facility, UK and the other is a thermal 
triple-axis spectrometer, TAS2 of JAEA, Japan operated in a 
two-axis mode between 1.45 and 10 K. We also made sepa-
rate high-resolution x-ray diffraction measurement using a 
commercial machine (D8 advance, Bruker) from 300 to 40 K 
equipped with a low temperature cryostat: FullProf was used 
for structure analysis [21].

Results and discussion

Our high-resolution neutron and x-ray powder diffraction data 
confirm that our CuAl2O4 sample forms in a ‘largely normal’ 
spinel structure (see figures  1(a) and 4(a)) with Cu2+ ions  
at the A-site and Al3+ ions at the B-site (space group Fd-3m, 
No. 227). See table 1 for the summary of the structural infor-
mation. Our estimate of the lattice parameter of 8.076 83 (5) 
Å is close to those values reported in the previous works: 
8.078(1) and 8.079 Å [22, 23]: we note that [18] reported a 
smaller value of the lattice parameter, 8.045 Å. Our full struc-
ture analysis was carried out by the joint refinement of both 
neutron HRPD data and HR-XRD data taken at 40 and 300 K. 
The final refinement data show a significant site-inversion for 
Cu2+ ions, which occupy the otherwise forbidden octahedral 
B-sites (see table 1). We note that a smaller (6–8%) amount 
of site inversion was reported for other polycrystalline normal 
spinel oxides TAl2O4 (T  =  Co, Fe and Mn) [13, 14]. It is to 
be noted too that a similar amount (8%) of the site inversion 
was recently reported for CoAl2O4 single crystals [16]. All 
these experimental results including ours indicate how much 
difficult it is to remove the small site inversion completely for 
these TAl2O4 systems.

In order to study the low temperature magnetic properties, 
we measured the dc magnetization of CuAl2O4 with an applied 
field of 5 mT down to 0.5 K (see the inset of figure 1(b)). As 
one can see, there is a clear cusp centered at 2 K (Tm), indica-
tive of a magnetic phase transition. When measured under 

both field-cooled and zero-field-cooled conditions, the data 
show a clear bifurcation behavior. This is a typical sign of spin 
glass behavior. As we will show later, the position of this peak 
moves toward higher temperature with increasing frequency. 
Thus, the irreversible behavior in the dc magnetization can 
be taken as evidence of the spin glass transition occurring 
at low temperature for CuAl2O4. At higher temperatures, 
the dc magnetization follows the Curie–Weiss law with the 
Curie–Weiss temperature of θCW ~  −137 K and the effective 
moment value of ~1.95 µB/Cu2+ (figure 1(b)). This estimate 
of the effective moment value compares very well with the 
theor etical spin-only value of Cu2+ ion (1.73 µB). We com-
ment that the measured θCW is extremely large compared to 
the cusp temper ature (Tm) with f  =  67, where the frustration 
parameter ( f ) is defined as f  =  |θCW/Tm|. When the frustration 
parameter is larger than 5–10, it is generally considered as a 

Figure 1. (a) The spinel crystal structure and a schematic diagram 
of t2g orbitals showing the random distribution of Cu2+ d-states 
within the diamond structure of CuAl2O4. (b) Inverse susceptibility 
versus temperature of CuAl2O4 taken with an applied field of 0.1 T:  
the Curie–Weiss fit (line) with the Curie–Weiss temperature (θCW) 
of  −137 K and the effective moment of 1.95 µB/Cu2+. Inset in 
(b) depicts the magnetization data collected down to 0.6 K after 
both field-cooling and zero-field-cooling using a He3 insert of the 
SQUID magnetometer.
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1. Spin-orbit coupling may induce 
Mott transition

2. Spin-orbit coupling may induce 
strong anisotropy of exchange 
interaction

3. Spin-orbit coupling may help to, 
compete with or completely 
suppress the Jahn-Teller effect

3. Spin-orbit related effects 
Take-home messages

!ð! Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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FIG. 2 (color online). Theoretical Fermi surfaces and band
dispersions in (a) LDA, (b) LDAþSO, (c) LDAþSOþU
(2 eV), and (d) LDAþU. In (c), the left panel shows topology
of valence band maxima (EB ¼ 0:2 eV) instead of the FS.
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