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Many-body system in disorder

Many-particle system in disorder ⇒ Transport and localization properties

Anderson localization (P.W. Anderson, 1958)

Destructive interference in the scattering of a particle from random defects
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Introduction

Disordered quantum systems

What is known ⇒ Anderson transition (localization-delocalization)

Already found: Anderson localization of

Light

Microwaves

Sound waves

Electrons in solids

Anderson localization of neutral atoms

—————————————————————
All single-particle states in 1D and 2D are localized

for short-range disorder

. – p.3/??



Long-range hops

Anderson localization in disordered quantum systems

Long-range interactions 1/ra are crucial

Regular lattice with on-site disorder and 1/ra hops

a > d→ localization; a = d→ critical; a < d→ extended (Levitov, 1997)

2D dipolar excitations → d = 2 = a (Aleiner et al (2011)

critical behavior for the T-inv. case
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Ergodic and non-ergodic extended states

Disordered systems ⇒ Ergodicity of extended states

The states at the mobility edge are non-ergodic (multifractal)

Wegner, 1981; Altshuler/Kravtsov/Lerner, 1986

Bethe lattice (Biroli et al, 2012; De Luca et al, 2014)

Random matrix models (Kravtsov et al, 2015) ⇒
⇒ finite-width band of NEE states

Great interest ⇒ Systems with NEE ↔ EE transition

Physical systems?
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Systems with dipolar excitations

Polar molecules randomly spaced in an optical lattice (JILA)

 → J = 1,  → J = 0

Nuclear spins, Rydberg atoms, NV-centers, etc.

Long-range hops (Levy flights); Hopping amplitude ∝ 1/r3 . – p.6/??



Hamiltonian and methods

Deng, Altshuler, Santos, G.S. (2016)

Problem with off-diagonal disorder

Ĥ = −
∑
i,j

tij |i〉〈j|

tij = − d2

a3|ri − rj|3
(1− 3 cos2 θij)

Exact diagonalization. From 100 to 1000 realizations of disorder

ρ = N/Ld; N up to 80000. Extrapolation to N → ∞
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Eigenstate properties

Ĥ |ψn〉 = En|ψn〉; δn = En+1 − En

rn =
min{δn, δn−1}
max{δn, δn−1}

Localized states ⇒ Poissonian distribution of rn with 〈r〉 ≈ 0.386

EE states → Wigner-Dyson distribution with 〈r〉 ≈ 0.53

Moments Iq =
∑
i

|ψ(i)|2q ∝ N−τ(q)

EE states ⇒ τ = q − 1

localized states ⇒ τ = 0

Fractal dimensions Dq =
τ(q)

q − 1

Dq depends on q → multifractal ψ(i)
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Spectrum of fractal dimensions

P (|ψ|2) ∝ 1

|ψ|2N
f(α)−1; α = − ln |ψ|2

lnN

〈Iq〉 = N〈|ψ|2q〉 ∝
∫
dαNf(α)−qα)

τ(q) = qα− f(α); α(q) is a solution of f ′(α) = q

f(α) → fractal dimension of the set of those points r where |ψ(r)|2 ∼ N−α
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Spectrum of fractal dimensions
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C

lnN
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Dipolar excitations in 3D. Dilute limit

All states extended

Energy scale ρ - hopping at mean interparticle distance

|E|/ρ . 2 ⇒ EE states (〈r〉 = 0.53 and Dq = 1 for all q)
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Dipolar excitations in 3D
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Dipolar excitations in 3D

NEE ↔ EE transition at a given ρ by varying E

Central region of EE states grows with increasing ρ.

For ρ > 0.5 the EE region covers almost all the spectrum

NEE ↔ EE transition at a given E by varying ρ

Why EE ↔ NEE is a phase transition?

D2 has at least a cusp at NEE-EE edges
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Excitation dynamics

Experimentally the lattice with ∼ 106 sites and ρ up to ∼ 0.3 are possible

Create a dipolar excitation in a particular site

For the non-ergodic case the broadening of the wave

packet is much slower: Chalker; Kravtsov et al; etc.

Measure the return probability P (t) after time t

In the NEE case P (t) decays with increasing t much slower
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1D quasicrystals with power law hops

Superposition of 2 incommensurate lattices
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∆

Nearest neghbour hopping J → Aubrey-Azbel-Harper model

∆ < 2J → ergodic extended states

∆ > 2J → localized states

——————————————————————————-
Power law hops 1/ra (a > 0)

Many interesting regimes
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1D crystals with powerlaw hops

Ĥ=−J
∑
i,j 6=i

1

|i− j|a |i〉〈j|+∆
∑
j

cos(β(2πj + φ))|j〉〈j|

a < 1 → laser-driven interaction between trapped ions

All states are extended (NEE and EE)

Deng, Ray, Sinha, Santos, GS
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Ergodic and multifractal states

β = (
√
5− 1)/2

∆ < ∆1 → lowest βL states EE, and the rest NEE

∆1 < ∆ < ∆2 → lowest β2L states EE, and the rest NEE

NEE

EE
EE

NEE

NEE

ΔΔ
2

Δ
1

EE

. – p.17/??



Nonergodic-ergodic transition
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Excitation dynamics

Return probability of an initially localized excitation P (t) ∝ t−γ for large t
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γ = 0 (localized); γ = 1 (EE); γ ≃ D2/(2− a) (NEE)
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Conclusions

Ergodic-nonergodic phase transition

Thank you for attention!
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