Electron Structure and Magnetism

Alexander Lichtenstein University of Hamburg

In collaboration with

M. Harland, E. Stepanov, S. Brener, A. Rubtsov and M. Katsnelson

Outline

- Correlation effects and magnetism
- DFT+DMFT: Reference System
- Realistic DMFT for Fe and Ni
- Double-Bethe Lattice: AFM-VBS transition
- Triple-Bethe Lattice: SL ?
- Magnetism and Superconductivity in Quadro-Bethe

Heisenberg Model

$$\widehat{H} = -\sum_{i,j} J_{ij} \overrightarrow{S_i} \cdot \overrightarrow{S_j}$$

Zur Theorie des Ferromagnetismus. Von W. Heisenberg in Leipzig. Mit 1 Abbildung. (Eingegangen am 20. Mai 1928.)

1945

Methode I. Nach Pauli

Quantum Mechanics:

Ferromagnetism = "Exchange Interactions' = Coulomb interactions + Pauli Principle

$$J_{(kl)} = \frac{1}{2} \int \psi_k^z \, \psi_k^\lambda \, \psi_l^\chi \, \psi_l^\lambda \Big(\frac{2\,e^2}{r_{kl}} + \frac{2\,e^2}{r_{z\lambda}} - \frac{e^2}{r_{zk}} - \frac{e^2}{r_{zl}} - \frac{e^2}{r_{\lambda l}} - \frac{e^2}{r_{\lambda l}} \Big) d\tau_k d\tau_l$$

From Atom to Solids

Disolving Multiplets: Fe in alkali system

PES

SIAM: 5-band in 1-bath

J - Hund's Materials

A. Georges et.al, PRL (2012)

Correlated Materials N(E) U Hubbard-metal LHB UHB (correlations due to U) Single-band DMFT E_F N(E) Hunds-metal Up Dn (correlations due to J) Fe-based HTSC EF N(E) Racah-metal n-1⊢→n n⊢→n+1 (correlations due to F_k)

f-compounds

E

F

Hubbard model for correlated electrons

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{+} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$\cdot U ?$$

$$\cdot U ?$$

$$\cdot Chomical potential$$

Dynamical Mean Field Theory

Quantum Impurity Solver

What is a best scheme? Quantum Monte Carlo !

Continuous Time Quantum Monte Carlo

 $H = H_0 + V$

Partition function:

$$Z = \operatorname{Tr}\left[\mathrm{e}^{-\beta H_0} \mathbf{T}_{\tau} \mathrm{e}^{-\int_0^\beta d\tau V(\tau)}\right]$$

Continuous Time Quantum Monte Carlo (CT-QMC)

$$Z = \sum_{k=0}^{\infty} \int_{0}^{\beta} d\tau_{1} \int_{\tau_{1}}^{\beta} d\tau_{2} \dots \int_{\tau_{k}-1}^{\beta} d\tau_{k} \operatorname{Tr} \left[e^{-\beta H_{0}} e^{-\tau_{k} H_{0}} (-V) \dots e^{-(\tau_{2}-\tau_{1})H_{0}} (-V) e^{-\tau_{1} H_{0}} \right]$$

E. Gull, A. Millis, A.L., A. Rubtsov, M. Troyer, Ph. Werner, Rev. Mod. Phys. 83, 349 (2011)

Weak coupling QMC: CT-INT

CT-INT: random walks in the k space

Acceptance ratio

Convergence with Temperature: CT-INT

Maximum: βUN^2

Impurity solver: miracle of CT-QMC

$$S = \sum_{\sigma\sigma'} \int_0^\beta d\tau \int_0^\beta d\tau \left[-G_0^{-1}(\tau - \tau')c_\sigma^+(\tau)c_\sigma(\tau') + \frac{1}{2}U\delta(\tau - \tau')c_\sigma^+(\tau)c_{\sigma'}(\tau)c_{\sigma'}(\tau')c_\sigma(\tau') \right]$$

$$G_0^{-1}(\tau - \tau') = \delta(\tau - \tau') \left[\frac{\partial}{\partial \tau} + \mu\right] - \Delta(\tau - \tau')$$

Interaction expansion CT-INT: A. Rubtsov et al, JETP Lett (2004)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{(-U)^k}{k!} Tr \det[G_0(\tau - \tau')]$$

Hybridization expansion CT-HYB: P. Werner et al, PRL (2006)

$$Z = Z_0 \sum_{k=0}^{\infty} \frac{1}{k!} Tr \left\langle c_{\sigma}^+(\tau) c_{\sigma}(\tau') \dots c_{\sigma'}^+(\tau) c_{\sigma'}(\tau') \right\rangle_0 \det[\Delta(\tau - \tau')]$$

Efficient Krylov scheme: A. Läuchli and P. Werner, PRB (2009)

E. Gull, et al, RMP 83, 349 (2011)

Benchmark for CT-QMC

DMFT: Metal-Insulator Transition

Bethe Lattice (Z=3)

Non-local screened interactions

F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A. L. PRB 70, 195104 (2004).

ıg	Interaction	C_2F	C_2H
	U_{00}	5.16	4.69
	U_{01}	2.46	2.19
	U_{02}	1.66	1.11
	U_{03}	1.46	0.85
	J_{01}^F (screened)	0.018	0.034
	J_{01}^F (bare)	0.044	0.099

 χ_0^r V. Mazurenko, et al, PRB 94, 214411 (2016)

$$\overline{W} = (1 - v\chi_0^r)^{-1}v \qquad W = (1 - \overline{W}\chi_0^t)^{-1}\overline{W}$$

 $U_{ij} = \left\langle ij \left| \bar{W} \right| ij \right\rangle$ $J_{ij} = \left\langle ij \left| \bar{W} \right| ji \right\rangle$ Non-local Coulomb and Exchange

C-RPA in Wannier basis: Y. Nomura, M. Kaltak, K. Nakamura, C. Taranto, S. Sakai, A. Toschi, R. Arita, K. Held, G. Kresse, M. Imada, PRB **86**, 085117 (2012)

Constrained GW calculations of U

PHYSICAL REVIEW B 70, 195104 (2004)

Frequency-dependent local interactions and low-energy effective models from electronic structure calculations

Realistic DMFT: Charge+Spin+Orbital Fluctuations

W. Metzner and D. Vollhardt (1987)
A. Georges and G. Kotliar (1992)
DMFT time scale

$$\int S[c^*, c] = -\sum_{\omega k\sigma mm'} c^*_{\omega k\sigma m} \left[(i\omega + \mu)\mathbf{1} - t^{mm'}_{k\sigma} \right] c_{\omega k\sigma m'} + \sum_i S_U[c^*_i, c_i]$$

$$S_{\text{loc}}[c^*, c] = -\sum_{\omega \alpha\beta} c^*_{\omega \alpha} \left[(i\omega + \mu)\mathbf{1} - \Delta^{\alpha\beta}_{\omega} \right] c_{\omega\beta} + S_U[c^*, c]$$

$$g_{12} = -\langle c_1 c^*_2 \rangle_{\text{loc}}$$
DMFT
Self-consistensy k
$$\int \left[g^{-1}_{\omega} + \Delta_{\omega} - t_k \right]^{-1} = g_{\omega}$$

$$DMFT$$

Magnetism of Fe, Co, Ni

M PERIODIC TABLE

Ferromagnetism of iron is known from ancient times Hippocrates – 440 BC Lucretius – 100 BC

Iron (T_c =1041 K) Cobalt (T_c =1394 K) Nickel (T_c =633 K)

Coexistence of localized and itinerant behavior

Local magnetic moments exists above $T_{\rm C}$ - Curie-Weiss law, spectroscopy, neutrons

d electrons are itinerant

- FS, chemical bonding, transport

Iron Fermi Surface

S. Hershfield http://www.phys.ufl.edu/fermisurface

Itinerant ferromagnetism

Magnetism of metals: LDA+DMFT

A. L., M. Katsnelson and G. Kotliar, PRL(2001)

PES: satellite structure in Ni

PES (LDA) $W_{band} = 3(4) \text{ eV}$ $\Delta E_{ex} = 0.3(0.6) \text{ eV}$ $E_{sat} = -6(?) \text{ eV}$

LDA+DMFT+QMC

A. L., M. Katsnelson and G. Kotliar, PRL (2001)

T-Lanczos (5d+10k) J. Kolorenč et al, PRB 85, 235136 (2012)

Spectral Function Fe: ARPES vs. DMFT

DMFT

 Σ_2

3

2

SP-ARPES (BESY) *J. Sánchez-Barriga, et al, PRL (2010)*

CT-QMC with full U

A. Hausoel, et al Nat. Comm. (2017)

$$H_{\rm int} = \frac{1}{2} \sum_{m,\sigma} U_{mm'm'''} c_{m\sigma}^{+} c_{m'\sigma'}^{+} c_{m''\sigma'} c_{m''\sigma'}$$

3d-Magnets at high pressure

Fe and Ni and their alloys under pressure from ambient to Earth 's core condition

Earth's magnetism

What about Nickel?

30 years of HTSC: d-wave superconductivity

Electronic Structure YBCO

I.Mazin, et al PRB (1992)

O. K. Andersen et al, JPCS (1995)

HTSC: from LDA to 1-band model

From LDA "Chemistry" to Low-energy TB-model

t'/t= -0.3 for YBCO

O.K. Andersen, *at al J. Phys. Chem. Solids* **56**, 1573 (1995)

NMTO-orbitals O.K. Andersen, *et al* Phys. Rev. B 62, R16219 (2000)

Cluster DMFT

Cluster DMFT scheme

$$\hat{G}(i\omega_n) = \frac{1}{\Omega} \sum_{k}^{BZ} \left[\hat{I}(\mu + i\omega_n) - \hat{H}_0(k) - \hat{\Sigma}(i\omega_n) \right]^{-1}$$

$$\hat{G}_0^{-1}(i\omega_n) = \hat{G}^{-1}(i\omega_n) + \hat{\Sigma}(i\omega_n)$$

$$S_{eff} = -\iint d\tau d\tau' c_{I\sigma}^+(\tau) G_{IJ}^{-1}(\tau - \tau') c_{J\sigma}(\tau') + \int d\tau U n_{I\uparrow}(\tau) n_{J\downarrow}(\tau)$$

$$\hat{G}_{IJ}(\tau - \tau') = -\frac{1}{Z} \int D[c, c^{+}] c_{I}(\tau) c_{J}^{+}(\tau') e^{-S_{eff}}$$

$$\hat{\Sigma}_{new}(i\omega_n) = \hat{G}_0^{-1}(i\omega_n) - \hat{G}^{-1}(i\omega_n)$$

A.L., M. Katsnelson, PRB **62**, R928368, (2000) G. Kotliar, et al RMP **78**, 865 (2006)

Double-Bethe Lattice: exact C-DMFT

bilayer Hubbard model on the Bethe lattice (for coordination z = 3)

A. Ruckenstein PRB (1999)

$$\begin{aligned} H &= -t \sum_{\langle ij \rangle, \sigma} (a_{i\sigma}^{\dagger} a_{j\sigma} + b_{i\sigma}^{\dagger} b_{j\sigma}) - t_{\perp} \sum_{i\sigma} (a_{i\sigma}^{\dagger} b_{i\sigma} + b_{i\sigma}^{\dagger} a_{i\sigma}) \\ &+ U \sum_{i\sigma} (n_{ai\uparrow} n_{ai\downarrow} + n_{bi\uparrow} n_{bi\downarrow}) \end{aligned}$$

Self-consistent condition: C-DMFT

$$\mathcal{G}_{\sigma}^{-1}(i\omega_n) = \begin{pmatrix} i\omega_n + \mu - h\sigma & -t_{\perp} \\ -t_{\perp} & i\omega_n + \mu + h\sigma \end{pmatrix} - t^2 \mathbf{G}_{-\sigma}(i\omega_n) ,$$

AF-between plane

AF-plane

Finite temperature phase diagram

- order-disorder transition at $t\perp$ / $t=\sqrt{2}$ for large U
- MIT for intermediate U

H. Hafermann, M. Katsnelson and A.L., EPL, 85, 37006 (2009)

Density of States: large U

Exotic Magnetism: Triple Bethe lattice

$$\underline{t} = \begin{pmatrix} 0 & -t_t & -t_t \\ -t_t & 0 & -t_t \\ -t_t & -t_t & 0 \end{pmatrix}$$

TB-triangula-hoppings

Low-States energies as function of U

Different triple Bethe DOS

Exotic Magnetism: Triple Bethe lattice

different Hubbard interactions U at $\beta = 10$, t = 0.5 and half-filling

different triangle hoppings t at $\beta = 10$, U = 6 and half-filling

U=0 DOS

120-grad AIAO (all-in/all-out) state

Cluster-DMFT

Plaquette hopping matrix

$$T_{I,J}(\mathbf{K}) = \begin{pmatrix} 0 & t_x K_x^+ & 0 & t_y K_y^+ \\ t_x K_x^- & 0 & t_y K_y^+ & 0 \\ 0 & t_y K_y^- & 0 & t_x K_x^- \\ t_y K_y^- & 0 & t_x K_x^+ & 0 \end{pmatrix}$$

$$K_{x(y)}^{\pm} \equiv 1 + \exp\left(\pm i K_{x(y)}a\right)$$

Supercell Green Function

$$G(\mathbf{K}, i\omega) = \left[\left(i\omega + \mu \right) \mathbf{1} - T\left(\mathbf{K} \right) - \Sigma \left(i\omega \right) \right]^{-1}$$

Where Self-energy matrix for plaquette has the form:

$$\mathcal{G}^{-1}(i\omega) - G^{-1}(i\omega) = \begin{pmatrix} \Sigma_{\uparrow}(i\omega) & S(i\omega) \\ S(i\omega) & \Sigma_{\downarrow}^{*}(-i\omega) \end{pmatrix},$$

1

$$G\left(i\omega
ight)=\left(egin{array}{cc} G_{\uparrow}\left(i\omega
ight) & F\left(i\omega
ight) \ F\left(i\omega
ight) & G_{\downarrow}^{*}\left(-i\omega
ight) \end{array}
ight)$$

GF in superconducting state:

Quadruple Bethe lattice

Single Plaquette

M. Harland, M. Katsnelson, A.L. Phys. Rev. B 94, 125133 (2016)

Phase Diagramm of 4-Bethe

M. Harland, et al, arXiv:1905.12610

d-wave Superconductivity

Dopping dependence of Spectral function

Magnetism and Superconductivity

d-wave order parameter

Josephson lattice model for dSC phase fluctuations

$$\begin{pmatrix} G^{p\uparrow} & F \\ F & G^{h\downarrow} \end{pmatrix}_{ij}^{-1} = \begin{pmatrix} G_0^{p\uparrow} & \\ & G_0^{h\downarrow} \end{pmatrix}_{ij}^{-1} - \delta_{ij} \begin{pmatrix} \Sigma^{p\uparrow} & S \\ S & \Sigma^{h\downarrow} \end{pmatrix}_i$$

Effective Josephson couplings:

$$H_{
m eff} = -\sum_{ij} J_{ij} \cos{(heta_i - heta_j)}$$

Related with Anomalous Self-energy (S) $J_{ij} = T \operatorname{Tr}_{\omega \alpha} \left(F_{ij} S_j F_{ji} S_i - G_{ij}^{p\uparrow} S_j G_{ji}^{h\downarrow} S_i \right)$

M. Harland, et al, arXiv:1810.12986

Interaction of electrons with collective excitations

Dual Boson: General Idea $S_{imp} = \iint_{0}^{\beta} d\tau d\tau' \left[-\sum_{\sigma} \mathcal{G}_{\tau\tau'}^{-1} c_{\tau\sigma}^{*} c_{\tau'\sigma} + \frac{1}{2} \left(U + \Lambda_{\tau\tau'}^{c} \right) n_{\tau} n_{\tau'} + \frac{1}{2} \Lambda_{\tau\tau'}^{s} \vec{s_{\tau}} \cdot \vec{s_{\tau'}} \right]$

HTSC

$$\Lambda_{\omega} \sim J_{\tau\tau'} \vec{S}_{\tau} \cdot \vec{S}_{\tau}$$

G. Rohringer, et al RMP **90**, 025003 (2018)

Beyond DMFT: Dual DB/DF scheme

General Lattice Action: $U_{\mathbf{q}} = U + V_{\mathbf{q}}$

$$S = -\sum_{\mathbf{k}\nu\sigma} c^{+}_{\mathbf{k}\nu\sigma} [i\nu + \mu - \varepsilon_{\mathbf{k}}] c_{\mathbf{k}\nu\sigma} + \frac{1}{2} \sum_{\mathbf{q}\omega} U_{\mathbf{q}} n^{*}_{\mathbf{q}\omega} n_{\mathbf{q}\omega}$$

$$n_{\mathbf{q}\omega} = \sum_{\mathbf{k}\nu\sigma} (c^*_{\mathbf{k}\nu} c_{\mathbf{k}+\mathbf{q},\nu+\omega} - \langle c^*_{\mathbf{k}\nu} c_{\mathbf{k}\nu} \rangle \delta_{\mathbf{q}\omega})$$

(2012)

Reference system: Local Action with hybridization Δ_{v} and Λ_{ω}

$$S_{\text{ref}} = -\sum_{\nu\sigma} c_{\nu\sigma}^{+} [i\nu + \mu - \Delta_{\nu}] c_{\nu\sigma} + \frac{1}{2} \sum_{\omega} \mathcal{U}_{\omega} n_{\omega}^{*} n_{\omega}$$

Lattice-Impurity connection: $S = \sum S_{ref}^{(i)} + \Delta S$

$$\Delta S = \sum_{\nu \mathbf{k}\sigma} c^{+}_{\nu \mathbf{k}\sigma} [\varepsilon_{\mathbf{k}} - \Delta_{\nu}] c_{\nu \mathbf{k}\sigma} + \frac{1}{2} \sum_{\mathbf{q}\omega} \left(U_{\mathbf{q}} - \mathcal{U}_{\omega} \right) n^{*}_{\mathbf{q}\omega} n_{\mathbf{q}\omega}$$

$$\mathcal{U}_{\omega} = U + \Lambda_{\omega}$$
 $U_{\mathbf{q}} - \mathcal{U}_{\omega} = V_{\mathbf{q}} - \Lambda_{\omega}$
, Rubtsov, M. Katsnelson, A.L., Ann. Phys. 327, 1320 (

В

U

F

 Λ_{ω}

 Δ_{v}

Dual Transformation

 $\Sigma_{k\nu} = \Sigma_{\nu}^{ref} + \bar{\Sigma}_{k\nu}$ $\bar{\Sigma}_{k\nu}^{-1} = \tilde{\Sigma}_{k\nu}^{-1} + G_{\nu}^{ref}$

Fermionic Hubbard-Stratanovich transformation

$$e^{\sum_{\mathbf{k}\nu\sigma} c^*_{\mathbf{k}\nu\sigma} [\Delta_{\nu\sigma} - \varepsilon_{\mathbf{k}}] c_{\mathbf{k}\nu\sigma}} = \det[\Delta_{\nu\sigma} - \varepsilon_{\mathbf{k}}] \int D[f^*, f] e^{-\sum_{\mathbf{k}\nu\sigma} \left\{ f^*_{\mathbf{k}\nu\sigma} [\Delta_{\nu\sigma} - \varepsilon_{\mathbf{k}}]^{-1} f_{\mathbf{k}\nu\sigma} + c^*_{\nu\sigma} f_{\nu\sigma} + f^*_{\nu\sigma} c_{\nu\sigma} \right\}}$$

Bosonic Hubbard-Stratanovich transformation

$$\sqrt{\det[\Lambda_{\omega} - V_{\mathbf{q}}]} e^{\frac{1}{2} \sum_{\mathbf{q}\omega} n_{\mathbf{q}\omega}^* [\Lambda_{\omega} - V_{\mathbf{q}}] n_{\mathbf{q}\omega}} = \int D[\phi] e^{-\frac{1}{2} \sum_{\mathbf{q}\omega} \left\{ \phi_{\mathbf{q}\omega}^* [\Lambda_{\omega} - V_{\mathbf{q}}]^{-1} \phi_{\mathbf{q}\omega} + n_{\omega}^* \phi_{\omega} + \phi_{\omega}^* n_{\omega} \right\}}$$

Dual action

$$\tilde{S} = -\sum_{\mathbf{k}\nu} f_{\mathbf{k}\nu}^* \tilde{G}_0^{-1} f_{\mathbf{k}\nu} - \frac{1}{2} \sum_{\mathbf{q}\omega} \phi_{\mathbf{q}\omega}^* \tilde{W}_0^{-1} \phi_{\mathbf{q}\omega} + \mathbf{k} \tilde{W}_0^{-1} \phi_{\mathbf{$$

$$\tilde{G}_0 = [G_{\mathrm{ref},\nu}^{-1} + \Delta_\nu - \varepsilon_{\mathbf{k}}]^{-1} - G_\nu^{\mathrm{ref}} = G_{\mathrm{E}} - G_\nu^{\mathrm{ref}}$$

$$\tilde{W}_0 = \alpha_{\omega}^{-1} \left[[U_{\mathbf{q}} - \mathcal{U}_{\omega}]^{-1} - \chi_{\omega} \right]^{-1} \alpha_{\omega}^{-1} = W_{\mathrm{E}} - \mathcal{W}_{\omega}^{\mathrm{ref}}$$

Augmentation:

$$\alpha_{\omega} = \mathcal{W}_{\omega} / \mathcal{U}_{\omega} = (1 + \mathcal{U}_{\omega} \chi_{\omega})$$
$$\mathcal{U}_{\omega} \longrightarrow \mathcal{W}_{\omega} \longleftarrow \tilde{W}_{\mathbf{q}\omega}$$

Dual Potential

Effective Interactions:

$$\tilde{V} = \frac{1}{4} \sum_{\nu\nu'\omega} \gamma_{\nu\nu'\omega} f_{\nu}^* f_{\nu'}^* f_{\nu+\omega} f_{\nu'-\omega} + \sum_{\nu\omega} \left(\lambda_{\nu\omega} f_{\nu}^* f_{\nu+\omega} \phi_{\omega}^* + h.c. \right)$$

Definition of correlation functions

$$G_{\mathbf{k}\nu}/G_{\nu}^{\mathrm{ref}} = -\left\langle c \ c^{+} \right\rangle_{\mathbf{k}\nu/\nu \mathrm{ref}},$$
$$X_{\mathbf{q}\omega}/\chi_{\omega} = -\left\langle n \ n^{*} \right\rangle_{\mathbf{q}\omega/\omega \mathrm{ref}},$$
$$\mathcal{W}_{\omega} = \mathcal{U}_{\omega} + \mathcal{U}_{\omega}\chi_{\omega}\mathcal{U}_{\omega},$$

$$\lambda_{\nu\omega} = g_{\nu}^{-1} g_{\nu+\omega}^{-1} \alpha_{\omega}^{-1} \langle c_{\nu} c_{\nu+\omega}^* n_{\omega} \rangle_{\text{loc}}$$

 $\overbrace{\mu}^{\gamma} \gamma_{\nu\nu'\omega} = g_{\nu}^{-1} g_{\nu'}^{-1} g_{\nu'-\omega}^{-1} g_{\nu+\omega}^{-1} \Big[\left\langle c_{\nu} c_{\nu'} c_{\nu'-\omega}^{*} c_{\nu+\omega}^{*} \right\rangle - g_{\nu} g_{\nu'} (\delta_{\omega} - \delta_{\nu',\nu+\omega}) \Big]$

DB: Full impurity vertex $\gamma_{\nu\nu'\omega}$ with $\tilde{G}_{\mathbf{k}\nu}$ is equivalent to Bare irreducible vertex $\overline{\gamma}_{\nu\nu'\omega}^{2\mathrm{PL}\varsigma}$ and $G_{\nu}(\mathbf{k})$

in normal Ladder-perturbation theory

Lattice GF and SCF-condition

Lattice two-point correlation functions

$$G_{\mathbf{k}\nu}^{-1} = G_{\mathbf{E}}^{-1} - \tilde{\Sigma}_{\mathbf{k}\nu} (1 + G_{\nu}^{\mathrm{ref}} \tilde{\Sigma}_{\mathbf{k}\nu})^{-1} \quad \tilde{\Sigma}_{\mathbf{k}\nu} = \mathbf{A} + \mathbf{A$$

Self-consistent conditions:

$$\begin{split} \sum_{\mathbf{k}} G_{\mathbf{k}\nu} &= G_{\nu}^{\text{ref}}, \\ \sum_{\mathbf{q}} W_{\mathbf{q}\omega} &= \mathcal{W}_{\omega}^{\text{ref}}. \qquad \text{vs.} \qquad \sum_{\mathbf{q}} X_{\mathbf{q}\omega} = \chi_{\omega} \end{split}$$

Lattice susceptibility

$$X_{\mathbf{q}\omega} = \tilde{U}_{\mathbf{q}\omega}^{-1} \alpha_{\omega}^{-1} \tilde{W}_{\mathbf{q}\omega} \alpha_{\omega}^{-1} \tilde{U}_{\mathbf{q}\omega}^{-1} - \tilde{U}_{\mathbf{q}\omega}^{-1}$$

Undoped Cuprates

E. Stepanov et al, NPJ Quantum Materials 3, 54 (2018)

Temperarture dependence of magnetic susceptibilities

Spin-fluctuations in cuprate

E. Stepanov et al, NPJ Quantum Materials 3, 54 (2018) Extended Hubbard model: t=0.3, t'=-0.15t, U=3, V=0.5, J_d=0.01

Stability of Resonance mode

Doping and Temperature dependent magnetic susceptibilility

High-energy spin-excitations

Doping dependent Spectral Function x=0.02 x=0.07 x=0.12 x=0.0 $\langle n \rangle = 0.98, \beta = 10;$ $\langle n \rangle = 1, \beta = 10;$ $\langle n \rangle = 0.93, \beta = 15;$ $\langle n \rangle = 0.88, \beta = 20;$ EEEE0.6 -- 0.4 - 0.3 2 -2 · 2 · 2 - 0.2 0 0 · 0 -0 - 0.1 -2 -2 $^{-2}$ $^{-2}$ -4-4 --4X M X M X M X Ń Г Г Г Г Г Г Г Г 1.2 1.2 1.2 1.2 DOS DOS DOS DOS 0.0 0.0 0.0 0.0 -2 \dot{E} -4 -2 Ė -4 2 EΜ X

E. Stepanov et al, NPJ Quantum Materials 3, 54 (2018)

Exchange interactions in DB

From Ladder susceptibility

$$X_{\mathbf{q}\omega}^{\text{ladd}} = \text{Tr}\left\{\hat{X}_{\mathbf{q}\omega}^{0}\left[I + \left(\hat{\overline{\gamma}}_{\omega}^{2\text{PI}} + I\left[J_{\mathbf{q}}^{\text{D}} + \Lambda\right]\right)\hat{X}_{\mathbf{q}\omega}^{0}\right]^{-1}\right\}$$

E.Stepanov, S. Brener, F. Krien, M. Harland, A.L., M. Katsnelson, Phys. Rev. Lett. 121, 037204 (2018)

Summary

- DFT+DMFT is a perfect scheme for magnetic materials
- New playground of N-Bethe lattice
- Local correlations exactly computed within CT-QMC impurity solver
- DF/DB is an efficient approach for non-local corrections beyond DMFT
- Exchange interactions and Vertex Corrections