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The beginning: “Polar model”

On the Electron Theory of Metals.
By S. ScrUBIN and S. WoNsOWSsKY.
Sverdlovsk Physical Technical Institute.

{Communicated by R. H. Fowler, F.R.S.—Received December 29, 1933.)

Proc. R. Soc. Lond. A 1934 145,
published 2 June 1934

S. P. Shubin (1908-1938)  S. V. Vonsovsky (1910-1998)

62 !/ r
j|x___x,| $:2(2) $:2 (+/) dov da’ = A jw[ (o) 62 (@) + |¢7 @) [ () $5 (2) do do’ = Ly
fle_wr,¢a2<x>¢ﬂz<w'>dxdw’=3«ﬁ j, “1$: @) $: @) 4. &) () dods = Tp

Fia. 1. Fia. 2.



The beginning: “Polar model” 1|

Schrodinger equation in “atomic representation” (double f, hole g,
spin right k, spin left h)

{e—s(A+D)— [IE}, By — Jygs) +g <2g, (Byg —Jgg) —fz;; (Bsy + J1) I} C(fgh)
+ Z e [C (Toe| foh) — C (fgh)] + J?-:" J14[C (T, | fgh) — C (fgh)]
+f% Ly, C (T,,lfgh) - gszw C (Typlfgh) =0, )

Metal-insulator transition and Mott insulators

(IT). The minimum energy corresponds to a certain s = s,, where 0 < s, < 7.
This case we have, for instance, when

A4+6J—B)>0, A+6J—12L<0.

Then, so long as s remains small, the lowest energy level diminishes as s increases ;
for a certain s = s, it attains a minimum and then again begins to increase. Metal
For such metals—at not very high temperatures—the number of free”
electrons approximates to twice this s, (electrons - holes!) and is therefore
smaller than the number of atoms. In order to calculate s, in terms of our
integrals, the energy must be evaluated up to the second approximation in
powers of s/n; we shall not, however, make these rather cumbersome calcu-

lations here. .
(III). The minimum energy corresponds to s = 0. This is the case when

Insulator A+6(J—B)>0, A46J—12L>0.



Quantum Hamiltonians: Lattice models |

For simplicity: single-band model €,y = ch, exp(vi]\tﬁj) Band Hamiltonian
From sites to bands: ZC e‘ip( iAtRi ) H,= Z’k":;gékg
ko

[ E is the Fourier transform of the hopping parameters [ if

Simple models: Hubbard model H-= Z iCioCio U Zn NN

ijo

(only on-site Coulomb repulsion)

Extended Hubbard model
(intersite interactions added)

~ _ A+ ~ ~ _ ~
Nig = CigCio> n; = Z”ic
c

H. LZHTH +— lejn,nJ,
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Quantum Hamiltonians: s-d exchange model

s-d exchange (Vonsovsky-Zener) model: interaction of localized and itinerant electrons

H=Y'téé. -20Y55-5"J,53,

ijo i ijo

The Hamiltonian written by Vonsovsky and Turov (1953)

Consequences: Kondo effect (I!!), RKKY (!ll), magnetic semiconductors...

One of the most important models in condensed matter theory

In particular: Cooper pairing via spin waves (Vonsovsky & Svirsky, 1960%)



1981: what to do next?

(1) The role of empty 3d states in Ca etc. (done, by Sasha Trefilov and me)
(2) Criterion of separation of electrons into core and itinerant (also, S.'T. and me)
(3) The role of 6p electrons in rare earth - °2?

Other problem: small itinerant FMs (around 1979)

PHYSICAL REVIEW B 84, 045422 (2011)

Enhancement of the Curie temperature in small particles of weak itinerant ferromagnets
L. Peters, M. 1. Katsnelson, and A. Kirilyuk

Radboud University Nijmegen, Institute for Molecules and Materials, NL-6525 AJ Nijmegen, The Netherlands
(Received 11 March 2011; revised manuscript received 13 May 2011; published 12 July 2011)
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Part [l: On measurement in qguantum physics



Microworld: waves are corpuscles, corpuscles are waves

Einstein, 1905 — for light (photons)
L. de Broglie, 1924 — electrons and other microparticles

'WQ |2

Individual Accumulated
counts/min counts/min



Electrons are particles (you cannot see half of electron)
but moves along all possible directions (interference)

(c) After 10000 electrons

e




Universal property of matter

Wave-particle duality
of Cgo molecules

Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller,
Gerbrand van der Zouw & Anton Zeilinger
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God doez not play dice with the univerze. Anyone who iz not shocked by Guantum
- Albert Einztein Theory haz not understood it. - Niclz Eohr

A. Einstein: Quantum mechanics is incomplete; superposition principle
does not work in the macroworld

N. Bohr: Classical measurement devices is an important part
of quantum reality; we have to describe quantum world in terms
of a language created for macroworld

The limits of my language mean the limits of my world
(Ludwig Wittgenstein)




Complementary principle: we live in classical world, our
language is classical, we know nothing on the electron itself,
we deal only with the results of its interaction with classical
measuring devices

Classical physics is not just a limit of quantum physics
at h — 0: we need classical objects!

(cf relativity theory: ¢ — )

Used to be mainstream but now: quantum cosmology (no
classical objects in early Universe)... guantum informatics

(“as you can buy wavefunction in a supermarket”)... Many-world
Interpretation...

| will be talking on quantum description of world around us



Von Neumann theory of measurement (1932)
Density matrix for subsystem A of a total system A+ B
plo.a')= Trﬁ‘I’*(a'.ﬂ)‘I’(a,ﬂ) Pure state = ‘a><a‘

0= Zﬂa a><a|

L =p0

Mixed state Trp* <Trp

Two ways of evolution

1. Unitary evolution 2. Nonequilibrium evolution by the measurement
lh—aﬁz[H 0] paﬁer :ZPnpbeforePn
ot ! ’
p(t) = exp(th/ h)p(O)exp(— 1Ht/ h)  y n |W><ni
Entropy is conserved Saﬁe” - SbefOfe

Density matrix after the measurement is diagonal in n-

S =-Tr O In yo representation



Application: decoherence wave

PHYSICAL REVIEW A, VOLUME 62, 022118 PHYSICAL REVIEW B. VOLUME 63. 212404

Propagation of local decohering action in distributed quantum systems Neel state of an antiferromagnet as a result of a local measurement
in the distributed quantum system

M. L. Katsnelson.® V. V. Dobrovitski, and B. N. Harmon
M. L. Katsnelson.* V. V. Dobrovitski. and B. N. Harmon

Example: Bose-Einstein condensation in ideal and almost ideal gases

v)y=——=(a))™0) 0 is the state with minimal energy

H:; E#O’#O# , e

We measure at t = 0 number of bosons at a given lattice site

Projection operator: Von Neumann prescription:
2wd b o %
Wn= ‘5"‘\_J0 Eexp[zd)(n—.\/)] U(t)= D, exp(—iHt)W,UyW| exp(iHt)
n=0

U.,=|W){W|is the density matrix before measurement



Decoherence wave in BEC

Single-particle density matrix ~ p(r.r’.6)=Ti U(#)a'(x")a(r)]

Explicit calculations Poisson statistics for the measurement
outcomes
Pn= .—"On (n!) no=ng(0)

S=—T{ U U(H)]=— D, p,lnp,>0
n=0

om |37 [ imr?
p(r.r’.t)=\ng(r)ng(r')—G*(r'.1)\Vng(r)ng _ ) 4 ( )
L ——— | G(r.0=Vo 2miht) exp.|_27'rfzr‘,
—G(r.t)Vng(r ) ng+2noG*(x'.1)G(r.1)
A om \?
p(r.r.t)=ng+2ngV; =y
, [ m |32 " mr? )
— 218V ( 27h f,,) o 2mht)



Decoherence wave in BEC Il

Weakly nonideal gas: Bogoliubov transformation

H= 2 Eka;ak
k

1
+ o5 >

- v\ T T
U(.kl_ki)“k'“’k;“k»akl
ky +ky=k] +k} b

Excitation spectrum  @x= VET2E0(K)ng.

.9
npg a-"

[1+(z—1)G(r.1)]

'y —
pu(rr’ )= "
(n1) az"agz "

X[1+(z'=1)G*(x".1)]

X exp[npX(z.2")]} =21 =0-

G(r.1)= El:, exp(ik-1)

COS Wyl —1

. T .
ay= &g cosh y+ &L sinh yy.
F
' =&gsinh y+ &L cosh yy.

v(k)ng
Eitv(Kk)ng

tanh 2y, .= —

Acoustic for small k

X(z.2")=B(zz'—1)+(1—-B)(z+z'—2)

Extu(Kk)ng

Sin w1
(Uk k ]



Decoherence wave in BEC IlI

In this case, decoherent action propagates with sound velocity, nothing is
“superluminal”, etc — a smooth “wave function collapse”

Can be experimentally verified! But, in a sense...

-
Observation of Quantum Shock 0o2m
Waves Created with Ultra- | ‘ -
Compressed Slow Light Pulses in 107 1‘o
a Bose-Einstein Condensate 0
10, . : : _—

Zachary Dutton,”? Michael Budde,'? Christopher Slowe,’-?
Lene Vestergaard Hau'23

- 23m
0 |
SCIENCE VOL 293 27 JULY 2001 663 - "

10 £ T T T ™

E -10 |

10—
35ms

Interaction with light is a measurement!
-10 L

149ms

10{ )
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Neel state of AFM: The role of entanglement

'Ho:% Jo(SqSq+5¢S¢  Ground state is singlet, no sublattices!

> J,=0, minJ =J,
q q

H—>H-h4

lm, ,lm, <4) =1lm,__ lim ,,_,0<‘-4>

\
\

Anomalous averages:

In the case of AFM (or superconductor) this field does not look physical!

On the Description of the Antiferromagnetism @, > =IM>=(S= )M|F>

without Anomalous Averages NS

@)= ). exp[A(L)/2]12L)
L=0

7. Phys. B — Condensed Matter 62, 201-205 (1986) |F) is the ferromagnetic state (all spins up)

V.Yu. Irkhin and M.IL Katsnelson

In thermodynamic limit, this state (without anomalous averages!) gives
the same results for observables as Neel state; can be used as starting
point for local measurement and decoherence wave

ON THE GROUND-STATE WAVEFUNCTION OF A SUPERCONDUCTOR IN THE BCS MODEL

V.Yu. IRKHIN and M.I. KATSNELSON

Volume 104 A, number 3 PHYSICS LETTERS 20 August 1984



Neel state of AFM: The role of entanglement Il

Measuring local spin at siten =0

Easy-axis anisotropy: in Ising limit, one single measurement leads
to instans wave function collapse: all even spins up, all odd down
(or vice versa)
Easy plane anisotropy (or isotropic case) — broken continuous symmetry;
Decoherence wave and of the order of N measurements to create Neel state

G ———p —

3

x  FIG. 1. Sketch of the spin arrangement. Easy plane case: (a)
before measurement. sublattices are absent and the total AFM axis
1s not fixed: (b) after measurement. the ‘‘fan’” sublattices emerge
but an AFM axis 1s not fixed. Easy axis case: (¢) before measure-
ment. sublattices are absent: (d) after measurement. the Neel state

(a) (b) () (d) appears.




However... This is for classical spins!

In AFM, there are zero-point oscillations: nominal spin 1s less than in

classical Neel picture. E.g., square lattice Heisenberg AFM,
NN interactions only:

Sy=S-0.1971

It means that for S=1/2 if a spin belongs to (nominally) spin-up sublattice
in reality it 1s up with 80% probability and down with 20% probability
(average spin is roughly 0.3)

Than, even 1n easy-axis case one single local measurement is not enough
to establish sublattices — may be by accident it is done in a “wrong” instant



Decoherence waves in AFM for quantum spins

PHYSICAL REVIEW B 93. 184426 (2016)

Decoherence wave in magnetic systems and creation of Néel antiferromagnetic state by measurement Measurement
: device
Hylke C. Donker
Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525AJ Nijmegen, The Netherlands %

Hans De Raedt
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands

Mikhail I. Katsnelson
Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525AJ Nijmegen, The Netherlands
(Received 15 February 2016; published 20 May 2016)

Simulations by numerically exact solution of
time-dependent Schrodinger equation

/ P 28¢ P=% po P=2
p—> p = Z,- P,,OP, P;I:a — I+ Sm <Sﬂ(1‘)) — Tr S'B(T) m_ POl
m P [ l N

Hamiltonian is the sum of Heisenberg and Ising parts:

The larger A, the weaker
Hy=1) S;-8, H' =JAY 5§ 5 .

= — (7] are quantum zero-point
L,] l,]

oscillations



Chebyshev Polynomial Algorithm

Chebyshev Polynomial Algorithm: based on the numerically exact
polynomial decomposition of the time evolution operator U. It is very
efficient if H is a sparse matrix.

(1)) =U| p(0)) =™

0(0))

e =J,(z)+ 25: (—=i)"J (2)T, (x)

T (x)=cos[marccos(x)],x e[-L]]
T, (x)+T, (x)=2xT,(x)



Decoherence waves in AFM for quantum spins Il

Single measurement

[ I',' ‘ L |‘ 0 50 T T T |] T 0.50 | T T T T 0-50
8r . |\ 1 0.25 15+ {11 0.25 201 /1 0.25
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[ ! : i
2 ' ® —-0.50 1 —-0.50 e —0.50
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t t t
(a)N=10, m even. (b)N=20, m even. (c)N=28, m even.
0.50 — T 0.50 — T 0.50
8+
0.25 15t 0.25 20 {1 0.25
€6+ ’ S 0N £
9 0.00 910+ 411 0.00 9 ' 0.00
n4ar n »n 10tk
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L ~0.50 L4 o . 10 o550 SRR S ~0.50
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(d)N:lO. m odd. (e)N=20, m odd. (f)N=28, m odd.

FIG. 3. Time evolution of the magnetization (S; (7)) for the isotropic (i.e., XXX) AFM Heisenberg spin chain of length N. The system at

m

t = 0 is prepared in the ground state after which at 7 = 5 spin | is projected on the +z axis.



Decoherence waves in AFM for quantum spins IV

The sign of anisotropy is not important if it is small

0.50
— A=0
0.25 ---—- A=-0.01
e | P £ N A I B A=-0.1
i POV Ay VAR - A =0.01
—0.25 o A=0d
_0_50 1 1 1 1
0 10 20 30 40
t

Also, multiple measurements were studied

00 05 1.0 15 2.0

t/1000
FIG. 7. Magnetization (S7) for N =20 and A = 2, projections
Py are performed at# = 1 and 1 = 500. The subsequent measurement

(at t = 500) restores the sublattice order (close) to the state after the
first measurement.



Decoherence waves in AFM for quantum spins V

Oscillations of total magnetization after single local measurement

0.50 — 0.50 0.50
8t
0.25 0.25 0.25
£ £61
I3 0.00 g 0.00 0.00
i Aot
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(c) N=10, A =3

00 0.2 0.4 0.6 0.8 1.0
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t/1000

(a) N=10, A =1
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0.25 - 15 | 0.25 - 15t 0.25
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(f) N=20, A =3
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t/1000

(e) N=20, A =2

00 0.2 04-06138 1.0
t/1000

(d) N=20, A =1

FIG. 9. Magnetization (S},) for odd values of m for different values of the anisotropy A and chain length N. At7 = 0, the system is prepared

in the ground state, and at 7 = 100 a single measurement is performed on spin | along the z direction.



Direct attempts to simulate measurement as interaction with
measuring device plus decoherence by environment

Quantum dynamics of a small symmetry S
breaking measurement device ’
H.C. Donker **, H. De Raedt ", M.I Katsnelson ® RN
Annals of Physics 396 (2018) 137-146 Ne=12 & ¢ [SA"
u. : . “' N
Na=d Na=8 Ma=? (8 : : % kpT = &
2 ; 9 -+ Na-l Na
vee |84 wen [B)as
e e b LA = —0.025J K= -0.1.J )
t t
° 0 —_ I’ﬁ:’%
,_&qf
" ' 1?1” ‘ uk)' i(?‘-’ 10"\7“ 1.(.]” .10'- - 10° 1‘(;"“
t t

Decay off-diagonal elements of density
matrix - yes

t/1000

Stability test — no stability



Radboud Universiteit

Does God play dice?

Mikhail Katsnelson

Collaborators

Hans De Raedt, RUG
Hylke Donker, RU




LI approach - References

Quantum theory as the most robust description
of reproducible experiments Annals of Physics 347 (2014) 45-73

Hans De Raedt?, Mikhail I. Katsnelson®,
Kristel Michielsen 4+

Quantum theory as a description of robust _
experiments: Derivation of the Pauli equation Annals of Physics 359 (2015) 166-186

Hans De Raedt?, Mikhail I. Katsnelson ", Hylke C. Donker”,
Kristel Michielsen “%*

Logical inference approach to relativistic
quantum mechanics: Derivation of the

Klein_Gordon equation Annals of Physics 372 (2016) 74-82

H.C. Donker ®*, M.I. Katsnelson?, H. De Raedt”, K. Michielsen ¢

Logical inference derivation of the quantum Annals of Physics 396 (2018) 96-118
theoretical description of Stern-Gerlach and

Einstein-Podolsky-Rosen-Bohm experiments

Hans De Raedt ?, Mikhail I. Katsnelson °, Kristel Michielsen ©¢-*

Quantum theory as plausible

. , Cite this article: De Raedt H, Katsnelson MI,
reasoning applied to data PHILOSOPHICAL

Michielsen K. 2016 Quantum theory as
i TRANSACTIONS A
obta InEd b%l robust plausible reasoning applied to data obtained
experiments

by robust experiments. Phil. Trans. R. Soc. A
H. De Raedt', M. I. Katsnelson” and K. Michielsen* 374- 20150233,




Electrons are particles (you cannot see half of electron)
but moves along all possible directions (interference)

We cannot describe individual events,
individual spots seem to be completely random,
but ensemble of the spots forms regular
interference fridges

Randomness in the foundations of physics?!

I

(¢) After 10000 electrons




Two ways of thinking

|.  Reductionism (“microscopic” approach)

Everything is from water/fire/earth/gauge
fields/quantum space-time foam/strings... and
the rest is your problem

Il. Phenomenology: operating with “black




Two ways of thinking Il

Knowledge begins, so to speak, in the middle, and leads into the
unknown - both when moving upward, and when there is a
downward movement. Our goal is to gradually dissipate the

darkness in both directions, and the absolute foundation - this
huge elephant carrying on his mighty back the tower of truth - it
exists only in a fairy tales (Hermann Weyl)

i

We never know the foundations! How can
we have a reliable knowledge without the
base?




Is fundamental physics fundamental?

Classical thermodynamics is the only physical theory

of universal content which | am convinced will never

be overthrown, within the framework of applicability
of its basic concepts (A. Einstein)

The laws describing our level of reality are essentially
independent on the background laws. | wish our colleagues from
true theory (strings, quantum gravity, etc....) all kind of success
but either they will modify electrodynamics and quantum
mechanics at atomic scale (and then they will be wrong) or they
will not (and then | do not care). Our way is down

But how can we be sure that we are right?!



Mathematics & Physics

Newton: It is useful to solve (ordinary) differential equations

But this is much farther from usual human intuition — may be, too far?!
Can we demistify it?!



Unreasonable effectiveness

 Quantum theory describes a vast number of
different experiments very well

* WHY ?

* Niels Bohr*: P
t is wrong to think that the task of

2
ohysics is to find out how nature is. A

Physics concerns what we can say about nature.

*A. Petersen, “The philosophy of Niels Bohr,” Bulletin of the Atomic Scientists 19, 8 — 14 (1963).



Stern-Gerlach experiment

* Neutral atoms (or neutrons) |dealization
pass through an a
inhomogeneous magnetic ? D,
field

D D

e Source S emits particles
with magnetic moment

* Magnet M sends particle
to one of two detectors

* Detectors count every
* Inference from the data: particle
directional quantization

=




Some reasonable assumptions (1)

* For fixed a and fixed source S, the frequencies
of + and — events are reproducible

* |f we rotate the source S and the magnet M by
the same amount, these frequencies do not
change




Some reasonable assumptions (2)

* These frequencies are robust with respect to
small changes in a

 Based on all other events, it is impossible to
say with some certainty what the particular
event will be (logical independence)

a

D D,
94%(
D D




Logical inference

e Shorthand for propositions

a
— x=+1 & D. clicks P D
X=+ +C V-
— x=-1 <> D clicks d
— M ~the value of M is M 30

— a <»the value ofais a

— Z <~everything else which is known to be relevant to
the experiment but is considered to fixed

* We assign a real number P(x|M,a,Z) between 0 and 1 to
express our expectation that detector D, or (exclusive) D.
will click and want to derive, not postulate, P(x|M,a,Z)
from general principles of rational reasoning

 What are these general principles ?




Plausible, rational reasoning =»

inductive logic, logical inference

 G. Podlya, RT. Cox, E.T. Jaynes, ...

— From general considerations about rational reasoning it follows
that the plausibility that a proposition A (B) is true given that
proposition Zis true may be encoded in real numbers which
satisfy

0 <P(4|Z2)<1
P(A|Z)+ P(4|Z)=1 ; A=NOT 4
P(AB|Z)=P(A|BZ)P(B|Z) ; AB=AANDB

— Extension of Boolean logic, applicable to situations in which
there is uncertainty about some but not all aspects

* Kolmogorov’s probability theory is an example which complies with
the rules of rational reasoning

* |s quantum theory another example?




Plausible, rational reasoning =»
logical inference Il

* Plausibility

— Is an intermediate mental construct to carry out
inductive logic, rational reasoning, logical
inference

— May express a degree of believe (subjective)

— May be used to describe phenomena independent
of individual subjective judgment
plausibility =2 i-prob (inference-probability)



Application to the

Stern-Gerlach experiment

We repeat the experiment N times. The number
of times that D, (D_) clicks is n, (n.)

i-prob for the individual event is

P(x]a-M,Z) = P(x]0.Z) = 14+xE(0)

E(0)=E(a-M,Z)= ) xP(x|0,Z)

x==1

)

Dependent on cos® =a-M Rotational invariance
Different events are logically independent: y

P(x1,...,xyla-M,Z) = |]|P(x6,2)
The i-prob to observe n, and n_events is -
P(x|0,Z)™

7

P(nyy,n_1|6,N,Z) = N! H

r==1



How to express robustness?

Hypothesis H,: given 6 we observe n,and n_
Hypothesis H,: given 0 +& we observe n,_and n.
The evidence Ev(H,/H,) is given by

Pln n_|0+e z)_Z 1 P[0+ Z)

Ev(H,|H,)=In—= => n_ ln =
i1 Hy Pn.n_|6.N.Z) 4= P(x|6.2)

- P (x|60.2) &[P(x]6.2)] & P(x16.2)|
.Z-:l”] P(x[6.Z) 2{ (.\-ye.z)} " P(_\‘e_z)J+()(‘s )

Frequencies should be robust with respect to
small changes in 8 =» we should minimize, in
absolute value, the coefficients of ¢, &£,...



Remove dependence on € (1)

| P(x|6.2) & {P'(.\‘ | 9.2)}3 L& P« 0.7)|

E"'(H”H"):;""']g P(x|6.z) 2| P(x[6.2)] 2 P(x|6.Z)|

+0(&*)

* Choose P(x|6.7) = %

» Removes the 15t and 3™ term

» Recover the intuitive procedure of assigning to the
i-prob of the individual event, the frequency which
maximizes the i-prob to observe the whole data set



Remove dependence on € (2)

[ P(x|6.Z) & |P(x|6,Z) Tog P"(_‘\‘|0.2)> 4
Z”] (x|6,Zz) 2 {P(ﬂe.z)} "2 P6.2) +0(e)

* Minimizing the 2" term (Fisher information) for
all possible (small) e and 6

[, =

a

% 90,
M
& D,

1 (8P(x|¢9,Z)J2
x==*1 P(X|9,Z) 89

ltxa-M

P(x|a-M,Z) = P(x]0,Z) =

* |In agreement with quantum theory of the
idealized Stern-Gerlach experiment



Bernoulli trial

Two outcomes (head and tails in coin flypping )

Results are dependent on a single parameter 6 which
runs a circle (periodicity); what is special in quantum
trials?

The results of SG experiment are the most robust, that is,
correspond to minimum Fisher information

No assumptions on wave functions, Born rules and other machinery
Of quantum physics, just looking for the most robust description of
the results of repeating “black box” experiments



Derivation of basic results of quantum
theory by logical inference

* Generic approach

1. List the features of the experiment that are deemed
to be relevant

2. Introduce the i-prob of individual events
Impose condition of robustness

4. Minimize functional = equation of quantum theory
when applied to experiments in which
i.  There is uncertainty about each event
ii. The conditions are uncertain

iii. Frequencies with which events are observed are

reproducible and robust against small changes in the
conditions

w

We need to add some “dynamical” information on the system



Logical inference =»
Schrodinger equation

Generic procedure: @
. Pulsed light soutce
Experiment =» §

The “true” position 8 of // \

the partide IS uncertain ‘Particle moving on this hne’
and remains unknown 0

I-prob that the particle Photon emitted by particle
at unknown position ‘

6 activates the detector —|—|—|—|—|—|—|—|—*€t|—|—|—|—|—|—>
X

at position x : P(x|60,2) Detector




Robustness

* Assume that it does not matter if we repeat
the experiment somewhere else =

P(x|0,2)=P(x+{|0+(,7Z) ; ( arbitrary

* Condition for robust frequency distribution <~
minimize the functional (Fisher information)
IF(9)=IOO I 1 (6P(x|6’,2)j

= P(x]0,Z) Ox
with respect to P(x|0, Z)




Impose classical mechanics
(a la Schrodinger)

* If there is no uncertainty at all =»classical
mechanics = Hamilton-Jacobi equation

| (55*(@)

2m

00

j LV(@)-E=0 (X)

* |f there is “known” uncertainty

f:o dx

%

oS (x)

X

j +2m[V (x) - E]

P(x|60,Z)=0

— Reduces to (X) if P(x|6,Z) = 6(x — 6)

(XX)



Robustness + classical mechanics

* P(x|0,Z) can be found by minimizing Iz (6)
with the constraint that (XX) should hold

=» We should minimize the functional

e 1 oP(x|6,2)Y’ oS (x)Y’ B
F(6) = dex{P(xH,Z)( - ju{( = j+2m[V(x) E]}P(xé’,Z)}

— A = Lagrange multiplier
— Nonlinear equations for P(x|6,Z) and S(x)



Robustness + classical mechanics

* Nonlinear equations for P(x|0,Z) and S(x) can
be turned into linear equations by substituting™®

w(x|6,2) =[P(x|6,2)e** =

F(e)=fidx{46‘”*(x'9’z)a‘”(x'g’z)+2mﬂ[V<x>—E]w*<x|Q’Z)W(X'B’Z)}

Ox Ox

* Minimizing with respect to w(x|6,2) yields

8zw(x|¢9 Z) mA
8 2

=>» Schrodinger equatlon A =4K"?% = 4h°

[V(x) E]t//(x|6’ Z)=0

+E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322 — 326 (1927)



Time-dependent, multidimensional case

The space is filled by detectors which are fired (or not fired) at some
discrete (integer)time 7 = 1,... . M

At the very end we have a set of data presented as O (no
particle in a given box at a given instant or 1

Y = {nelin: €[-L% 1 n=1,....N: t=1,...,M)

or, denoting the total counts of voxels j at time 7 by 0 < k; . < N, the experiment produces the data
set

dr=t..MiN= Y k,.r}. (55)




Time-dependent case |l

Homogeneity of the space: P(jl|0.Z) =P(j+ |0+ ¢.2)

Evidence: Fv — Z Z €ic€irr OP(jlO,.7t.Z) 0P(j|0,.T.2)
§T = PU|0r~ T,7Z) d6; d6y

2
_y Zd: 6.t 0PG8.T.D)\ _
— JP(jlb;.7.2Z) a6, o

i.T

and, by using the Cauchy-Schwarz inequality, that

d d ) . 2
1 IP(jl6:.7.2)
2
o= 2 (N (Srge o (M5 ) 2 2 el
~\ 5 & p(j|6,. T. 36, e? = max; , €
1 OP(jl0..7.2)\"
< de? :
= e ZPUWT,T,Z)( 90, )

j.r i=1



Time-dependent case |l

d N e \ 2
o . . 1 IP(j|6;.7.2)
Minimizing Fisher information: =) "% — ) ( Ulw )

i  y ot

Taking into account homogeneity of space; continuum limit:

IP(x|0(t).t,.Z)\°
Ir = | dx df .
P x|9{r} t.7) 0X;

Hamilton — Jacobi equations:

dS(6. 1) 1
: -+
ot 2m

2
(VS{H. 0 — La. r)) LV@.6) =0
C



Time-dependent case IV

Minimizing functional:

F_ fdxfdr Zd: 1 IP(x|0(t).t,2)\°
- — | P(xl6(t).t.2) ox;

AS(x, t 1 /aS(x,t 2
+A|: w0, (‘ (x )—qﬂ(x.r]) —|—V(x~r)i|P{x|9(r].r.Z]}

at 2m 0X; C

SUbStItUtiOﬂ w(xlg(” t.7) = \/P(XW(T). r.Z)eiS(X.t)\/I/Z

Equivalent functional for minimization:
Ay _
Q= Zfdxfdr {miﬁ[w(xlﬂ{r},r,z} i (XI?(H L, 2)

dt

— ¥ (x|0(0). 1. Z)

I (x|6(t).t.Z)
Jt

E}Xj

d . .
dr*(x|@(t). t. 7 l \/1
+2§ Y7 (|6() ) + 4 Aj(x. )™ (x]0(6). . Z)
= 2c

U (x|0(6). t.Z)  ig/A
— Aj(x, t 6(t).t.Z
X ( 7% o j(x. 0) (x]0(1) )

+miV(x. r]yﬁr*(xlﬁ(r}. t.Z)0r(x|0(t), t. Z]}.

= 4/h°



Time-dependent case V

Time-dependent Schrodinger equation

ol Ot).t.7Z
ih U (x[6(1) )

t. i i( 0 jqﬂ[h’ r})2+v[x £) | v(x|0(t),t,2)
N I _ _ r .
Jat 2m = \9x;  hc lr

It is linear (superposition principle) which follows from classical
Hamiltonian (kinetic energy is mv?/2) and, inportantly, from building
one complex function from two real (S and S +2rth are equivalent).

A very nontrivial operation dictated just by desire to simplify the
problem as much as possible (to pass from nonlinear to linear

equation).

Requires further careful thinking!



Pauli equation

What is spin? Just duality (e.g., color — blue or red). Nothing is
rotating (yet!)

Isospin in nuclear physics Sublattice index in graphene
Proton Neutron e s >
& S O e
& % So ¢
o € S g9
-t R ) ¥ ‘ ‘
=4 lh=—% Cg S év

Just add color (k=1,2)

The result of N repetitions of the experiment yields the data set
Y ={(.knlin:eVik=x1l; n=1,....N; t=1,..., M}, (1)

or, denoting the total counts of voxels j and color k at time 7 by 0 < ¢jx. < N, the data set can be

represented as
er=1..m: 3 % cj.k,r:N}. 2)
k==1 je[—L4,19]




Pauli equation Il

Fisher information part just copies the previous derivation
P(D|X, + &;,7,N.Z)
P(DIX;.7.N.Z)

B  PGKIX: +e0.7.7) for the evidence
= 2_Gaeln PG. kX, 7.2)

J.k.T

Ev = In

Expansion

e, - V.P(G.kIX;.1.Z) 1(e; -V )?*P(j. k|X;.7.2) ]
Ev = GreoIn| 1+ + + 0O(e;)
Z bk [ PG.k|X;.7.2) 2 P(j.k|X;.7.2) o

ik.T

S |:£I«VTP(j,k|XI.r.Z} 1[er.vrpu.k|xr,r.zT
— J.k.tT -

P(j. k|X,.7.Z) 2 P(j. k|X,. 7.2)

1(e; -V )2PG. kIX,. 1.2
& .} G. kiXr. 7. 2) + 0O(g&2),
2 P(j. k|X:.7.2)



Pauli equation Il

1
Ir = . V.PG.k|X:. T, z) ,
;Pwlxr.n }[ 0. fdxdf Z Pix kIX 7) [VP(x, k|X,t,Z)]

k==1

Ox.X.t.Z

P(x,k = +1[X.t.Z) = P(X|X.t.Z) cos” — )
O(x.X.t.72)

P(x,k =—1|X.t,Z) = P(x|X.t,Z)sin?

1
I- = | dxdt VPXIX.t. )P +[VOx. X.t.Z)PP(x|X.t.Z
: f !P{xp{.r.Z)[ XX, €, 2)]2 + [V P P(x )}

(x. X.t.Z) hasnodynamical or geometric meaning (yet)



Pauli equation IV

Dynamical part is less trivial; we restrict ourselves only by d=3
(spin is introduced in 3D space, it is important!)

Alternative representation of the Newton’s laws (or HJE)

:;_x — U(x. t) The velocity field is derived by (numerical) differentiation of position data
[
Decomposition for any vector field in 3D: Ux.f) = VS(x, 1) — A(X, )
Ax.t) = V x W(X.t)
V-A=0
. . sy . dzxi- dUj = aU;
Direct differentiation: = =t ;; o, !

_ ‘;}2_5 - E?A,- +i ( 32.5 - i}A,— f)s A
axjor Jdt P 0Xi0Xj 0x;j 0X;
g las 1<

= — | =4 =
dXi |:E}f 2 JZI

S 3./ 0A;  OA; JS DA
(5] s ) a)
— 0X; o dX; 0X; 0X; ot




Pauli equation V

Introducing the vectorfield B=V x A
d*x v as 1 S dx B JA
ez TR Pl T at
Hypothesis (alternative form of HJE): Existence of scalar field ¢(x. )

suchthat 9s 1
— 4+ —(VS—A)* = —
Jt i 2 ( ] ?
Then, upon introducing the vector field E = —V¢ — dA/dt,

d*x £t dx B
—_— = — X .
dr? dt

Nothing but equation of motion of particle in electromagnetic
field (in proper units)



Pauli equation VI

Dynamical information on the system (constrain):

we will require that there exists two scalar fields Vi (x, t) for k = 2=1 such that

ISe(x.t) 1
/dxdt 3 [‘ KX L (VS 1) — gA®. 1)) + Vk(x.t)] P(x,k|X.t,Z) = 0.
= at 2m

Sp(X.t) =S(X,t) — kR(x, t) for k = £=1
Vox.t) = [Va(x,t) + Vo (x,0)] /2, Vi(x.t) = [V (x, t) — Vo1(x, 1)]/2

I i - " S, (X, ¢ 1
Constrain functional: A= fdxdr > : "(;: ) 4 — (VSi(x. 1) —qA(x.r]}ZqLVk(x.r)} P(x. k|X,t.Z2)
k=1L ¢

1 2 2
= [ dxdt ﬁ|:(‘n7’5(x.r)—qr,ﬂux.r)} + (VR(x. 1))

— 2cosH(x. X, t.Z)VR(x, 1) (VS(x,t) — gA(x.1[))]

IS(X. t IR(X. t
PXOD _ osox X .7y "% D)
ar ar

] + Vo(X, )

+ Vi(x.t)cosA(x, X. t, Z}}P{xlx. t.Z).



Pauli equation VI

Up to know we did not assume that “color” is related to any rotation or
any magnetic moment. But we know experimentally (anomalous
Zeeman effect) that electron has magnetic moment, with its energy in
external magnetic field fﬂ(x. t) = —ym(x. t)-B(x. t). We have correct
classical equations of precession if we identify ¢(x.X.t.Z)and

¢(x,t) = R(x,t)/a with the polar angles of the unit vector m(X, r)

1 7 5 2
A = dx dt Py [(VS{x. () —gA(X,t))" +a (?tp(xﬁ r))

— 2acosA(x. X, t,Z)Ve(x,t) (VS(x,t) — gA(X, r}}]

_ —acosf(x, X.t.7) _
ot ot

dS(X. t . L
[{ 1) Iptx }j|—|—v[}(xqf}

—aym(X, ) - B(x, r}}P(xD(. t,Z2).



Pauli equation VIII

Vo(x, 1) = qp(x,t),a = /2,y = q/m ) =nh>/8m

PI2(x. k = +1|X. £, 2)eS1 &0/
{p(){, f} — P];.-'z(x‘ .’{ — _‘llxlh [_ Z]Eijzix.f},flﬁ

Extremum of the functional F=Mx+ A
. . . . ‘}
gives the Pauli equation: iﬁ_{—fii _ g
ot
1
H=—{o-[—iiV — qA(x. 0)]}* + qp(x. 1)

2m

= —1 | —ihV — gA( fﬂz +qop(X. 1) — _qﬁ B(x. )
= 11 X, X. g - blX,
2m 1 1 : 2m

o= (0. 0V.0%)!



Separation of conditions principle

Separation of conditions as a prerequisite for
quantum theory Annals of Physics 403 (2019) 112-135

Hans De Raedt?, Mikhail I. Katsnelson?, Dennis Willsch €,
Kristel Michielsen <4

LI allows to derive also Pauli equation, Klein-Gordon equation (Dirac
is in progress) but... Superposition principle arises as a trick. Why
linear equation? Why wave function? Last not least — what about open
guantum systtems?

Slightly different view but also based on data analysis

Standard logic: Shrodinger equation — von Neumann prescription
— description of meaurements. We invert this logic!

Starting point: the way how we deal with the data
(reproduced as binary sequences)



Separation procedure

Double SG experiment with three possible outcomes (“spin 1”)
is generic enough

The first SG device prepares the initial state for the second device



Separation procedure Il

The data set for the first device

H ={kn | kn€ {+1,0,—1};n=1,... N}
P properties of the

F(kla. P.N) | i 5 particles emitted by source
‘|, — X7 k Ky

Representation in terms of momenta

_ mi(a,P,N) 3myr(a,PN)—2
f(kla,PN)=1—m(a,P,N)+ 5 k + 5 k

2

st

my(a,P,N) = (kV), =—ZA = Y K’f(kla,pN) , p=0,1,>2
k=+1,0,—1



Separation procedure Il

Let us try to represent the data as strings (sequences)

k= (+1.0,—1) f= (f(+1la,P.N), f(0la,P,N), f(—1|a,P,N))
f(+1]a,P,N) 0 0
(DNa=(1,1,1)-f=Tr (1,1,1)-f=Trf-(1,1,1) =Tr 0 f(0la,P.N) 0
0 0 f(=1la,P,N)
f(+1|a,P,N) 0 0
kg =k f=Trk" -f=Trf- k" =Tr 0 0 0
0 0 —f(—1|a,P,N)

(k*)q = Trf- (K&)T k) = (+1,0,+1)" s the other vector



Separation procedure IV

But with matrice multiplication rule we need only two matrices

N +1 0 0 N f(+1|a,P.N) 0 0
K= 0 0 0] and F(a,PN)= 0 £(0la,P,N) 0
0 0 —1 0 0 f(~1la,P.N)

kP)a =TrF(a,PN)K? | p=0,1,2

When we rotate the axis of the first SG device and assume rotational
invariance (+1 means along the device axis, -1 means opposite,
0 means perpendicular to the axis, for any direction of the axis)

| 0 1 0 | 0 —i 0 +1 0 0
K(a)=a-S (e p— 1 0 1 Y =— | + 0 —i . St= 0 0 0
(a) V20 0 1 o V2\ 0 +i 0 0 0 —1

Nothing is quantum yet, except the assumption of three outcomes!



Separation procedure V

Mi(e,) =1 — (S)’+As +A [3(5%)? —21]
( 1 00
000 k= +1
Introduce projector operator: 000
_ X0 0 000
My (e;)M;(e;) = o1 Mi(e;) [ 0 1=k o |={ ({010 k=0
0 0 kz;k 000
000
000 k= —1
L\ oo

From rotational invariance:

| k k> ,
Mi(a)=1—(a-S)? +5a- s+3[ (a-S)” —21]

f(kla,P.N)=Tr F(PN)M(a) =Tr My(a)F(P,N) =Tr My(a)F(P,N)My(a)

Only the last form gives Hermitian density matrix for the next use!



Separation procedure VI

As all SG magnets are assumed to be identical, consistency demands that their description should be the same, that is the

filtering property of SG2, SG3 and SG4 should be described by M;(b).

The first SG device plays the role of the source for the second device
etc. — this is the separaction of conditions requirement!

D = {(kn,ln) | kn,ln € {+1,0,—1}:n=1,....N}

f(kla,PN)= Y = f(kIa,b,P.N)
[=+1,0,—1

f(k,lla,b,P,N)="Tr M;(b)My(a)F(P,N)My(a)M;(b)

Consequence: f(kla,PN)= Y f(k.l|]a,b,PN)
I=+1,0,—1




Separation procedure VI

Until now P (the properties of source) is arbitrary. lllustration:

1 00

| | I

F(PN)= % 010 f(kla,PN)=Tr My(a)F(P.N)My(a) = 3
SN0 0 1

(sourse of unpolarized particles, full isotropy in single SG)

f(k.l|a,b,P,N) = Tr M;(b)My(a)F(P,N)M;(a)M;(b)
H(l+a-b)? | k=l=+1,—1
. k=1=0

(1—a-b)? (k)= (+1,-1),(=1,+1)

1
| 2(1—(a-b)*) , (k1) =(+1,0),(=1,0),(0,41),(0,—1)
This is the result of QM — but strictly speaking not the derivation

SOC = QT



Separation procedure VIII
Dependence on parameters (e.g., time) Z(A) f(k,l|a,b,P,N,A)
(kP), =TrF(P.N,A)KP(a) , p=0.1,2

TrF(PN,A) =1 TraF(ail:/'Mzo . n>0

Traceless matrix is a commutator

K. Shoda, “Einige Siitze tiber Matrizen,” Jap. J. Math. 13, 361-365 (1936).
A. A. Albert and B. Muckenhoupt, “On matrices of trace zeros,” Michigan Math. J. , 1-3 (1957).

IF(PN,L)
Y =Y(1).Z(1)]

F(P,N,A) is a Hermitian (non-negative definite) matrix

F(PN,L)=U"(A)D(AU(X)  D(A) is diagonal



Separation procedure IX

IF(P.N,A) U (M) ID(A)

o7 F(PN,A).U (A) 37 ]+U"'(/l) 7 U(A)
If we assume JD(A)/JdA =0 JF(P.N,2) _ -
/ - i[F(P.N,1),H()]

iIHA)=U"(A)(QU(A)/dA)  His Hermitian and cannot dependent

: on F due to separation requirement
Von Neumann equation:

L dp(t) — g (its eigenvalues
U or H(1),p()] o) =) |are not dependent

on time in this case!)

we have Schrodinger equation zl‘z 0 |‘P( )) =H(t)|¥(r))

but to find the “Hamiltonian” one needs other considerations
(e.g. like in logical inference part)



To conclude

The way how we deal organize the “data” adds a lot of restrictions

on mathematical apparatus which deals with predictions of outcomes
of uncertain measurements (QT does not predict individual outcomes):
(1) Robustness and (2) Separation of conditions

It is not enough to derive QM as a unique theory, some physics should
be added but in restricts enormously a class of possible theories

Even if God does not play dice we have to describe
the world as if He does

A lot of thing to do but, at least, one can replace (some)
(quasi)philosophical declarations by calculations — as we like

Thank you



