Novel phase transitions in disordered quantum systems with long-range hops

Gora Shlyapnikov LPTMS, Orsay, France Russian Quantum Center, Moscow

- Introduction.
- Dipolar excitations in 3D
- Ergodic and non-ergodic extended states
- Quasicrystals with power-law hops
- Ergodic-non-ergodic transition
- Conclusions

Collaborations/discussions V. Kravtsov (ICTP), B. Altshuler (Col. Univ.) X.Deng/L. Santos (Hannover Univ.) Kourovka, February 28, 2020

Many-body system in disorder

Many-particle system in disorder \Rightarrow Transport and localization properties Anderson localization (P.W. Anderson, 1958)

Destructive interference in the scattering of a particle from random defects

Introduction

Disordered quantum systems

What is known \Rightarrow Anderson transition (localization-delocalization)

Already found: Anderson localization of

Light

Microwaves

Sound waves

Electrons in solids

Anderson localization of neutral atoms

All single-particle states in 1D and 2D are localized

for short-range disorder

Long-range hops

Anderson localization in disordered quantum systems Long-range interactions $1/r^a$ are crucial

Regular lattice with on-site disorder and $1/r^a$ hops

 $a > d \rightarrow$ localization; $a = d \rightarrow$ critical; $a < d \rightarrow$ extended (Levitov, 1997)

2D dipolar excitations $\rightarrow d = 2 = a$ (Aleiner et al (2011) critical behavior for the T-inv. case

Ergodic and non-ergodic extended states

 $\text{Disordered systems} \Rightarrow \text{Ergodicity of extended states}$

The states at the mobility edge are non-ergodic (multifractal) Wegner, 1981; Altshuler/Kravtsov/Lerner, 1986

Bethe lattice (Biroli et al, 2012; De Luca et al, 2014) Random matrix models (Kravtsov et al, 2015) \Rightarrow

 \Rightarrow finite-width band of NEE states

Great interest \Rightarrow Systems with NEE \leftrightarrow EE transition Physical systems?

Systems with dipolar excitations

Polar molecules randomly spaced in an optical lattice (JILA)

$$\bullet \to J = 1, \quad \bullet \to J = 0$$

Nuclear spins, Rydberg atoms, NV-centers, etc. Long-range hops (Levy flights); Hopping amplitude $\propto 1/r^3$

Hamiltonian and methods

Deng, Altshuler, Santos, G.S. (2016)

Problem with off-diagonal disorder

$$\hat{H} = -\sum_{i,j} t_{ij} |i\rangle\langle j|$$
$$t_{ij} = -\frac{d^2}{a^3 |\mathbf{r_i} - \mathbf{r_j}|^3} (1 - 3\cos^2 \theta_{ij})$$

Exact diagonalization. From 100 to 1000 realizations of disorder $\rho = N/L^d$; N up to 80000. Extrapolation to $N \to \infty$

Eigenstate properties

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle; \quad \delta_n = E_{n+1} - E_n$$
$$r_n = \frac{\min\{\delta_n, \delta_{n-1}\}}{\max\{\delta_n, \delta_{n-1}\}}$$

Localized states \Rightarrow Poissonian distribution of r_n with $\langle r \rangle \approx 0.386$ EE states \rightarrow Wigner-Dyson distribution with $\langle r \rangle \approx 0.53$

Moments
$$I_q = \sum_i |\psi(i)|^{2q} \propto N^{-\tau(q)}$$

EE states $\Rightarrow \tau = q - 1$
localized states $\Rightarrow \tau = 0$
Fractal dimensions $D_q = \frac{\tau(q)}{q - 1}$
 D_q depends on $q \rightarrow$ multifractal $\psi(i)$

Spectrum of fractal dimensions

$$\begin{split} P(|\psi|^2) \propto \frac{1}{|\psi|^2} N^{f(\alpha)-1}; \ \alpha &= -\frac{\ln |\psi|^2}{\ln N} \\ \langle I_q \rangle &= N \langle |\psi|^{2q} \rangle \propto \int d\alpha N^{f(\alpha)-q\alpha)} \\ \tau(q) &= q\alpha - f(\alpha); \ \alpha(q) \text{ is a solution of } f'(\alpha) = q \end{split}$$

 $f(\alpha) \rightarrow$ fractal dimension of the set of those points ${f r}$ where $|\psi({f r})|^2 \sim N^{-lpha}$

Spectrum of fractal dimensions

Dipolar excitations in 3D. Dilute limit

All states extended

Energy scale ρ - hopping at mean interparticle distance

 $|E|/
ho \lesssim 2 \Rightarrow$ EE states ($\langle r
angle = 0.53$ and $D_q = 1$ for all q)

Dipolar excitations in 3D

 $0 < D_q < 1$ decays with growing q)

Dipolar excitations in 3D

NEE \leftrightarrow EE transition at a given ρ by varying ECentral region of EE states grows with increasing ρ . For $\rho > 0.5$ the EE region covers almost all the spectrum NEE \leftrightarrow EE transition at a given E by varying ρ Why EE \leftrightarrow NEE is a phase transition? D_2 has at least a cusp at NEE-EE edges

Excitation dynamics

Experimentally the lattice with $\sim 10^6$ sites and ρ up to ~ 0.3 are possible

Create a dipolar excitation in a particular site For the non-ergodic case the broadening of the wave packet is much slower: Chalker; Kravtsov et al; etc.

Measure the return probability P(t) after time tIn the NEE case P(t) decays with increasing t much slower

1D quasicrystals with power law hops

Superposition of 2 incommensurate lattices

Nearest neghbour hopping $J \rightarrow$ Aubrey-Azbel-Harper model $\Delta < 2J \rightarrow$ ergodic extended states $\Delta > 2J \rightarrow$ localized states

Power law hops $1/r^a$ (a > 0)

Many interesting regimes

1D crystals with powerlaw hops

$$\hat{H} = -J \sum_{i,j \neq i} \frac{1}{|i-j|^a} |i\rangle \langle j| + \Delta \sum_j \cos(\beta (2\pi j + \phi)) |j\rangle \langle j|$$

 $a < 1 \rightarrow$ laser-driven interaction between trapped ions All states are extended (NEE and EE)

Deng, Ray, Sinha, Santos, GS

Ergodic and multifractal states

 $\beta = (\sqrt{5} - 1)/2$

 $\Delta < \Delta_1 \rightarrow \text{lowest } \beta L \text{ states EE, and the rest NEE}$

 $\Delta_1 < \Delta < \Delta_2 \rightarrow$ lowest $\beta^2 L$ states EE, and the rest NEE

Nonergodic-ergodic transition

Excitation dynamics

Return probability of an initially localized excitation $P(t) \propto t^{-\gamma}$ for large t

 $\gamma = 0$ (localized); $\gamma = 1$ (EE); $\gamma \simeq D_2/(2-a)$ (NEE)

Conclusions

Ergodic-nonergodic phase transition

Thank you for attention!