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20 Localized and itinerant electrons in solids

As we have already mentioned above, there is a very strong interplay between the motion
of doped carriers, electrons or holes, and the background magnetic structure. Undoped sys-
tems with U ! t are typically antiferromagnetic insulators, whereas in doped systems it
may be favorable to change the magnetic ordering to ferromagnetic. This can occur locally,
leading to the formation of ferromagnetic microregions – magnetic polarons, or ferrons,
trapping extra electrons or holes (Nagaev, 1983). This is one kind of phase separation
in strongly correlated systems, to be discussed in more detail in Section 9.7. Such phase
separation, however, may be prevented, or at least partially suppressed, by the long-range
Coulomb interaction which “does not like” charge segregation and enforces electroneutral-
ity. In this case there may still appear a homogeneous ferromagnetic state in a system, see
the qualitative phase diagram of Fig. 1.19 (Penn, 1966; Khomskii, 1970). Here, for one
electron per site (n = 1) we have an antiferromagnetic state – definitely for U/t ! 1,
but for certain special cases (bipartite lattices with nesting) even down to smaller values
of U/t . For large U/t and strong doping the ferromagnetic state may appear; the detailed
conditions for its appearance and the limits of its existence are still a matter of debate.
And between antiferromagnetic and ferromagnetic states there may exist an intermediate,
crossover phase – either in the form of a canted antiferromagnet, with the canting angle
increasing when approaching the ferromagnetic region; or in the form of a spiral with the
wavelength increasing and becoming infinite in the ferromagnetic state; or, as mentioned
above, there may occur in this intermediate region a phase separation into ferromagnetic
and antiferromagnetic regions, with the volume of the ferromagnetic regions increasing
with doping until they occupy the entire sample.

Yet another very exciting possibility is that the doping of Mott insulators can create not
just a metallic state, but a superconducting one. Especially after the discovery of high-Tc
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Figure 1.19 Qualitative phase diagram of the Hubbard model for arbitrary band filling and for
different interaction strengths, after Penn (1966) and Khomskii (1970).
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Typical geometries of cluster magnets 
(on examples of MeL6 octahedra)
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Examples of cluster Mott magnets 
N=2 (Dimers)

Jintra

Jinter

dimer

NaTiSi2O6

Streltsov et al.,  
PRL 96, 249701 (2006)   chain

Li2RuO3

considered to be due almost entirely to the contribution from
the Van Vleck paramagnetism. We do not know if the
nonzero value of ! is due to the existence of the small and
intrinsic Fermi surface or is due to merely the small amount
of metallic parts existing in the samples.

In Fig. 3, the lattice parameters and the unit cell volume V
obtained by powder X-ray measurements are shown as
functions of T . The lattice parameter a (b) decreases
(increases) rapidly at Tc with decreasing T . The value of
b=a is !

ffiffiffi
3

p
above Tc, indicating that the honeycomb

structure changes from a nearly ideal form to a distorted one
as a result of the transition.

Neutron Rietveld analyses have been carried out at 600K
and RT (see Figs. 4 and 5). Although the space group at RT
was previously reported to be C2=c,5,6) it cannot explain the
superlattice peaks indicated by the black arrows in Fig. 5. To
reproduce these reflections, we must adopt the space group
P21=m, for which the conventional unit cell with half the
volume of that for C2=c can be used. (The cell for P21=m has
a single Ru-honeycomb layer, while that for C2=c has two
Ru-honeycomb layers.) The result of the Rietveld fitting by

P21=m is rather well. As the possible space group at 600K,
we have adopted C2=m, the minimal non-isomorphic super-
group of P21=m, because for this space group, we can take
the unit cell with the single RuO6-honeycomb layer and also
because it allows the second-order transition at Tc. (From the
experimental data, it is not easy to definitely distinguish if it
is the second-order one or the first-order one.)

In the fitting described above, we have obtained satisfac-
tory results (Figs. 4 and 5). The superlattice peaks observed
at RT (<Tc) are indicated by the black arrows in Fig. 5. (The
peaks from RuO2 and the unidentified phase are indicated by
the open and gray arrows, respectively.) The obtained R
factors are as follows. At RT, Rwp ¼ 4:17, Re ¼ 3:07 and
S ¼ 1:36 for P21=m. At 600K, Rwp ¼ 4:32, Re ¼ 3:07 and
S ¼ 1:41 for C2=m. The lattice constants and atomic
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Fig. 3. Lattice parameters and the unit cell volume V obtained by powder
X-ray diffraction are shown against T , where the dotted lines are guides
for the eyes.
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J. Phys. Soc. Jpn., Vol. 76, No. 3 LETTERS Y. MIURA et al.
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Valence bond solid:  
T < 540 K

Valence bond liquid:  
T > 540 K

Dimers flow 
over the lattice

Kimber et al., 
PRB 89, 081408  
(2014)

Ru4+ (S=1)

Van Wezel, Van den Brink,  
EPL 75, 957 (2006)

Ti3+ (3d1, S=1/2)



Linear trimers: e.g. Ba4Nb(Rh,Ir)3O12

Nguyen, Cava, PRM 3, 014412 (2019)

Examples of cluster Mott magnets 
N=3 (Trimers)

LOI T. NGUYEN AND R. J. CAVA PHYSICAL REVIEW MATERIALS 3, 014412 (2019)

FIG. 5. Molar heat capacity divided by temperature for
Ba4NbIr3O12 (red circles) and Ba4NbRh3O12 (black open circles)
measured from 1.8 to 200 K. Inset: Both materials show features
below 10 K. The upturn in Cp/T is suppressed by magnetic field (5
and 9 T) in the Ir case. However, it is the tail of the lower-temperature
hump in the Rh case.

column of the periodic table, with Rh being a 4d element and
Ir being a 5d element; the differences in effective moments in
the materials may come from the mixed valency of the Ir and
Rh combined with metal-oxygen covalency. The relatively
low overall moments are of interest as characteristics that
should be explained in any theoretical treatment of these

materials. The temperature-dependent magnetic susceptibil-
ities of Ba4NbIr3O12 and Ba4NbRh3O12 under different ap-
plied fields are shown in the Supplemental Material, Figs. S1
[27].

Different from the case of Ba4Ni1.94Ir2.06O12 [16] where
the magnetization comes from both the Ir2NiO12 trimers and
the isolated Ni2+O6 octahedra, in Ba4NbM3O12, where both
Ba2+ and Nb5+ are nonmagnetic, the magnetic properties
of the Ba4NbM3O12 materials studied here are determined
by the intertrimer and intratrimer interactions of the M3O12
“molecular” units; we postulate, although theoretical treat-
ment is outside the scope of this study and would be of
interest, that the system is best considered as each trimer
acting as an electronic and magnetic building block in this
material, with M2-M1-M2 bonding interactions within the
trimers. The resulting antiferromagnetic interactions lead to
θCW = −13.1 K for the Ir case and −23.2 K for the Rh
case.

Figures 4(a) and 4(b) show the field-cooled (FC) and zero-
field-cooled (ZFC) dc susceptibility in an applied field of
100 Oe for Ba4NbIr3O12 and Ba4NbRh3O12. In both com-
pounds, the magnetic susceptibility increases down to the low-
est measured temperature of 1.8 K. Combined with relatively
large negative Curie-Weiss temperature, the behavior in the
ZFC/FC dc susceptibility indicates the possibility of magnetic
frustration (frustration index = |θCW|/TM ≈ 7 for the Ir case
and 12 for the Rh case) or even spin liquid behavior in these
materials.

FIG. 6. (a),(c) Low-temperature molar heat capacity divided by temperature for Ba4NbIr3O12 and Ba4NbRh3O12. The linear upturn (red
line) at the lowest temperature suggests that Ba4NbIr3O12 is a candidate spin liquid (also see Fig. S3 of the Supplemental Material [27]), while
the broad hump in the Cp/T vs T plot of Ba4NbRh3O12 could reflect the formation of a glassy state. (b),(d) Molar heat capacity of Ba4NbIr3O12

and Ba4NbRh3O12, respectively, from 10 to 0.35 K.
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Ir being a 5d element; the differences in effective moments in
the materials may come from the mixed valency of the Ir and
Rh combined with metal-oxygen covalency. The relatively
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should be explained in any theoretical treatment of these
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[27].
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the magnetization comes from both the Ir2NiO12 trimers and
the isolated Ni2+O6 octahedra, in Ba4NbM3O12, where both
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of the Ba4NbM3O12 materials studied here are determined
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material, with M2-M1-M2 bonding interactions within the
trimers. The resulting antiferromagnetic interactions lead to
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Triangles: LiV(O,S,Se)2, LiZn2Mo3O8, Nb3Cl8

Examples of cluster Mott magnets 
N=3 (Trimers)

K. KOJIMA et al. PHYSICAL REVIEW B 100, 235120 (2019)

Our results successfully solve the long-standing issue of the
cluster patterns of LiVO2, and provide an experimental basis
for identifying the mechanism of trimerization.

II. EXPERIMENT

All samples were prepared according to the recipe sug-
gested by Katayama et al. [8] and Tian et al. [16]. Our
synchrotron powder x-ray-diffraction experiments clarified
that the ratios of Li/V are 1.00(3) for LiVS2 and 0.97(1)
LiVO2, respectively. Both samples were confirmed to ex-
hibit clear transitions at the reported temperatures using the
synchrotron powder x-ray-diffraction experiment. A single-
crystal x-ray-diffraction experiment was performed using
R-AXIS RAPID-S (RIGAKU) equipped with a Mo tar-
get. Synchrotron powder x-ray-diffraction experiments with
E = 19 keV were performed at the BL5S2 beamline equipped
at Aichi Synchrotron, Japan. RIETAN-FP and VESTA soft-
ware were employed for the Rietveld analysis and graphical
purpose, respectively [25,26]. PILATUS 100 K was used for
high-resolution measurement and high-speed data collection.
High-energy synchrotron x-ray-diffraction experiments with
E = 61 keV was performed for collecting the data for PDF
analysis at BL04B2 at SPring-8, Japan. The hybrid detectors
of Ge and CdTe were employed there. The reduced PDF
G(r) was obtained by the conventional Fourier transform of
the collected data [27]. The PDFgui package was used for
analyzing the G(r) [28].

III. RESULTS AND DISCUSSION

A. X-ray diffraction analysis

Figures 1(a) and 1(b) show the single-crystal x-ray-
diffraction patterns of LiVO2 obtained at 300 K. The su-
perstructure spots appearing at (1/3, 1/3, 0), and the related
positions clearly appear in Fig. 1(a). However, the super-
structure spots are accompanied by diffuse streaks without
any internal structures along the c∗ direction, as shown in
Fig. 1(b), while the fundamental peaks remain sharp. As
shown in Fig. 1(c), the asymmetric broad superstructure peaks
appear in the powder x-ray-diffraction data below the tran-
sition temperature, consistent with the single-crystal x-ray-
diffraction results. The diffuse streaks appearing accompanied
by superstructure spots indicate the absence of long-range
ordering of cluster patterns along the c-axis direction in
LiVO2.

In contrast to LiVO2, the prominent superstructure peaks
appear for LiVS2 below the transition temperature, as shown
in the inset in Fig. 1(d). This observation indicates the pres-
ence of long-range ordering in cluster patterns along the c-axis
direction in LiVS2. By assuming the trigonal space group
P31m, we can successfully refine the crystal structure to
obtain the low-temperature crystal structure with vanadium
trimers, as shown in Figs. 1(e) and 1(f). Of note, vanadium
trimerization displaces the nearest-neighboring sulfur ion up-
wards due to the increasing Coulomb repulsion between them,
which results in an uneven buckling structure of sulfur layers
on both sides of the vanadium layer, as shown in the horizontal
graph in Fig. 1(f).

FIG. 1. (a),(b) Single-crystal x-ray-diffraction patterns of LiVO2

at 300 K perpendicular (a) and parallel (b) to c∗ direction.
(c) Powder-diffraction patterns above and below the transition tem-
perature of approximately 490 K in LiVO2. (d) Rietveld refinement
of LiVS2 at 300 K, assuming the space group P31m. The obtained
reliability factors were Rwp = 5.033%, Rp = 4.621%, Re = 3.181%
and S = 1.5821. The inset shows powder-diffraction patterns above
and below the transition temperature of 314 K. (e),(f) Obtained
crystal structures of LiVS2 at 300 K.

B. Crystallographic considerations

It is important to understand what distinguishes LiVO2
from LiVS2 in the absence/presence of long-range ordering
of cluster patterns along the c-axis direction. Here we explain
that the difference in stacking structure among them can
be attributed to the absence/presence of long-range order-
ing. While LiVO2 crystallizes in a 3c structure with R3̄m,
LiVS2 possesses a 1c structure with P3̄m1 at high tem-
peratures. When vanadium trimers are formed in the lower
layer as shown in Fig. 2(a), vanadium trimers displace the
nearest-neighboring sulfur ions upwards due to the Coulomb

FIG. 2. Schematic pictures of the (a) experimentally identified
trimer arrangements of LiVS2 and (b) expected trimer arrangement
of LiVO2. Inset shows the schematic picture of the trimer arrange-
ment viewed from the c-axis direction. Li ions are not displayed for
simplicity.

235120-2

amount of V and Se at the same condition with
Li!0:75VS2"xSex. The products were immersed in a
0.2 M n-BuLi hexane solution for 4 days to attain the
maximum Li content [14]. The samples were characterized
by powder x-ray diffraction. The electron diffraction mea-
surements were carried out in a HF-3000S (Hitachi) trans-
mission electron microscope. Differential scanning
calorimetry (DSC) was conducted by using DSC 204 F1
Phoenix (Netzsch). Vanadium K-edge extended x-ray ab-
sorption fine structure (EXAFS) was measured at BL14B1,
SPring-8. Magnetic susceptibility was measured by a
SQUID magnetometer (Quantum Design). Electrical resis-
tivity was measured by a four-probe method. The powder
samples were sintered at 500 #C under Ar atmosphere for
the resistivity measurements.

LiVS2 exhibits a first order metal to insulator transition
at Tc ! 305 K, shown in Fig. 2. At high temperatures
above Tc, the resistivity is about 40 m!cm and almost
temperature independent. Since the sample is a low-
temperature sintered polycrystal, empirically, the intrinsic
resistivity can be more than 1 order of magnitude smaller
than 40 m!cm, consistent with the metallic nature.
Accompanied with the metal to insulator transition, an
abrupt decrease in the magnetic susceptibility is observed,
as shown in Fig. 2. The system is very likely to be non-
magnetic below Tc with a temperature-independent Van
Vleck term and a tiny low-temperature Curie tail, which

corresponds to paramagnetic impurities of !1% if we
assume spin-1=2 moment. In accord with the nonmagnetic
behavior of LiVS2,

51V NMR relaxation rate T"1
1 shows

thermally activated behavior, from which we estimate a
spin gap of " ¼ 1900 K [17].
Despite the metallic behaviors above Tc, electron dif-

fraction measurements on LiVS2 show an evidence for the
formation of the V trimers below Tc, which indicates
development of the same VBS state as in the insulating
LiVO2. The electron diffraction pattern reveals sharp su-
perlattice reflections at f1=3 1=3 0g below Tc ! 305 K, as
in Fig. 3. The superlattice reflections correspond to affiffiffi
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a superlattice in real space, suggesting a forma-

tion of vanadium trimers in the VS2 plane, shown in the
right inset of Fig. 3. The Fourier-transformed patterns of
EXAFS spectra, shown in Fig. 3, are indeed consistent with
the vanadium trimers in low-temperature phase. Below Tc,
spectra show three clear peaks between 1.5 and 3.5 Å. The
first peak at around 2 Å is ascribed to that from the first-
neighbored V-S. The second and third peaks, marked by

FIG. 1 (color online). Schematic phase diagram in the LiVO2,
LiVS2, and LiVSe2 system. Spin pseudogap is observed in the
white region in the metallic phase. The left inset shows the
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phase diagram in the vicinity of the VBS transition. Solid circles
denote the VBS transition obtained from magnetic measure-
ments for the solid solution LiVS2"xSex.
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amount of V and Se at the same condition with
Li!0:75VS2"xSex. The products were immersed in a
0.2 M n-BuLi hexane solution for 4 days to attain the
maximum Li content [14]. The samples were characterized
by powder x-ray diffraction. The electron diffraction mea-
surements were carried out in a HF-3000S (Hitachi) trans-
mission electron microscope. Differential scanning
calorimetry (DSC) was conducted by using DSC 204 F1
Phoenix (Netzsch). Vanadium K-edge extended x-ray ab-
sorption fine structure (EXAFS) was measured at BL14B1,
SPring-8. Magnetic susceptibility was measured by a
SQUID magnetometer (Quantum Design). Electrical resis-
tivity was measured by a four-probe method. The powder
samples were sintered at 500 #C under Ar atmosphere for
the resistivity measurements.

LiVS2 exhibits a first order metal to insulator transition
at Tc ! 305 K, shown in Fig. 2. At high temperatures
above Tc, the resistivity is about 40 m!cm and almost
temperature independent. Since the sample is a low-
temperature sintered polycrystal, empirically, the intrinsic
resistivity can be more than 1 order of magnitude smaller
than 40 m!cm, consistent with the metallic nature.
Accompanied with the metal to insulator transition, an
abrupt decrease in the magnetic susceptibility is observed,
as shown in Fig. 2. The system is very likely to be non-
magnetic below Tc with a temperature-independent Van
Vleck term and a tiny low-temperature Curie tail, which

corresponds to paramagnetic impurities of !1% if we
assume spin-1=2 moment. In accord with the nonmagnetic
behavior of LiVS2,

51V NMR relaxation rate T"1
1 shows

thermally activated behavior, from which we estimate a
spin gap of " ¼ 1900 K [17].
Despite the metallic behaviors above Tc, electron dif-

fraction measurements on LiVS2 show an evidence for the
formation of the V trimers below Tc, which indicates
development of the same VBS state as in the insulating
LiVO2. The electron diffraction pattern reveals sharp su-
perlattice reflections at f1=3 1=3 0g below Tc ! 305 K, as
in Fig. 3. The superlattice reflections correspond to affiffiffi
3

p
a%

ffiffiffi
3

p
a superlattice in real space, suggesting a forma-

tion of vanadium trimers in the VS2 plane, shown in the
right inset of Fig. 3. The Fourier-transformed patterns of
EXAFS spectra, shown in Fig. 3, are indeed consistent with
the vanadium trimers in low-temperature phase. Below Tc,
spectra show three clear peaks between 1.5 and 3.5 Å. The
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Examples of cluster Mott magnets 
N=4 (Tetramers)

Tetramers: GaV4S8

Model for interconnected (V4S4)5+ clusters

S-atoms forming clusters S-atoms connecting clusters

“building blocks” or 
“lattice points” in the Hubbard model

polarization terms can be neglected in the first order. The form of the
magnetoelectric coupling tensors labli; j is bond-specific and dictated by
the symmetry of the bonds (49, 50). In the experiment, only DPz was
detected, where the z axis points along the 〈111〉 direction. Hence, we
will restrict our analysis to the second-rank tensors lðzÞbli; j and will omit
the z index. (Because of the presence of FEpolarization in the PMphase,
lbli; j has the same form, that is, the same independent nonzero elements,
as the exchange coupling matrix J bli; j ). As shown in Fig. 6, intraplane
bonds are perpendicular to the mirror planes present in the C3v

symmetry, whereas interplane bonds lie within these mirror planes.
Correspondingly, the magnetoelectric coupling tensors for selected in-
traplane and interplane bonds in Fig. 6B have the forms

^l 2;3
¼

lxx lxy lxz

−lxy lyy lyz

−lxz lyz lzz

#
^
l1;4 ¼

Lxx 0 0
0 Lyy Lyz

0 Lzy Lzz

#2

4

2

4 ð2Þ

The symmetric and antisymmetric parts of the tensors describe the
polarization generated by the exchange striction and spin-current
mechanisms, respectively (44, 49, 51). The form of l

^
matrices for the

other bonds can be derived by applying threefold rotations.
Next, we calculate the uniform component ofDPz in themagnetical-

ly ordered phases using the magnetoelectric coupling tensors described
in Eq. 2. Because thewavelength ofmagneticmodulation (2p/q) ismore
than 20 times larger than the lattice constant a in both cycloidal and SkL

phases (9), we use the continuum approximation when describing their
spin patterns

Scyc rð Þ ¼ 1
2

!
a1ℜ

"
Sjeiq j r

#
þ higher harmonics

$
ð3aÞ

SSkL rð Þ ¼ 1
2

b0S0 þ b1∑
j¼1

3
ℜ
"
Sjeiq j r

#
þ higher harmonics

! $
ð3bÞ

SFM rð Þ ¼ 1
2
c0S0 ð3cÞ

where the propagation vectors of magnetic order are q1 = q(1, 0, 0),

q2 ¼ q − 1
2 ;

ffiffi
3

p

2 ; 0
& '

, and q3 ¼ q − 1
2 ;−

ffiffi
3

p

2 ; 0
& '

, and the corresponding

Fourier components areSj= S0− iqj/qwith S0 = (0,0,1). In zeromagnetic
field, we assume that the cycloid has only the fundamental harmonic (that
is, ai = 0 for i > 0), which is valid when the magnetic anisotropy is
small. The SkL can also be expressed as a Fourier series, where each order
contains a superposition of three cycloidswhoseqvectors sumup to zero.
In the first order, these are the three fundamental harmonics with q1, q2,
and q3. Higher-order terms are necessary to keep the spin length con-
stant. The coefficients aj, bj, and c0 depend on the temperature and
magnetic field. The uniform component of the polarization can be di-
rectly obtained by substituting Eqs. 2 and 3 into Eq. 1 and by integrating
over the area of the magnetic unit cell of the respective phases

DPcyc ≈
3
16

a21 ðlzz þ LzzÞ þ∑
a
ðlaa þ LaaÞ

! $
ð4aÞ

DPSkL ≈
3
4
b20 lzz þ Lzzð Þ þ

9
16
∑
i¼1

b2i ðlzz þ LzzÞ þ∑
a
ðlaa þ LaaÞ

! $
ð4bÞ

DPFM ≈
3
4
c20 lzz þ Lzzð Þ ð4cÞ

Fig. 5. FE polarization of GaV4S8 determined from magnetocurrent
measurements. Magnetic field dependence of isothermal polarization
measured at various temperatures between 2 and 13 K. Only the excess polar-
ization DP induced by magnetic ordering is shown. A step-like increase in po-
larization at the transition from the cycloidal phase to the SkL phase and from
the SkL phase to the FM phase can be identified in the P(H) curves measured
between 7 and 12.5 K. All of the P(H) curves are projected onto the H-P plane,
and all phase boundaries are indicated on theH-Tplane. The black lines on the
H-T plane indicate the same magnetic phase boundaries as in Fig. 2A.

A B

Fig. 6. Bond symmetry in the rhombohedrally distorted structure
of GaV4S8. (A) V4 clusters (red spheres) form an fcc lattice that is
stretched along one of the body diagonals (dashed line). Two types
of bonds result from this distortion, as illustrated for four selected
clusters: intraplane bonds (green lines) between nearest-neighbor V4
units within the (111) planes and interplane bonds (blue lines) connect-
ing V4 units in neighboring (111) planes. (B) The four selected clusters
viewed from the 〈111〉 direction. Each blue bond lies within a mirror
plane of the tetrahedron (see dashed line for an example), whereas
green bonds are perpendicular to them.
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Figure 7. Qualitative 3d orbital energy level schemes of the octahedrally coordinated transition-
metal atom B in BX6 (first column) and of the B4 cluster in B4X16 consisting of four octahedrally
coordinated B atoms (second column), where X represents the ligand atom like S [3]. Closed and
open circles in bottom figures represent B and X atoms, respectively. The schemes in the third and
fourth columns are the electron configurations expected for the V4 cluster in cubic and rhombohedral
GaV4S8, respectively [6]. Spin distributions in proximity to V nuclei are schematically shown for
the highest occupied cluster orbitals.

transition. The reduction of the isotropic hyperfine coupling and the appearance of hyperfine
anisotropy, as well as the reduction of 1/T1T below TS, point to considerable change in the
electronic state inside the cluster.

The origin of the structural transition from cubic to rhombohedral has been explained
reasonably by Pocha et al [6] based on their electronic structure calculation. Here, it may
be helpful to start from a qualitative orbital scheme. Seeing the local structure around the
V atom including neighbouring GaS4 ions, the V atom is coordinated by nearly octahedral
arrangement of S atoms. For a localized transition-metal atom B in an octahedral crystal field,
as in BX6, d orbitals separate into triply degenerate ground-state t2g and doubly degenerate
excited eg orbitals (figure 7, first column). When four sets of BX6 are combined to form a
B4 metal cluster, it is expected that six B–B bonding and six B–B antibonding orbitals are
formed from the t2g orbitals and eight B–B non-bonding orbitals from the eg orbitals (figure 7,
second column) [3]. This is because t2g orbitals have electron density along B–B edges of the
B4 tetrahedron while eg lobes orient away from the B–B bonds. The B–B bonding orbitals
consist of non-degenerate a1, doubly degenerate e and triply degenerate t2 orbitals in the cubic
symmetry (figure 7, third column) [3]. Seven 3d electrons, belonging to the (V4S4)

5+ cubane
unit in GaV4S8, occupy a1, e and t2 orbitals in this order (at the Brillouin zone centre) [6].
This means that the triply degenerate t2 orbitals are singly occupied, resulting in an unpaired
spin per V4 cluster. The structural transition at TS is naturally interpreted in terms of the
Jahn–Teller transition due to this cluster-orbital degeneracy. As a result of the transition,
the highest orbitals separate to non-degenerate a1 and doubly degenerate e orbitals (figure 7,
fourth column), leading to partial ablation of the metallic V–V bonds. This is consistent with
the reduction in the density of states in the spin excitation spectrum as observed in the T1

measurement. This transition is of neither charge ordering nor spin localization at a certain
atomic site.

The origin of the sign conversion of θ at TS is not obvious. Probably, the macroscopic
θ reflects partially the interaction between clusters. Since the structural deformation of the
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This means that the triply degenerate t2 orbitals are singly occupied, resulting in an unpaired
spin per V4 cluster. The structural transition at TS is naturally interpreted in terms of the
Jahn–Teller transition due to this cluster-orbital degeneracy. As a result of the transition,
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the reduction in the density of states in the spin excitation spectrum as observed in the T1

measurement. This transition is of neither charge ordering nor spin localization at a certain
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anisotropy, as well as the reduction of 1/T1T below TS, point to considerable change in the
electronic state inside the cluster.

The origin of the structural transition from cubic to rhombohedral has been explained
reasonably by Pocha et al [6] based on their electronic structure calculation. Here, it may
be helpful to start from a qualitative orbital scheme. Seeing the local structure around the
V atom including neighbouring GaS4 ions, the V atom is coordinated by nearly octahedral
arrangement of S atoms. For a localized transition-metal atom B in an octahedral crystal field,
as in BX6, d orbitals separate into triply degenerate ground-state t2g and doubly degenerate
excited eg orbitals (figure 7, first column). When four sets of BX6 are combined to form a
B4 metal cluster, it is expected that six B–B bonding and six B–B antibonding orbitals are
formed from the t2g orbitals and eight B–B non-bonding orbitals from the eg orbitals (figure 7,
second column) [3]. This is because t2g orbitals have electron density along B–B edges of the
B4 tetrahedron while eg lobes orient away from the B–B bonds. The B–B bonding orbitals
consist of non-degenerate a1, doubly degenerate e and triply degenerate t2 orbitals in the cubic
symmetry (figure 7, third column) [3]. Seven 3d electrons, belonging to the (V4S4)
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unit in GaV4S8, occupy a1, e and t2 orbitals in this order (at the Brillouin zone centre) [6].
This means that the triply degenerate t2 orbitals are singly occupied, resulting in an unpaired
spin per V4 cluster. The structural transition at TS is naturally interpreted in terms of the
Jahn–Teller transition due to this cluster-orbital degeneracy. As a result of the transition,
the highest orbitals separate to non-degenerate a1 and doubly degenerate e orbitals (figure 7,
fourth column), leading to partial ablation of the metallic V–V bonds. This is consistent with
the reduction in the density of states in the spin excitation spectrum as observed in the T1

measurement. This transition is of neither charge ordering nor spin localization at a certain
atomic site.

The origin of the sign conversion of θ at TS is not obvious. Probably, the macroscopic
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Examples of cluster Mott magnets 
N=7 (Heptamers?)

Y. Horibe et al  
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Spinel AlV2O4 Mechanism: 
Peierls-like transition

A. Uehara, H. Shinaoka, and Y. Motome, 
Phys. Rev. B 92, 195150 (2015).

Fig. 1(b). We concluded that the CO phase of AlV2O4 has a
rhombohedral structure with the space group of R!3m.

As a next step, we have determined the magnitude and
the direction of the atomic displacements in the CO phase
by refining the synchrotron x-ray powder diffraction data.
Here, the starting model for structural refinements was set
up based on the reciprocal lattice obtained from the ED
experiment. The displacement pattern of each atom was
determined using the space-group representation theory.
Using this starting model, a full, unconstrained refinement
on the x-ray powder diffraction data was performed by the
Rietveld method [10]. The overall quality of the fitting was
fairly good: profile-weighted R factor Rwp ! 7:82%,
R-Bragg factor RB ! 2:10%, and goodness of fit s !
1:6054. A portion of the Rietveld refinement plots for the
synchrotron x-ray profile is shown in Fig. 1(c). The refined
structure of the CO phase in AlV2O4 is displayed in
Fig. 2(a) with the V-V bond lengths. Atomic parameters
in the CO phase can be shown in Table I.

One characteristic distortion in the CO phase of AlV2O4
is V clustering. As shown in Fig. 2(a), there are three
independent V sites in the hexagonal unit cell, 2 V atoms
on the triangular lattice [V1 (yellow) and V2 (red)], and 1
V atom on the kagome lattice (V3, blue). On the kagome
lattice, there are two kinds of V3-V3 bonds with different
bond lengths [the shorter (red) is 2.6101 Å and the longer
(gray) is 3.1413 Å], and V3 ‘‘trimers’’ are formed as a
result. On the other hand, there are two inequivalent

triangular-lattice layers, composed of V1 atoms and V2
atoms, respectively. Here, all the V2 atoms are sandwiched
by two V3 trimers, but none of the V1 atoms are.
Furthermore, the V2-V3 bond length (2.8086 Å, red) is
much shorter than the V1-V3 bond length (3.0394 Å, gray).
These results indicate that the 7 V atoms, two V3 trimers,
and one V2 atom in between, form a V cluster, or a
‘‘heptamer,’’ in the CO structure [shown by red lines in
Fig. 2(a)], and a V1 atom (yellow) is left alone from the
heptamer formation. It should be noted that the V1-O bond
length is 2.0439 Å, close to the theoretical value for the
V3"-O2# bond, and thus it is reasonable to interpret the
‘‘left-alone’’ V1 ion as trivalent (3d2).

Another unsolved problem for the CO state is the behav-
ior of magnetic susceptibility. As shown in Fig. 3, the in-
verse magnetic susceptibility $1=!%T&' shows a T-linear
dependence below 100 K [11]. It was found that !%T&(
%T""& with "!22:6K is constant between 10 K and
120 K within 4% error (not shown), indicating that !%T&
below 120 K is purely dominated by one Curie-Weiss
component, !%T& ! C=%T " "&. However, 1=!%T& shows
a clear bending around 200 K, which implies the evolution
of another component at temperatures higher than 200 K.
At the CO transition temperature (700 K), there is a kink in
1=!%T&. Such a complicated behavior is in clear contrast to
the simpler behavior of other spinel vanadates with V3"

ions (MgV2O4, for example, shown in Fig. 3), in which
1=!%T& is almost linear down to the spin-ordering
temperature.

We found that the magnetic susceptibility of AlV2O4

below 600 K can be fitted by the sum of a Curie-Weiss term
and a spin-gap term, given as follows:

dxy

dyz
dzx

(a) (b)

V1

V3

V2
2.8086A

2.6101A

3.1413A

3.0394A

FIG. 2 (color). (a) The crystal structure in the CO phase of
AlV2O4 are shown schematically. There are three inequivalent V
ions (V1, V2, V3), and V-V bond lengths are substantially dif-
ferent. Heptamers, each of which is made of one V2 (red) and six
V3 ions (blue) connected by the shorter V-V bonds (shown by
red lines) can be seen. The V1 (yellow) is a left-alone ion from
the heptamer formation. (b) Schematic electronic bonds in the
heptamer are shown. There are six ‘‘intratrimer bonds’’ and three
‘‘intertrimer bonds’’ in one heptamer. Each bond consists of dxy,
dyz, or dyz orbitals, as illustrated by different colors.

FIG. 1. (a) Complete reciprocal lattice in the CO phase of
AlV2O4. Large and small circles show fundamental spots due
to the cubic spinel structure (Fd!3m indexing) and superlattice
spots at 1=2 1=2 1=2-type positions, respectively. The solid line
is a guide to the eye. (b) Thick solid lines indicate the rhombo-
hedral unit cell in the CO phase. The small cubic (8 of which
forms large cubic) refers to the unit cell of original cubic spinel
lattice. Small circles depicted Al ions. (c) Portion of the Rietveld
fit of the synchrotron x-ray powder diffraction pattern for
AlV2O4 at room temperature (# ! 0:12060 nm.)
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find that they are dominantly in the a1g orbital sector,
which is anticipated from the DOS in Fig. 1(b).

2. RPA calculation and eigenmode analysis of AlV2O4

Next, we calculate the generalized susceptibility by in-
cluding the effect of electron correlations in a perturba-
tive way at the level of RPA. First, let us discuss the
results for AlV2O4. We investigate the generalized sus-
ceptibility obtained by RPA, χRPA, while changing U ,
JH, and V . Among the parameters, we find that V in-
duces particularly interesting behavior, which might be
related with the heptamer formation in AlV2O4, as dis-
cussed below.

FIG. 4. (color online). (a) V dependence of the maximum
eigenvalues of χRPA(q) for AlV2O4. (b) V dependence of the
eigenvalues at q0 = (π/16, π/16, π/16), which is the smallest
wave number along the Γ-L line in the present calculations.
In (a) and (b), we take U = 300 meV and JH = 30 meV,
while the other parameters are the same as in Fig. 3(a). (c)
σ-bonding type charge fluctuations obtained from the eigen-
mode analysis. The vertical axis represents the fluctuation of
the electron density in arbitrary units. The histogram repre-
sents the density fluctuations decomposed into the dxy, dyz,
and dzx orbitals. The numbers 1-4 in the horizontal axis de-
note the sublattices. (d) Schematic visualization of the fluc-
tuations in the mode 1 in (a).

Figure 4(a) shows the largest eigenvalues of χRPA,
which are considerably enhanced by increasing V . As
shown in Fig. 4(b), the enhancement occurs in particu-
lar eigenmodes, whereas all the other modes are almost
insensitive to V . To clarify the nature of these enhanced
fluctuations by V , we analyze the eigenvectors of the
three quasi-degenerate modes26. We find that the dom-
inant fluctuations are in the charge sector. Figure 4(c)
shows the fluctuations of local electron densities. In all
the three modes, the density fluctuation at one sublat-
tice has the opposite sign to the other three, and the net
density fluctuation vanishes in the four-site tetrahedron.
Note that, while the densities at the sublattices 1, 2, and

3 are suppressed in the modes 1, 2, and 3, respectively,
one can make the mode 4 in which the sublattice 4 is
suppressed by a linear combination of the modes 1-3.
Interestingly, we find that the density fluctuations in

these modes are strongly orbital dependent, as shown
in Fig. 4(c). The orbital dependence indicates that the
dominant fluctuations occur through the ddσ orbital on
each bond. For instance, in the mode 1, the charge den-
sity in the dyz orbital is dominantly transferred between
the sites 1 and 2 on the yz plane, which is regarded
as the charge fluctuation through the ddσ orbital. The
bond- and orbital-dependent fluctuations are schemati-
cally shown in Fig. 4(d). Thus, the fluctuations of the
three modes sensitive to V are of σ-bonding type. The
importance of such σ-bonding states in the heptamer
was suggested in the previous experimental and theo-
retical studies5,6. Hence, our results for the dominant
charge fluctuations in σ-bonding orbitals suggest that
the inter-site Coulomb repulsion plays a role in the self-
organization of heptamers in AlV2O4.
We note that the values of V in the present RPA calcu-

lations are rather large: in reality, the bare value of V will
be considerably smaller than U . Nevertheless, our finding
might be relevant to the heptamer formation in AlV2O4

due to the following reason. The structural change as-
sociated with the heptamer formation clearly indicates
the importance of the Peierls-type electron-phonon cou-
pling. Such inter-site phonons are known to give rise to
an effective repulsive interaction for electrons: indeed,
the integration of phonon degrees of freedom leaves the
effective V term, together with other inter-site interac-
tions33. We regard that such effects are included in the
value of V in the RPA analysis, although the realistic
estimate is left for future study.

3. RPA calculation and eigenmode analysis of LiV2O4

Next, we discuss the results of χRPA for LiV2O4. We
here focus on the effect of U , while V leads to a differ-
ent charge fluctuation from AlV2O4 as mentioned below.
Figure 5(a) shows U dependence of the maximum eigen-
values of χRPA. The maximum eigenvalues are enhanced
by U and become more dispersive.
We plot U dependence of the largest sixteen eigenval-

ues of χRPA in Fig. 5(b). Note that all of them are of a1g
character as discussed above. We find that nine eigen-
modes are largely enhanced by U . We also elucidate that
all the nine eigenmodes consist of spin fluctuations. Fig-
ure 5(c) shows the three of them, which are the spin fluc-
tuations in the x component. In all the three modes, the
spin fluctuation δsx at one sublattice has an opposite sign
to the other three; the net δsx vanishes in the four-site
tetrahedron. Similar situations are found also in the y
and z components. Namely, the spin fluctuations satisfy
the relation

∑4
ρ=1 δsρ = 0, where δsρ = (δsxρ , δs

y
ρ, δs

z
ρ).

Hence, we call them the optical-type spin fluctuations,
whose schematic visualization is shown in Fig. 5(d). As
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Peierls transition: 1D chain

quarter-filling (1/2 electron/site):

Instability at |q| = 2kF

quadrupling of the u.c.!

B. Ionic model

Another type of periodic distortion is given by local
potentials, resulting in the so-called ionic model

Hionic = − t!
i,!

N

"ci,!
+ ci+1,! + H . c . # + !

i

N

Wini − !
i

N

hiSi
z.

"6#

Again, for the half-filled band the same calculation as before
can be performed for a periodic potential, with "c="s=2W.
In case of the ionic model for a quarter-filled system we
compare several potentials, which correspond to different
charge and spin patterns.

"a# First, we study a simple potential with 2kF"4a# period,
given by Wi=W cos"#i /2#. Here, the charge order for
zero hopping is given by 1/0.5/0/0.5 electrons per site,
periodically continued. Spin order is not established.

"b# A modification of "a# given by Wi=W cos"#i /2#
+W cos$#"i+1# /2%, which leads to two occupied and two
unoccupied sites "“cluster”#,13 i.e., a 1/1/0/0 charge order.

"c# A charge order with a 1/0/1/0 pattern, i.e., a
4kF"2a#-periodic order, is forced by a potential with
Wi=W cos"#i#. With interaction we likewise expect mag-
netic ordering.

"d# In addition, a local magnetic field with
hi=W cos"#i /2#"ni,↑−ni,↓# enforces a ↑ /0 / ↓ /0 pattern.
As in "c#, we expect a 2kF"4a# period for the spins and
correspondingly a 4kF"2a# period for the charges.

Diagonalizing the resulting Hamilton matrix, as described
above, yields the dispersions

"a#, "d# $"k#= ± t&2+w2 /2±&4 cos2"2k#+2w2+w4 /4,
"b# $"k#= ± t&2+w2 /2±&4 cos2"2k#+4w2,
"c# $"k#= ± t&w2+4 cos2k,

with w=W / t. Figure 2 shows the dispersion for potentials "a#

and "c#. In comparison to the Peierls model not only a gap
opens at k=Q /2 but the lower and upper bands are shifted
down and up, respectively. In case of a small perturbation,
the dispersion is similar for the Peierls and the ionic model,
as well as for potentials "a# and "b#. Potentials "a# and "d# are
equivalent in the noninteracting case.

The energy gain in the quarter filled band is found to be
about −W1.65 in cases "a#, "b#, and "d#. For small W, the
energy gain here is nearly the same in cases "a# and "b#,
whereas it becomes weaker in case "b# than in case "a#
at W'0.5t. In case "c#, the energy gain is quadratic,
E"W#−E"0#= 8

3W2. It mainly traces back to the band shift.
Accordingly, the gaps are given by

"a#, "d# "1=W, "2=&2W, "3=W;
"b# "1(W for small W, "1→"1

% for strong W,
"2=&2−W /2, "3="1;
"c# "1=0, "2=W, "3=0.

C. Hubbard model

The Hubbard model is known to capture the interplay
between kinetic energy "delocalization# and interaction "lo-
calization# in electronic systems. The Hamiltonian is given
by

HHubb = − !
i,!

N

ti"ci,!
+ ci+1,! + H . c . # + U!

i

N

ni,↑ni,↓. "7#

The Hubbard model in one dimension is exactly solvable by
means of the Bethe ansatz.27 Note that in one dimension
another useful formulation of the Hubbard model is available
on the basis of the bosonization technique. The low lying
excitations of the noninteracting as well as the interacting
fermions system are sound waves, i.e., the Fermi system can
be described as a noninteracting Bose system, called a Lut-
tinger liquid, showing spin-charge separation. In the clean
case, the Hubbard model has three phases. For U&0, the
spin excitation spectrum has a gap and the low-lying charge
excitations can be described by those of a Luttinger liquid.
For U'0 and away from half filling, spin and charge exci-
tations are those of a Luttinger liquid. The last phase occurs
for U'0 and half filling, where the charge excitations have
a gap and the spin excitations are of Luttinger type. A rel-
evant 4kF-Umklapp scattering term, only present for half fill-
ing, is responsible for the Mott gap in the latter phase. The
bosonization technique is adequate for metallic systems or in
the weak coupling regime. It is useful to determine the phase
boundary between metals and insulators but it is not suitable
for distinguishing different insulating phases for intermediate
or strong perturbations.

D. Periodic Hubbard model

A commensurate periodic distortion—i.e., commensurate
to the band filling—introduces an additional nonlinear term
in the bosonized Hamiltonian, which couples spin and charge
degrees of freedom and destroys the integrability of the clean
Hubbard model. In the half-filled case we therefore find a

FIG. 2. "Color online# One-particle energy $"k# versus momen-
tum k, where W=0.1t and the horizontal lines indicate the Fermi
level of the half-filled and quarter-filled band. The straight line cor-
responds to the Q=# /a-periodic potential, the dashed line to the
Q=# /2a-periodic potential. The reduction of the Brillouin zone of
the clean model is obvious.

ONE-DIMENSIONAL HUBBARD MODEL AT QUARTER… PHYSICAL REVIEW B 75, 045124 "2007#

045124-3

k

E(k)

p
4a
_- p

4a
_

Cluster Mott magnets:  
Mechanisms of formation



18

Spinels: AB2O4

xz

yz

xy

Metal (B)Ligand (O)

Assumption:  
the most important is a 
direct overlap between   
d-orbitals

E(k)

Natural formation of 1D bands due to orbitals…

Cluster Mott magnets:  
Orbitally induced Peierls transition



19

CuIr2S4: spinel

TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion—the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
Octamer is shown by thick lines. Short singlet bonds are in-
dicated by double lines. (b) Schematic electronic structure of
CuIr2S4.
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FIG. 3 (color). (a) Orbital ordering in MgTi2O4. Short singlet
bonds are shown by double, intermediate–single, and long–
dashed lines. yz orbitals are shown in green and zx orbitals in
blue. (b) Schematic electronic structure of MgTi2O4. Note
different orientation of coordinate axes as compared with
Figs. 1 and 2.
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TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion—the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands

4+

3+

3+

4+

3+

3+

4+

4+

3+

3+

x

y

z

(a)

t2g

xy

zx,yz

xy-band

zx,yz-bands

(b)

FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
Octamer is shown by thick lines. Short singlet bonds are in-
dicated by double lines. (b) Schematic electronic structure of
CuIr2S4.

t2g

xy

zx,yz

xy-band

zx,yz-bands

(a)

(b)

x
y

z

zx

zx

yz

yz

zx

yz

zx

yz

zx

yz yz

yz

yz

FIG. 3 (color). (a) Orbital ordering in MgTi2O4. Short singlet
bonds are shown by double, intermediate–single, and long–
dashed lines. yz orbitals are shown in green and zx orbitals in
blue. (b) Schematic electronic structure of MgTi2O4. Note
different orientation of coordinate axes as compared with
Figs. 1 and 2.

PRL 94, 156402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 APRIL 2005

156402-2

tetragonal 
elongation

} }

xy-band 
is 3/4 filled

Tetramerization?

shortest 
bonds  

(dimers)
“intermediate” 

bonds 

Khomskii & Mizokawa, PRL 94, 156402 (2005)

Orbitals reduce dimensionality:  3D 0D

Cluster Mott magnets:  
Orbitally induced Peierls transition



20

MgTi2O4: spinel

TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion—the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands

4+

3+

3+

4+

3+

3+

4+

4+

3+

3+

x

y

z

(a)

t2g

xy

zx,yz

xy-band

zx,yz-bands

(b)

FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
Octamer is shown by thick lines. Short singlet bonds are in-
dicated by double lines. (b) Schematic electronic structure of
CuIr2S4.

t2g

xy

zx,yz

xy-band

zx,yz-bands

(a)

(b)

x
y

z

zx

zx

yz

yz

zx

yz

zx

yz

zx

yz yz

yz

yz

FIG. 3 (color). (a) Orbital ordering in MgTi2O4. Short singlet
bonds are shown by double, intermediate–single, and long–
dashed lines. yz orbitals are shown in green and zx orbitals in
blue. (b) Schematic electronic structure of MgTi2O4. Note
different orientation of coordinate axes as compared with
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TMI, there appears the net tetragonal distortion (elonga-
tion, c=a ! 1:03 [4]), and, besides that, the complicated
octamer structure appears [2]: Ir3" and Ir4" order in oc-
tamers, and the Ir4" octamers have an alternation of
short and long bonds; see Fig. 2 in [2]. This beautiful
structure seems extremely unusual. However, the situation
is much simpler if one looks at what happens in the straight
Ir chains: one immediately notices that five out of six
such chains have a tetramerization—an alternation of
Ir3"=Ir3"=Ir4"=Ir4"= . . .— and one of them has a corre-
sponding dimerization; see Fig. 2(a). The tetramerization
in CuIr2S4 was also noticed in [5].

One can naturally explain this tetramerization pattern if
one looks at the electronic structure of this compound,
schematically shown in Fig. 2(b). Because of the tetragonal
elongation, the triply degenerate t2g levels are split by a CF
splitting, and, besides (which is probably more important),
the xy band becomes broader. With the 5.5 electrons (or
0.5 hole) per Ir in these levels, the lowest two bands are
fully occupied, and the upper xy one-dimensional band is
3=4 filled. Thus, we can expect a Peierls or charge density
wave transition, accompanied by tetramerization in the xy
chains (formation of superstructure with Q! ! 2kF ! "=2
along the #1; 1; 0$ and #1;%1; 0$ directions), with holes in
the xy orbitals, as shown in Fig. 2(a). As is seen from this
figure, the resulting state exactly corresponds to the one
found in [2]: Ir3" and Ir4" form octamers. Besides, the Ir4"

pairs in the xy chains have orbitals directed towards one
another; thus these pairs form spin singlets. When we
release the lattice, corresponding bonds become shorter,
again consistent with the structure of [2]. Thus the expla-
nation of this apparently complicated structure becomes

extremely simple and natural if we look at it from the
viewpoint of straight Ir chains, which, for this orbital
occupation, form natural building blocks in spinels.

The same idea explains also the chiral superstructures
observed in MgTi2O4 [3]. Below TMI at 260 K, a tetragonal
distortion (here compression) appears also in this system,
together with the inequivalent bonds, so that, if one con-
nects short and long bonds, they form spirals along the c
or the z direction, which may be both left and right mov-
ing. Apparently, on the short bonds, Ti-Ti pairs form spin
singlets which is rather typical for d1 configurations. This
naturally explains the drop of magnetic susceptibility at
TMI [6]. This superstructure, the origin of which looks very
puzzling, again can be explained very easily if one looks at
the situation in the straight Ti chains. One immediately
notices that in all chains running in the #0; 1; 1$, #0; 1;%1$,
#1; 0; 1$, and #1; 0;%1$ directions (lying in the zx and yz
planes) one has the tetramerization: an alternation of short,
intermediate, long, and intermediate bonds. This structure
appears naturally if we look at the electronic structure of
this system, Fig. 3(b). In the high temperature phase, Ti3"

ions have one electron in the triply degenerate t2g level,
which in the tight-binding scheme would give three one-
dimensional degenerate bands (we neglect here small
trigonal splitting). One can reduce the band energy by
tetragonal distortion—the effect similar to the band
Jahn-Teller effect invoked by Labbe and Friedel to explain
the cubic-tetragonal transition in A15 compounds (V3Si,
Nb3Sn) [7]. The tetragonal compression observed in
MgTi2O4 increases the bandwidths of the zx and yz bands
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FIG. 2 (color). (a) Charge and orbital ordering in CuIr2S4.
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structure contains only one Ti site, ruling out the possi-
bility of charge disproportionation. However, the center
of symmetry at the Ti site is lost, so that Ti moves away
from the center of the TiO6 octahedron, and the six
nearest-neighbor Ti-Ti distances become inequivalent.
Two out of six Ti-Ti bonds [s ! 2:853"7# !A and l !
3:157"7# !A] differ substantially from the Ti-Ti distance
found in the cubic MgTi2O4 [3:008 43"1# Å]. The shortest

distance is comparable to the close-contact distance in Ti
metal (2:896 !A at room temperature), suggesting the for-
mation of a metal-metal bond. It should be noted that the
intradimer distance in VO2 is 2:654 !A [5], which is also
comparable to theV-V distance in V metal (2:61 !A). In the
cubic spinel structure (inset of Fig. 2), the TiO6 octahedra
form edge-sharing ‘‘ribbons,’’ so that the Ti-Ti bonds run
in straight lines along six equivalent $110%c directions. In
the tetragonal structure, both the short and the long bonds
run along four directions ($011%c, $01"11%c, $10"11%c, and
$101%c) of the cubic structure ($112%t direction), alternat-
ing with one of the intermediate bonds [i1 ! 3:007"5# !A]
in the sequence ‘‘s-i1-l-i1.’’ Ti-Ti-bond lines running
along the $100%t direction ($110%c; $1"110%c) are entirely
made up of the other type of intermediate bonds [i2 !
3:0147"3# !A]. Neither of the Ti-Ti-bond lines is perfectly
straight, the Ti-Ti-Ti bond angle being 174:7"2#& and
178:3"1#& along the $100%t and $112%t directions, respec-
tively. Refinements of the temperature-dependent neutron
data indicate that the phase transition is abrupt, with no
coexistence region between the two phase (Fig. 1, upper
panel). This is reflected in the splitting of the Ti-Ti bond
lengths, which is about 80% of the full value at 250 K and
is fully saturated below 200 K.

From the topological point of view, the most interest-
ing aspect of the MgTi2O4 low-temperature structure is
the dimerization pattern of the alternating short and long
bonds. Here, the chiral nature of the space group is clearly
revealed in the formation of ‘‘s-l-s-l helices’’ running
along the c axis (Fig. 2). With our choice of space group,
the helices are left-handed, but the right-handed space
group P43212 is also an allowed solution. Several authors
have pointed out the relevance of spin chirality for mag-
netism and transport on a pyrochlore lattice [9–11].
However, our observation of chirality in the structural
sector of a pyrochlore lattice is extremely unusual and
immediately raises two issues. First, it is interesting to
consider whether the chiral dimerization pattern is in any
way related to the geometrical frustration of the pyro-
chlore lattice. On this point, one should notice that, once
the system ‘‘decides’’ to dimerize, the topology of the
problem changes drastically: the relevant lattice is no
longer the pyrochlore lattice itself, but its ‘‘medial’’ (or
bond center) lattice at 1=6 filling (only one bond out of six
is a dimer). Each Ti atom can be involved only in one
dimer; therefore, one occupied dimer site precludes the
occupancy of ten neighboring bonds. At such low filling,
this rule clearly leads to a highly degenerate ground state,
but, arguably, the system is no longer frustrated because
the local degeneracy is absent. Second, the nature of the
spin singlet state needs to be further investigated. To this
effect, we have carried out band structure calculations
using the CRYSTAL code [12]. All electron triple valence
basis sets were used in which three independent radial
functions are included for all valence states [13].
Electronic exchange and correlation are approximated

FIG. 2 (color). The Ti-Ti bond structure in tetragonal
MgTi2O4 at 200 K. The red and purple bonds represent the
shortest (dimerized) and the longest bonds in the MgTi2O4

structure, respectively. The dashed and solid blue bonds mark
the intermediate i1!3:007"5# !A and i2!3:0147"3# !A Ti-Ti dis-
tances, respectively. A portion of the Ti tetrahedral connectiv-
ity is also shown. The inset shows a fragment of the spinel
structure in the same orientation, visualized using cation-anion
polyhedra. One of the ‘‘helices’’ is outlined in yellow.

TABLE I. Lattice constants, fractional coordinates of atoms,
and bonds in MgTi2O4 at 200 K (P41212) and 275 K (Fd3m).
The parameters originate from the Rietveld refinement of high-
and medium-resolution neutron powder diffraction patterns.
The data were corrected using lattice constants derived from
the x-ray experiment.

200 K x y z Uiso ( !A2)

Ti 8b '0:0089"5# 0.2499(9) '0:1332"4# 0.0125(2)
Mg 4a 0.7448(3) 0.7448(3) 0 0.0073(2)
O(1) 8b 0.4824(2) 0.2468(3) 0.1212(2) 0.0064(2)
O(2) 8b 0.2405(3) 0.0257(2) 0.8824(2) 0.0035(2)

a ! 6:022 01"1# !A, c ! 8:484 82"2# !A, Rwp ! 0:0467, Rp ! 0:0637

275 K x y z Uiso ( !A2)

Ti 16d 1=2 1=2 1=2 0.0117(1)
Mg 8a 1=8 1=8 1=8 0.0069(1)
O 32e 0.259 20(2) 0.259 20(2) 0.259 20(2) 0.005 22(5)

a ! 8:509 027"5# !A, Rwp ! 0:0402, Rp ! 0:0267

Bond ( !A) Cubic, 275 K Tetragonal, 200 K

Ti-Ti 3:008 43"1# ( 6 2:853"7# ( 1
3:007"5# ( 2, 3:0147"3# ( 2

3:157"7# ( 1
Ti-O 2.0520(2) (6 2.031(5), 2.026(5), 2.024(5)

2.083(5), 2.138(4), 2.020(4)
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Some features of cluster Mott magnets

1. Formation of molecular orbitals

2. Orbital-selective behaviour

3. (Cluster) spin-state transitions

4. Suppression of a long-range 
magnetic order

ELECTRONIC CORRELATIONS AND COMPETING ORDERS … PHYSICAL REVIEW B 99, 045115 (2019)
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FIG. 4. The magnetic moment of the dimer 〈Sz
dim〉 as a function

of temperature T and intradimer hopping of the c-orbitals t c
⊥ for

td
⊥ = tb = 0.2 eV. For certain temperatures, the double-exchange

state (DE) and the molecular-orbital state (MO) are separated by a
quantum critical region (QC). The red and green dashed lines mark
the positions of local minima of the spin and orbital correlations,
respectively.

also needs to take into account that the coefficients of the
interaction terms also change under the BA transformation.
In the next section, we discuss the phase diagram of the
two-plane Bethe lattice for an intermediate situation when
both intradimer hoppings and interaction (given by U and J )
strength are not small.

III. PHASE DIAGRAM

Previous studies of the two-plane Bethe lattice have fo-
cused on the single-orbital case. It was found to hold not only
the Mott and band insulators, but also a correlated mixed state
with coherent and incoherent peaks in the local density of
states. Competition between intra- and interplane exchange
interactions was shown to affect the formation of the local
moments [19,22,26]. We will demonstrate that substantial
orbital differentiation due to different interplane hoppings,
t c⊥ $ td⊥, results not only in a spin-state-like transition, but
also in a strong suppression of a long-range magnetic order
in the critical region.

Throughout this section, we discuss the results for fixed
tb = 0.2 eV. Figure 4 shows the phase diagram of our model
obtained by the CDMFT described in Sec. II. There are three
main regions. At low temperature and for small t c⊥ we find the
DE state with a total spin Sz

dim = ±3/2 (red part of the phase
diagram). All dimers are antiferromagnetically ordered, so
that 〈Sz

dim〉 ∼ 3/2. This DE state transforms into the MO state
with the total spin Sz

dim = ±1/2 upon increasing intradimer
hopping t c⊥ (the light blue part of the phase diagram). This
can be considered as a spin-state transition for the cluster. The
critical t̃ c⊥ is close to the value obtained in the atomic limit
(see Sec. II A). At low temperatures, dimers in the MO phase
are antiferromagnetically ordered and 〈Sz

dim〉 ∼ 1/2.
Increasing the temperature, we get to the last region with

paramagnetic dimers (this phase can again be divided accord-
ing to 〈S2

dim〉 in the DE or MO parts). Interestingly, however,
the temperature dependence of 〈Sz

dim〉 is very different in
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FIG. 5. The magnetic moment of the dimer 〈Sz
dim〉 as a function

of intradimer hopping of the c-orbitals t c
⊥ for td

⊥ = tb = 0.2 eV and
temperatures T .

different parts of the phase diagram. We see that the para-
magnetic phase appears at much lower temperatures in the
critical region of t c⊥ ∼ 1.05 eV. The DE and MO states have
different quantum numbers (different total spins), and thus in
the limit of isolated dimers (tb = 0) the transition between
them must be discontinuous at T = 0. Obviously, no long-
range magnetic order is possible in this situation. However,
fluctuations can result in a crossover. In this crossover region,
the system becomes frustrated and the paramagnetic phase
is promoted by the competition of the DE and MO states
forming a hybrid state (HYB) with properties that are distinct
from both.

In Fig. 5 we present a selection of data of Fig. 4 in order to
resolve more detailed properties of the DE/MO transition. In
particular, it shows that the order parameter 〈Sz

dim〉 is smooth
along the transition, and since furthermore no coexistence of
the two phases is found, it suggests that the lattice exhibits
a phase transition of second order at t̃ c⊥ corresponding to the
ground-state crossover of the isolated dimer. The integrated
occupancies

Nσ =
∑

α∈{c,d}

∑

i∈{B,A}
ñσαi , σ ∈ {↑,↓},

Nα =
∑

σ∈{↑,↓}

∑

i∈{B,A}
ñσαi , α ∈ {c, d},

Ni =
∑

σ∈{↑,↓}

∑

α∈{c,d}
nσαi , i ∈ {B,A},

(8)

are shown in Fig. 6 (top), confirming our illustration of the DE
and MO states (Fig. 1). For low temperatures, fluctuations are
suppressed by AFM order and the integrated occupancy has a
sharper crossover. In fact the crossover region, in close prox-
imity to its boundaries, shows local minima of the spin and or-
bital correlations 〈δNxδNx̄〉 = 〈NxNx̄〉 − 〈Nx〉〈Nx̄〉 with x =
↑,↓ and x = d, c, respectively. The physical reasoning be-
hind this is that the fluctuations are always very strong in the
vicinity of phase transitions. The temperature dependences of
the 〈δNxδNx̄〉 minima are shown in Fig. 4 by dashed lines.

The phase diagram shows that both originate from
the DE/MO ground-state crossover, but their temperature
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〉
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FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U " t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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The simplest cluster: a dimer 
(one electron / site)

An isolated dimer
−t⊥
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t⊥ t t⊥ ≫ {t, U}
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S=0 dimers

AFM Bonner-Fisher 
chain (insulator)
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H. Hafermann et al.
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Fig. 1: (Color online) The two-plane Hubbard model on the
Bethe lattice visualized for coordination number z = 3. It can
be viewed as a lattice of dimers, or equivalently as two planes
with opposing sites coupled by a perpendicular hopping t⊥.

between the local moment and the conduction electron
spins. Since the Kondo effect provides quasiparticle weight
within the Mott pseudogap, tuning the dimerization is a
possible mechanism for driving the MIT.
Starting from earlier works on the stacked Hubbard

model, which addressed the competition between the
RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites

within a plane are connected by the hopping t and each
site is coupled to the opposing site on the other plane by a
perpendicular hopping t⊥. The model is described by the
Hamiltonian

H = −t
∑

〈ij〉,σ

(a†iσajσ + b
†
iσbjσ)− t⊥

∑

iσ

(a†iσbiσ + b
†
iσaiσ)

+U
∑

iσ

(nai↑nai↓+nbi↑nbi↓), (1)

where the operators a†(a) create (annihilate) an electron
on plane a and correspondingly for plane b. It is convenient
to introduce spinors cσ = (aσ,bσ)T and c†σ = (a

†
σ, b

†
σ). The
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Fig. 2: (Color online) Phase diagram of the two-plane Hubbard
model on the Bethe lattice at temperature T/t= 0.1. The
mean-field value of t⊥ for the AF to singlet insulating transition
is marked by a dashed line.

DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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Fig. 1: (Color online) The two-plane Hubbard model on the
Bethe lattice visualized for coordination number z = 3. It can
be viewed as a lattice of dimers, or equivalently as two planes
with opposing sites coupled by a perpendicular hopping t⊥.

between the local moment and the conduction electron
spins. Since the Kondo effect provides quasiparticle weight
within the Mott pseudogap, tuning the dimerization is a
possible mechanism for driving the MIT.
Starting from earlier works on the stacked Hubbard

model, which addressed the competition between the
RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites
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perpendicular hopping t⊥. The model is described by the
Hamiltonian

H = −t
∑

〈ij〉,σ

(a†iσajσ + b
†
iσbjσ)− t⊥

∑

iσ

(a†iσbiσ + b
†
iσaiσ)

+U
∑

iσ

(nai↑nai↓+nbi↑nbi↓), (1)

where the operators a†(a) create (annihilate) an electron
on plane a and correspondingly for plane b. It is convenient
to introduce spinors cσ = (aσ,bσ)T and c†σ = (a

†
σ, b

†
σ). The

 0

 0.5

 1

 2

 2.5

 0  1  2  3  4  5

band/singlet−insulator

AF insulator

AF metal

paramagnetic metal

t ⊥
t/

U/t

√
2

Fig. 2: (Color online) Phase diagram of the two-plane Hubbard
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DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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between the local moment and the conduction electron
spins. Since the Kondo effect provides quasiparticle weight
within the Mott pseudogap, tuning the dimerization is a
possible mechanism for driving the MIT.
Starting from earlier works on the stacked Hubbard

model, which addressed the competition between the
RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites

within a plane are connected by the hopping t and each
site is coupled to the opposing site on the other plane by a
perpendicular hopping t⊥. The model is described by the
Hamiltonian

H = −t
∑

〈ij〉,σ

(a†iσajσ + b
†
iσbjσ)− t⊥

∑

iσ

(a†iσbiσ + b
†
iσaiσ)

+U
∑

iσ

(nai↑nai↓+nbi↑nbi↓), (1)

where the operators a†(a) create (annihilate) an electron
on plane a and correspondingly for plane b. It is convenient
to introduce spinors cσ = (aσ,bσ)T and c†σ = (a

†
σ, b
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σ). The
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Fig. 2: (Color online) Phase diagram of the two-plane Hubbard
model on the Bethe lattice at temperature T/t= 0.1. The
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DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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RKKY interaction and Kondo physics [14], more recently
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2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites

within a plane are connected by the hopping t and each
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DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites
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DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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disappears continuously (at T=0) at a critical value
Uc2/D.2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=`), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G~ ivn!at5
1/2

ivn1U/2
1

1/2
ivn2U/2

. (232)

Since ImG(v1i01) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [D(v=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G~ ivn!.
1/2

G 0
21~ ivn!2U/2

1
1/2

G 0
21~ ivn!1U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in D/U . This implies that G(iv);iv for small

v, and the substitution into the self-consistency condi-
tion implies that G 0

−1;iv , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(ivn):

D4G328D2vG214~4v21D22U2!G216v50.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc5D for (234) (Uc5)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.

The spectral density of insulating solutions vanish
within a gap 2Dg/2,v,1Dg/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that S(v+i0+)
must be purely real inside the gap, except for a
d-function piece in ImS at v=0, with

ImS~v1i01!52pr2d~v! for vP@2Dg/2,Dg/2#
(235)

and that ReS has the following low-frequency behavior:

ReS~v1i01!2U/25
r2

v
1O~v!. (236)

In these expressions, r2 is given by

1
r2

5E
2`

1`

de
r~e!

e2 . (237)

r2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap Dg vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U,Uc1(T50), with Uc1

ED

. 2.15D (while the iterated perturbation theory method
yields Uc1

IPT . 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density pDr(v) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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spins. Since the Kondo effect provides quasiparticle weight
within the Mott pseudogap, tuning the dimerization is a
possible mechanism for driving the MIT.
Starting from earlier works on the stacked Hubbard

model, which addressed the competition between the
RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites

within a plane are connected by the hopping t and each
site is coupled to the opposing site on the other plane by a
perpendicular hopping t⊥. The model is described by the
Hamiltonian

H = −t
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〈ij〉,σ

(a†iσajσ + b
†
iσbjσ)− t⊥

∑
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(a†iσbiσ + b
†
iσaiσ)

+U
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(nai↑nai↓+nbi↑nbi↓), (1)

where the operators a†(a) create (annihilate) an electron
on plane a and correspondingly for plane b. It is convenient
to introduce spinors cσ = (aσ,bσ)T and c†σ = (a
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Fig. 2: (Color online) Phase diagram of the two-plane Hubbard
model on the Bethe lattice at temperature T/t= 0.1. The
mean-field value of t⊥ for the AF to singlet insulating transition
is marked by a dashed line.

DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to
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Fig. 5: (Color online) Spin-correlations 〈S2i 〉 on opposite sites of
the two Bethe lattices (dashed line) and total spin 〈S2〉 (solid
line) for the dimer for U/t= 4 and temperature T/t= 0.1. The
inset compares the correlations 〈Szi Szi 〉 (upper dashed line) and
−〈Szi Szj 〉 for i $= j (solid line). The transition point is marked
by the vertical dashed line.

plane are coupled by an effective AF Heisenberg exchange
J‖ ∼ t2‖/U . Noting that for the infinite lattice the number
of bonds connecting the dimers is twice the number of
bonds on a dimer, the condition for the exchange J⊥ ∼
t2⊥/U between sites on a dimer to overcome the exchange
due to hopping within the planes is J⊥ = 2J‖, so that

t⊥/t=
√
2.

Hence the formation of a singlet between neighboring
sites on a dimer is expected as the source of the transition
to the non-magnetic state. In order to prove this consider-
ation, we have explicitly calculated the spin-correlations
within our Monte Carlo procedure. To this end, we
decompose the averages of spin operators into sums of
four-point correlation functions. For example, for the
total spin we have 〈S2〉= 〈(S1+S2)2〉=

∑
ij〈Si ·Sj〉,

where the sum is over the cluster sites. The prod-
uct of spin operators can be further decomposed
using Si ·Sj = Szi Szj +1/2(S+i S

−
j +S

−
i S

+
j ). Now the

remaining operators can be expressed in terms of
c-operators as Sz = (n↑−n↓)/2, S+(−) = c†↑(↓)c↓(↑). Since
the c-operators depend on imaginary time, e.g. the
“instantaneous” correlator 〈SzSz〉 formally has to be
interpreted as the limit limτ→0+〈Sz(τ)Sz(0)〉. Once
expressed in terms of c-operators, the spin-correlators
can be calculated within the CTQMC by exploiting the
fact that the average in eq. (3) is over the noninteracting
system. Hence the Wick theorem is applicable and the
four-point correlators can be expressed in terms of an
MC average over products of contributions to Green’s
function: 〈c†σ(τ)cσ(τ)c

†
σ′(0)cσ′(0)〉= 〈g̃σ(τ, τ)g̃σ′(0, 0)〉−

δσσ′〈g̃σ(τ, 0)g̃σ(0, τ)〉, and similar for other averages.
The result of these calculations for the total spin is

shown in fig. 5. The total spin 〈S2i 〉 of a single site
is somewhat smaller than = S(S+1) = 3/4, but varies
only slightly as a function of the perpendicular hopping.
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Fig. 6: (Color online) Dynamical susceptibility χloc(ω) for
different values of the perpendicular hopping at U/t= 4.0. A
spin-gap develops for t⊥/t >

√
2.

For the total spin of a dimer, however, the situation is
different. It continuously decreases as the coupling t⊥
between dimer sites is increased. Our results are consistent
with a total spin of zero at t⊥/t≈

√
2, thus proving our

consideration that a singlet is formed between neighboring
spins on opposite sites of the planes. This picture is
further underlined by comparing the quantities 〈Szi Szi 〉
and −〈Szi Szj 〉 for i '= j on a dimer as shown in the inset
of fig. 5. The square of the z-projection of the spin
decreases due to enhanced double occupancy (note that
for the Hubbard model 〈n↑n↓〉= 1/2− 2〈SzSz〉 holds).
Furthermore, we find that the correlation 〈Szi Szj 〉 for i '= j
has negative sign, in accordance with the tendency to
AF coupling between the spins. For weak coupling the
on-site and inter-site correlations differ. This is expected,
since spin flips destroy the correlation between sites. For
larger values of the coupling however, the magnitude
of the intersite correlation approaches the on-site value,
showing the formation of a coherent state. In contrast to
the MC error for all other measured quantities, the error
of the total spin of the dimer is considerable, reflecting
the fact that this quantity is strongly fluctuating in the
simulation.
By tuning the perpendicular hopping between the two

planes, we thus have a way of continuously varying the
degree of entanglement and to form a coherent singlet
state between the local moments on the dimer sites. This
feature is inherent to the model due to the absence of
spatial correlations within the planes. This is also reflected
in the fact that the transition occurs at the mean-field
value

√
2.

To further underline our findings, we plot the dynamical
susceptibility χloc(ω) in fig. 6 for different values of the
perpendicular hopping for U/t= 4.0. It is obtained by
analytical continuation [20] of the Fourier components
of the corresponding imaginary time correlation function
χ(τ) = 〈Sz(τ)Sz(0)〉. For small values of t⊥, we find a
pronounced peak at zero energy. This can be attributed
to the Goldstone mode present in the symmetry-broken
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Fig. 8: (Color online) Dynamical susceptibility χloc(ω) for
different values of the perpendicular hopping at U/t= 1.5. Here
the spin gap opens for t⊥/t! 2.1.

two peaks is consistent with the on-site repulsion U . The
spin gap opens at the same point as the charge gap in
our simulations.
To conclude, we have presented numerically exact

results for the two-plane Hubbard model on the Bethe
lattice in infinite dimensions. We have mapped out the
finite temperature phase diagram and found a metal-to-
insulator transition as the perpendicular hopping between
the two planes is increased. By explicit calculation of the
total spin of the dimers, we have shown that a singlet
is formed between the localized moments. Hence the
insulating state in the correlated regime can be charac-
terized as a singlet-insulator phase. This is underlined
by the formation of a spin gap in the local dynamical
susceptibility. The spectral weight at the Fermi level was
found to continuously decrease as local spin fluctuations
responsible for the Kondo effect are gradually suppressed
by the singlet formation.
It is further interesting to study the metal-insulator

transition on the two-dimensional bilayer Hubbard model.
We have recently developed a method that allows to treat
spatial correlations beyond DMFT [22]. Within a cluster
formulation [23], the local singlet formation can be treated
explicitly, while long- and short-range correlations are
treated perturbatively on the same footing. This allows to
systematically study how spatial correlations within the
planes modify the present results.
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I. DETAILS OF THE EXACT DIAGONALIZATION AND CLUSTER DMFT

In order to study suppression of the DE we considered dimers and dimerized chain, described by the Hamiltonian,
which reads as

H = H0 +Hinter +HU , (1)

where H0 noninteracting intra-dimer part, Hinter inter-dimer part (only for chain) and HU is the interaction, defined
by intra-orbital Hubbard repulsion U and Hund’s rule exchange JH :

H0 =
X

i

⇣
tcc

†
i,2ci,1 + tdd

†
i,2di,1 +H.c.

⌘
,

Hinter =
X

i

⇣
t
0
cc

†
i,2c(i+1),1 + t

0
dd

†
i,2d(i+1),1 +H.c.

⌘
,

HU =
1

2

X

j
mm0�

U
mm0

n
�
j,mn

��
j,m0 +

1

2

X

j
hmm0i�

(Umm0
� J

mm0

H )n�
j,mn

�
j,m0 .

Here, m,m
0 are orbital, and � - spin indexes, 1 and 2 are labels of two ions in a dimer, i - numerates dimers and j -

all sites in the lattice. In numerical calculations we used the Kanamori parametrization of Umm0
and J

mm0

H , so that
Umm = U , Umm0 = U � 2J , if m 6= m

0, and Jmm0 = J .
We used the exact diagonalization technique to treat a dimer and cluster DMFT[1] with Hirsch-Fye solver [2] to

study dimerized chain.

II. DETAILS OF THE ab initio CALCULATIONS

All ab initio band structure calculations were performed within the generalised gradient approximation (GGA)[3]
and full-potential linearized augmented plane wave method using Wien2k code [4]. The crystal structure of Nb2O2F3

were taken from Ref. [5] and for Ba5AlIr2O11 from Ref. [6]. The parameter of the plane-wave expansion was chosen
to be RMTKmax = 7, where RMT is the smallest atomic sphere radii and Kmax - plane wave cut-o↵.

Mu�n-tin (MT) radii were chosen to be RNb = 1.95, RF = 1.83, and RO = 1.73 a.u. for Nb2O2F3 and RIr = 1.91
a.u., RBa = 2.35 a.u., RAl = 1.63 a.u., and RO = 1.63 a.u. for Ba5AlIr2O11. We used following k�meshes for the
Brillouin-zone integration: 7⇥6⇥7 for Nb2O2F3 and 3⇥10⇥5 for Ba5AlIr2O11.

III. Nb2O2F3

The crystal structure of Nb2O2F3 consists of Nb-Nb dimers, which are formed by two NbO3F3 octahedra sharing
their edges, see Fig. 1(a). Nb ions are inside octahedra formed by O (red balls) and F (grey balls) ions. As a result

⇤Electronic address: streltsov@imp.uran.ru
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FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U " t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate

0 2000 4000 6000 8000 10000 12000
Temperature (K)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

U
ni

fo
rm

 m
ag

n.
 s

us
ce

pt
ib

ili
ty

 (
ar

b.
 u

ni
ts

)

Total
c orbital
d orbital

FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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interactions U " t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
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mm′ = U − 2JH , Uσσ
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rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
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dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
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temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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interactions U " t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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FIG. 4. The magnetic moment of the dimer 〈Sz
dim〉 as a function

of temperature T and intradimer hopping of the c-orbitals t c
⊥ for

td
⊥ = tb = 0.2 eV. For certain temperatures, the double-exchange

state (DE) and the molecular-orbital state (MO) are separated by a
quantum critical region (QC). The red and green dashed lines mark
the positions of local minima of the spin and orbital correlations,
respectively.

also needs to take into account that the coefficients of the
interaction terms also change under the BA transformation.
In the next section, we discuss the phase diagram of the
two-plane Bethe lattice for an intermediate situation when
both intradimer hoppings and interaction (given by U and J )
strength are not small.

III. PHASE DIAGRAM

Previous studies of the two-plane Bethe lattice have fo-
cused on the single-orbital case. It was found to hold not only
the Mott and band insulators, but also a correlated mixed state
with coherent and incoherent peaks in the local density of
states. Competition between intra- and interplane exchange
interactions was shown to affect the formation of the local
moments [19,22,26]. We will demonstrate that substantial
orbital differentiation due to different interplane hoppings,
t c⊥ $ td⊥, results not only in a spin-state-like transition, but
also in a strong suppression of a long-range magnetic order
in the critical region.

Throughout this section, we discuss the results for fixed
tb = 0.2 eV. Figure 4 shows the phase diagram of our model
obtained by the CDMFT described in Sec. II. There are three
main regions. At low temperature and for small t c⊥ we find the
DE state with a total spin Sz

dim = ±3/2 (red part of the phase
diagram). All dimers are antiferromagnetically ordered, so
that 〈Sz

dim〉 ∼ 3/2. This DE state transforms into the MO state
with the total spin Sz

dim = ±1/2 upon increasing intradimer
hopping t c⊥ (the light blue part of the phase diagram). This
can be considered as a spin-state transition for the cluster. The
critical t̃ c⊥ is close to the value obtained in the atomic limit
(see Sec. II A). At low temperatures, dimers in the MO phase
are antiferromagnetically ordered and 〈Sz

dim〉 ∼ 1/2.
Increasing the temperature, we get to the last region with

paramagnetic dimers (this phase can again be divided accord-
ing to 〈S2

dim〉 in the DE or MO parts). Interestingly, however,
the temperature dependence of 〈Sz

dim〉 is very different in
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FIG. 5. The magnetic moment of the dimer 〈Sz
dim〉 as a function

of intradimer hopping of the c-orbitals t c
⊥ for td

⊥ = tb = 0.2 eV and
temperatures T .

different parts of the phase diagram. We see that the para-
magnetic phase appears at much lower temperatures in the
critical region of t c⊥ ∼ 1.05 eV. The DE and MO states have
different quantum numbers (different total spins), and thus in
the limit of isolated dimers (tb = 0) the transition between
them must be discontinuous at T = 0. Obviously, no long-
range magnetic order is possible in this situation. However,
fluctuations can result in a crossover. In this crossover region,
the system becomes frustrated and the paramagnetic phase
is promoted by the competition of the DE and MO states
forming a hybrid state (HYB) with properties that are distinct
from both.

In Fig. 5 we present a selection of data of Fig. 4 in order to
resolve more detailed properties of the DE/MO transition. In
particular, it shows that the order parameter 〈Sz

dim〉 is smooth
along the transition, and since furthermore no coexistence of
the two phases is found, it suggests that the lattice exhibits
a phase transition of second order at t̃ c⊥ corresponding to the
ground-state crossover of the isolated dimer. The integrated
occupancies

Nσ =
∑

α∈{c,d}

∑

i∈{B,A}
ñσαi , σ ∈ {↑,↓},

Nα =
∑

σ∈{↑,↓}

∑

i∈{B,A}
ñσαi , α ∈ {c, d},

Ni =
∑

σ∈{↑,↓}

∑

α∈{c,d}
nσαi , i ∈ {B,A},

(8)

are shown in Fig. 6 (top), confirming our illustration of the DE
and MO states (Fig. 1). For low temperatures, fluctuations are
suppressed by AFM order and the integrated occupancy has a
sharper crossover. In fact the crossover region, in close prox-
imity to its boundaries, shows local minima of the spin and or-
bital correlations 〈δNxδNx̄〉 = 〈NxNx̄〉 − 〈Nx〉〈Nx̄〉 with x =
↑,↓ and x = d, c, respectively. The physical reasoning be-
hind this is that the fluctuations are always very strong in the
vicinity of phase transitions. The temperature dependences of
the 〈δNxδNx̄〉 minima are shown in Fig. 4 by dashed lines.

The phase diagram shows that both originate from
the DE/MO ground-state crossover, but their temperature
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Suppression of a long-range magnetic order  
in the transition region!

Cluster-DMFT

H. Hafermann et al.

t

t⊥

Fig. 1: (Color online) The two-plane Hubbard model on the
Bethe lattice visualized for coordination number z = 3. It can
be viewed as a lattice of dimers, or equivalently as two planes
with opposing sites coupled by a perpendicular hopping t⊥.

between the local moment and the conduction electron
spins. Since the Kondo effect provides quasiparticle weight
within the Mott pseudogap, tuning the dimerization is a
possible mechanism for driving the MIT.
Starting from earlier works on the stacked Hubbard

model, which addressed the competition between the
RKKY interaction and Kondo physics [14], more recently
the Mott–to–band-insulator transition was studied in the
2D bilayer Hubbard model [15]. Further studies focused on
the ground-state phase diagram [16], the role of frustration
and dimensionality [17] and the magnetic and transport
properties for the doped case [18].
In this letter, we study the MIT in the D=∞

two-plane Hubbard model at half filling. Theoretically
this model is particularly appealing, since it can be
solved exactly within the DMFT. The associated local
Anderson impurity problem is solved using a numerically
exact continuous-time quantum Monte Carlo algorithm.
Hence the finite temperature results presented here
are essentially exact. We will focus on the MIT in the
absence of frustration, driven by tuning the coupling
between dimer sites. This mechanism is rather different
from the interaction-driven MIT. While increasing the
perpendicular hopping in the weak-coupling regime leads
to a band insulating state by separation of the bonding
and antibonding bands, the transition in the correlated
regime is characterized by the formation of singlets
between neighboring sites, resulting in the suppression of
the spectral weight at the Fermi level.
An illustration of the model is shown in fig. 1. Sites

within a plane are connected by the hopping t and each
site is coupled to the opposing site on the other plane by a
perpendicular hopping t⊥. The model is described by the
Hamiltonian

H = −t
∑

〈ij〉,σ

(a†iσajσ + b
†
iσbjσ)− t⊥

∑

iσ

(a†iσbiσ + b
†
iσaiσ)

+U
∑

iσ

(nai↑nai↓+nbi↑nbi↓), (1)

where the operators a†(a) create (annihilate) an electron
on plane a and correspondingly for plane b. It is convenient
to introduce spinors cσ = (aσ,bσ)T and c†σ = (a

†
σ, b

†
σ). The
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Fig. 2: (Color online) Phase diagram of the two-plane Hubbard
model on the Bethe lattice at temperature T/t= 0.1. The
mean-field value of t⊥ for the AF to singlet insulating transition
is marked by a dashed line.

DMFT self-consistency condition for the matrix Green
function is now readily shown to be [14]

G−1σ (iωn) =
(
iωn+µ −t⊥
−t⊥ iωn+µ

)
− t2G−σ(iωn), (2)

which relates the Weiss field with spin projection σ to the
Green function with opposite spin in order to account for
the commensurate antiferromagnetic (AF) order within a
plane. In order to obtain an AF solution, we have applied a
small spin-dependent symmetry breaking field on the first
DMFT iteration.
We employ the weak-coupling continuous-time quantum

Monte Carlo (CTQMC) algorithm to solve the impurity
problem. In brief, the basic idea is to divide the action
S = S0+W into a non-interacting Gaussian part S0 and
an interaction partW and to expand in the interaction. In
simplified notation (for a general formulation we refer the
reader to ref. [19]), the Green function can be expressed
as a formal perturbation series

G(τ − τ ′) = Z0
Z
〈Tc†(τ)c(τ ′) exp(−W )〉0 =

∑

k

∫
dτ1 . . .

∫
dτk g̃(τ, τ

′; τ1, . . . τk)Ωk(τ1 . . . τk), (3)

where 〈. . .〉0 denotes the average over the unperturbed
system. The quantity g̃ is the contribution to Green’s func-
tion for a given configuration which can be expressed as
the ratio of fermionic determinants and Ωk is a prob-
ability distribution. The Monte Carlo (MC) procedure
consists in importance sampling of configurations spec-
ified by a perturbation order k and, for a given order,
a set of times τ1 . . . τk. In each MC step, the contribu-
tions to the Green function are obtained as g̃(τ, τ ′) =

G0(τ − τ ′)−
∑k
ij=1G0(τ − τi)Ĝ

−1
ij G0(τj − τ ′), where the

elements of the matrix Ĝij contain the non-interacting
Green functions G0 evaluated at the times according to

37006-p2
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Examples of cluster Mott magnets

1. Orbital selective behaviour 
in Y5Mo2O12 

2. “Mo3O8” cluster magnets: 
quantum spin liquids, quantum 
paramagnets, 1200 AFM, 
ferromagnets, diamagnets
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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A very important examples of 
cluster Mott magnets

General formula: [AxBy]5+Mo3O8 [Mo3]11+ d7
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN

i=1(xi+1 �xi)/2
p

(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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Possible valence-bond condensation in the
frustrated cluster magnet LiZn2Mo3O8

J. P. Sheckelton, J. R. Neilson, D. G. Soltan and T. M. McQueen*

The emergence of complex electronic behaviour from simple
ingredients has resulted in the discovery of numerous states
of matter. Many examples are found in systems exhibiting
geometric magnetic frustration, which prevents simultaneous
satisfaction of all magnetic interactions. This frustration gives
rise to complex magnetic properties such as chiral spin
structures1–3, orbitally driven magnetism4, spin-ice behaviour5
exhibiting Dirac strings with magnetic monopoles6, valence-
bond solids7,8 and spin liquids9,10. Here we report the synthesis
and characterization of LiZn2Mo3O8, a geometrically frustrated
antiferromagnet in which the magnetic moments are localized
on small transition-metal clusters rather than individual
ions11–13. By doing so, first-order Jahn–Teller instabilities
and orbital ordering are prevented, allowing the strongly
interacting magnetic clusters in LiZn2Mo3O8 to probably
give rise to an exotic condensed valence-bond ground state
reminiscent of the proposed resonating valence-bond state14,15.
Our results also link magnetism on clusters to geometric
magnetic frustration in extended solids, demonstrating a new
approach for unparalleled chemical control and tunability
in the search for collective, emergent electronic states
of matter16,17.

Numerous materials possess a geometrically frustrated
arrangement ofmagnetic atoms; suchmaterials have their magnetic
moments arranged on frustrated topologies such as triangular
lattices18,19, kagome lattices20,21, hyper-kagome lattices22 and
edge-sharing tetrahedra23,24. A rich diversity of properties result
depending on the magnitude of the per-site spin and orbital
occupancies. Yet, the presence of local structural distortions25,26,
and a degree of site mixing between non-magnetic and magnetic
layers27 are still key limiters in the quest for new quantum states
of matter28. Here we show that these problems can be overcome
through the use of clusters in which a magnetic, unpaired electron
is delocalized over a small number of transition-metal atoms,
rather than individual magnetic ions, by demonstrating that the
S= 1/2 cluster magnet LiZn2Mo3O8 is geometrically frustrated and
probably possesses a condensed valence-bond ground state.

LiZn2Mo3O8 is built of discrete Mo3O13 cluster units (Fig. 1a),
in which all Mo atoms are on equivalent crystallographic sites29.
The average formal oxidation state of Mo is +3.67. Each
cluster has seven valence electrons. By a simple electron count,
supported by molecular orbital calculations (Fig. 1b), six of
these electrons localize into Mo–Mo bonds holding the cluster
together. The seventh electron remains unpaired in a totally
symmetric (A1 irreducible representation) molecular orbital with
equal contributions from all three Mo atoms. The result is one
S=1/2 magnetic moment on eachMo3O13 cluster. This cluster can
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then replace an atom as the basic building block of a geometrically
frustrated magnetic system, when appropriately arranged. There
have been previous reports of systems built of magnetic clusters30.
In those cases, the unpaired, magnetic electrons within a cluster
are still (just like the non-cluster cases) localized on individual
atoms. In contrast, in LiZn2Mo3O8, the magnetism arises from a
collective contribution of all three atoms in theMo3O13 cluster. This
gives rise to a S= 1/2 moment delocalized over three Mo atoms.
This delocalized nature of the moment contributes to the stability
of the system and renders the structure impervious to first-order
Jahn–Teller distortions.

These Mo3O13 clusters in LiZn2Mo3O8 connect at corners, mak-
ing a two-dimensional Mo3O8 layer (Fig. 1c). The 2.6 Å Mo–Mo
distance within each cluster is substantially shorter than between
clusters (3.2 Å), reflecting strong metal–metal bonding within each
cluster. These Mo3O8 layers are separated by non-magnetic Li/Zn
ions (Fig. 1d) to form the full structure with R3m symmetry.
Consequently, LiZn2Mo3O8 contains two-dimensional layers in
which S= 1/2 Mo3O13 clusters are arranged on the geometrically
frustrated triangular lattice.

The temperature dependence of the magnetic susceptibility of
LiZn2Mo3O8 shows unusual and unexpected behaviour. At tem-
peratures above 96K, the inverse magnetic susceptibility (Fig. 2a)
is well described by the Curie–Weiss law for paramagnetic spins.
A Weiss temperature of ✓ = �220K indicates a net mean-field
antiferromagnetic interaction between unpaired spins on Mo3O13
clusters. A Curie constant of C = 0.24 e.m.u.KOe�1 mol f u�1

(peff = 1.39) is reduced from the ideal 0.375 value for a free
S = 1/2 moment. This may be due to a number of possibilities
(see Supplementary Information), but the most likely is a partial
unquenched orbital contribution to the moment, due to spin–orbit
coupling. It is not due to the formation of a metallic state: re-
sistivity data (Supplementary Fig. S6) show that LiZn2Mo3O8 is
electrically insulating at all accessible temperatures. Furthermore,
the molecular calculations predict an on-site (cluster) Hubbard
U of ⇠1.2 eV, which, depending on bandwidth, could open a
gap and explain the insulating behaviour. Together, these data
imply that the one unpaired electron per cluster in LiZn2Mo3O8
behaves as a localized effective S = 1/2 magnetic system (with a
partial unquenched orbital contribution just like Co2+ or Cu2+),
and that the magnetic interactions between clusters are strong and
antiferromagnetic.

A change in the slope of the inverse magnetic suscepti-
bility as a function of temperature occurs around T = 96K,
with a second linear region of �(T ) present below this tran-
sition (or crossover). A fit to the linear region from T = 2K
to T = 96K gives a Weiss temperature of ✓ = �14K and a

NATUREMATERIALS | VOL 11 | JUNE 2012 | www.nature.com/naturematerials 493

© 2012 Macmillan Publishers Limited. All rights reserved

LETTERS
PUBLISHED ONLINE: 6 MAY 2012 | DOI: 10.1038/NMAT3329

Possible valence-bond condensation in the
frustrated cluster magnet LiZn2Mo3O8

J. P. Sheckelton, J. R. Neilson, D. G. Soltan and T. M. McQueen*

The emergence of complex electronic behaviour from simple
ingredients has resulted in the discovery of numerous states
of matter. Many examples are found in systems exhibiting
geometric magnetic frustration, which prevents simultaneous
satisfaction of all magnetic interactions. This frustration gives
rise to complex magnetic properties such as chiral spin
structures1–3, orbitally driven magnetism4, spin-ice behaviour5
exhibiting Dirac strings with magnetic monopoles6, valence-
bond solids7,8 and spin liquids9,10. Here we report the synthesis
and characterization of LiZn2Mo3O8, a geometrically frustrated
antiferromagnet in which the magnetic moments are localized
on small transition-metal clusters rather than individual
ions11–13. By doing so, first-order Jahn–Teller instabilities
and orbital ordering are prevented, allowing the strongly
interacting magnetic clusters in LiZn2Mo3O8 to probably
give rise to an exotic condensed valence-bond ground state
reminiscent of the proposed resonating valence-bond state14,15.
Our results also link magnetism on clusters to geometric
magnetic frustration in extended solids, demonstrating a new
approach for unparalleled chemical control and tunability
in the search for collective, emergent electronic states
of matter16,17.

Numerous materials possess a geometrically frustrated
arrangement ofmagnetic atoms; suchmaterials have their magnetic
moments arranged on frustrated topologies such as triangular
lattices18,19, kagome lattices20,21, hyper-kagome lattices22 and
edge-sharing tetrahedra23,24. A rich diversity of properties result
depending on the magnitude of the per-site spin and orbital
occupancies. Yet, the presence of local structural distortions25,26,
and a degree of site mixing between non-magnetic and magnetic
layers27 are still key limiters in the quest for new quantum states
of matter28. Here we show that these problems can be overcome
through the use of clusters in which a magnetic, unpaired electron
is delocalized over a small number of transition-metal atoms,
rather than individual magnetic ions, by demonstrating that the
S= 1/2 cluster magnet LiZn2Mo3O8 is geometrically frustrated and
probably possesses a condensed valence-bond ground state.

LiZn2Mo3O8 is built of discrete Mo3O13 cluster units (Fig. 1a),
in which all Mo atoms are on equivalent crystallographic sites29.
The average formal oxidation state of Mo is +3.67. Each
cluster has seven valence electrons. By a simple electron count,
supported by molecular orbital calculations (Fig. 1b), six of
these electrons localize into Mo–Mo bonds holding the cluster
together. The seventh electron remains unpaired in a totally
symmetric (A1 irreducible representation) molecular orbital with
equal contributions from all three Mo atoms. The result is one
S=1/2 magnetic moment on eachMo3O13 cluster. This cluster can
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then replace an atom as the basic building block of a geometrically
frustrated magnetic system, when appropriately arranged. There
have been previous reports of systems built of magnetic clusters30.
In those cases, the unpaired, magnetic electrons within a cluster
are still (just like the non-cluster cases) localized on individual
atoms. In contrast, in LiZn2Mo3O8, the magnetism arises from a
collective contribution of all three atoms in theMo3O13 cluster. This
gives rise to a S= 1/2 moment delocalized over three Mo atoms.
This delocalized nature of the moment contributes to the stability
of the system and renders the structure impervious to first-order
Jahn–Teller distortions.

These Mo3O13 clusters in LiZn2Mo3O8 connect at corners, mak-
ing a two-dimensional Mo3O8 layer (Fig. 1c). The 2.6 Å Mo–Mo
distance within each cluster is substantially shorter than between
clusters (3.2 Å), reflecting strong metal–metal bonding within each
cluster. These Mo3O8 layers are separated by non-magnetic Li/Zn
ions (Fig. 1d) to form the full structure with R3m symmetry.
Consequently, LiZn2Mo3O8 contains two-dimensional layers in
which S= 1/2 Mo3O13 clusters are arranged on the geometrically
frustrated triangular lattice.

The temperature dependence of the magnetic susceptibility of
LiZn2Mo3O8 shows unusual and unexpected behaviour. At tem-
peratures above 96K, the inverse magnetic susceptibility (Fig. 2a)
is well described by the Curie–Weiss law for paramagnetic spins.
A Weiss temperature of ✓ = �220K indicates a net mean-field
antiferromagnetic interaction between unpaired spins on Mo3O13
clusters. A Curie constant of C = 0.24 e.m.u.KOe�1 mol f u�1

(peff = 1.39) is reduced from the ideal 0.375 value for a free
S = 1/2 moment. This may be due to a number of possibilities
(see Supplementary Information), but the most likely is a partial
unquenched orbital contribution to the moment, due to spin–orbit
coupling. It is not due to the formation of a metallic state: re-
sistivity data (Supplementary Fig. S6) show that LiZn2Mo3O8 is
electrically insulating at all accessible temperatures. Furthermore,
the molecular calculations predict an on-site (cluster) Hubbard
U of ⇠1.2 eV, which, depending on bandwidth, could open a
gap and explain the insulating behaviour. Together, these data
imply that the one unpaired electron per cluster in LiZn2Mo3O8
behaves as a localized effective S = 1/2 magnetic system (with a
partial unquenched orbital contribution just like Co2+ or Cu2+),
and that the magnetic interactions between clusters are strong and
antiferromagnetic.

A change in the slope of the inverse magnetic suscepti-
bility as a function of temperature occurs around T = 96K,
with a second linear region of �(T ) present below this tran-
sition (or crossover). A fit to the linear region from T = 2K
to T = 96K gives a Weiss temperature of ✓ = �14K and a
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN

i=1(xi+1 �xi)/2
p

(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN

i=1(xi+1 �xi)/2
p

(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN
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(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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the magnetic zone center (1/3, 1/3, 0) was observed. Because of the Q position, the excitation is assigned to be the 
spin wave excitation in the long-range magnetic ordered state. Energy spectrum at the magnetic zone center 
exhibits a substantial peak at ω = .2 08(3)�  meV as shown in Fig. 3(f). "is result claims that one branch (or some 
branches) of the spin wave excitation has spin gap at the magnetic zone center due to the magnetic anisotropy. On 
the other hand, magnetic signals at the magnetic zone center become quasielastic above TN as shown in Fig. 3(b,f). 
"erefore, the gap-like excitation is a characteristic feature of the long-range magnetic ordered state. To observe 
the whole structure of the spin wave excitation at 4.5 K, ωI Q( , )�  map using higher Ei is presented in Fig. 3(c). "e 
spin wave excitation survives up to ~9 meV. Q dependences of the spin wave intensities at various �ωs are plotted 
in Fig. 3(g). "e spectra are asymmetric at �ω > .3 0 meV, and the peak shi#s to lower Q at higher �ω. "is result 
suggests that the squared magnetic form factor (|F(Q)|2) of the Mo3O13 cluster decreases quickly and is negligible 
at high Q, representing the unpaired electron with equal contributions from all three Mo atoms in Li2InMo3O8.

For quantitative analysis on the spin wave excitation in Li2InMo3O8, semi-classical linear spin wave (LSW) 
analysis was performed considering the 120° spin structure on the spin-1/2 2D Mo3O13-based triangular lat-
tice [Fig. 1(c)]. "e gap-like excitation at the magnetic zone center in the long-range magnetic ordered state is 
also observed in the other spin-1/2 triangular lattice system Ba3CoSb2O9

13, and the peak energy (E0) roughly 
scales with TN in these compounds: E0 = 0.65 meV and TN = 3.8 K in Ba3CoSb2O9

13 whereas E0 = 2.08 meV and 
TN = 12 K in Li2InMo3O8. "is suggests that the origin of the gap-like excitation in Li2InMo3O8 is the same as that 
in Ba3CoSb2O9

13. "erefore, as in Ba3CoSb2O9
12–14, the nearest-neighbor anisotropic exchange interaction was 

considered as the model Hamiltonian for Li2InMo3O8

 ∑α δ= + +J S S S S S S( )
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where α, J, and δ represent the renormalization factor, the nearest neighbor exchange coupling constant, and the 
anisotropic factor. J was $xed to 112 K determined by the magnetic susceptibility measurement37. By $tting the 
calculated powder-averaged Q dependences to the experimental results at di%erent ω� s (2~7.5 meV) simultane-
ously, optimum parameters were yielded
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Figure 3. TOF neutron scattering results on Li2InMo3O8. Low-energy inelastic neutron scattering intensity 
maps at (a) 4.6 K and (b) 13.5 K measured with Ei = 11.9 meV. (c) High-energy inelastic neutron scattering 
intensity map at 4.6 K measured with Ei = 22.0 meV. (d) Calculated inelastic neutron scattering intensity 
map at 4.6 K using the optimum parameters as described in the main text. Calculated energy resolution for 
Ei = 11.9 meV was convoluted. (e) Elastic neutron scattering intensities at 4.6 and 18.7 K with energy window of 
[−0.15, 0.15] meV. Solid lines represent the $tting result using the Gaussian function with linear background. 
(f) Energy spectra integrated over Q = [0.69, 0.77] Å−1 at 4.6 and 13.5 K measured with Ei = 11.9 meV. (g) Q 
dependences of the neutron scattering intensities at several energy windows. Each energy window was [1.5, 
2.0], [2.0, 2.5], [2.5, 3.0], [3.0, 3.5], and [3.5, 4.0] meV with Ei = 11.9 meV (red), [4.0, 4.5] and [4.5, 5.0] meV 
with Ei = 15.8 meV (blue), [5.0, 6.0] and [6.0, 7.0] meV with Ei = 22.0 meV (green), and [7.0, 8.0] meV with 
Ei = 32.7 meV (black), respectively. Constant background was subtracted from each Q dependence. Solid lines 
are calculated results using the optimum parameters in Eq. (5).
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Fitting results together with the experimental results are shown in Fig. 3(g), and calculated LSW ωI Q( , )�  map 
is also shown in Fig. 3(d). Satisfactory agreements with calculation and experiment were con"rmed. Obtained α 
is smaller than 1, indicating a negative quantum renormalization e#ect theoretically proposed for 2D spin-1/2 
TLHAF42–44. Similar negative quantum renormalization e#ect (α ~ 0.65) was also reported in Ba3CoSb2O9

14. 
$erefore, observed magnetic excitations of Li2InMo3O8 in the accessible ωQ( , )�  region are well understood by 
the semi-classical LSW theory assuming the 120° magnetic structure on the spin-1/2 Mo3O13 triangular lattice.

In contrast to Li2InMo3O8, no magnetic Bragg peak evolves in the elastic channel down to 0.3 K in Li2ScMo3O8 
as plotted in Fig. 4(c), in agreement with our µSR results. On the other hand, di#use scattering expected for the 
short-range order is not observed in our neutron measurements. Strong incoherent scattering may smear out 
such magnetic di#use scattering in Li2ScMo3O8. Figure 4(a) depicts ωI Q( , )�  map at 0.3 K. Clear di#use scattering 
was observed in the inelastic channel. Although both magnetic excitations in Li2InMo3O8 and Li2ScMo3O8 are 
centered at Q ~ 0.7 Å−1 [Figs 3(a) and 4(a)], the overall structures are di#erent, representing their di#erent ground 
states. In Li2ScMo3O8, steep continuum excitation was observed. $e Q dependences of the magnetic excitations 
are invariant in the di#erent energy windows as shown in Fig. 4(d). Steep continuum excitation, or spinon con-
tinuum, is the common feature of the magnetic excitations in the QSL candidates3,21,22,26,45. ωI Q( , )�  map at high 
temperature (22 K) is also shown in Fig. 4(b). Although overall magnetic %uctuation at 22 K is similar to that at 
0.3 K, there are some di#erences. Scattering intensity decreases at 22 K. In addition, as shown in Fig. 4(e), spec-
trum weight of the Q dependence at 2 meV slightly shi&s to Q = 0 at high temperature, which is also observed in 
other QSL candidates22,26,45.

To investigate in more detail the characteristic energy (or time) scale of the steep continuum in Li2ScMo3O8, 
the dynamical spin susceptibilities χ ω ω ω″ = − − | |k T F Q I( ) [1 exp( / )]/ ( ) ( )B

2� � �  at Q = [0.6, 0.8] Å−1 where the 
magnetic signal is maximal are plotted for di#erent temperatures in Fig. 4(f). $e spectra are well "tted by the 
quasielastic Lorentzian � � �χ ω χ ω ω″ = ′ Γ + Γ( ) /[( ) ]2 2  where χ′ is the static susceptibility and Γ the spin relax-
ation rate [or peak position of χ ω″( )� ]. $e temperature dependences of the resulting parameters are shown in 
Fig. 4(g). Upon decreasing temperature, Γ decreases while χ′ increases. Contrary to the conventional long-range 
ordered magnets, no divergent behavior was observed in the temperature dependences of χ′ and Γ. It should be 
noted that χ′ scales with bulk magnetic susceptibility χbulk over the temperature range of 3 ≤ T ≤ 40 K [see solid 
line in Fig. 4(g)] and Γ is also scaled by the muon relaxation rate λs as discussed below. $ese "ttings also extract 
two important features of the steep continuum in Li2ScMo3O8: (1) the magnetic excitation is gapless consistent 
with the heat capacity measurement37 and (2) the dynamical spin susceptibility extends from the elastic channel 
up to at least 9.5 meV which is about 1.6 J where J (=67 K) is determined by the magnetic susceptibility 
measurement37.
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Figure 4. TOF neutron scattering results on Li2ScMo3O8. Inelastic neutron scattering intensity maps with 
Ei = 10.3 meV measured at (a) 0.3 K and (b) 22 K. (c) Elastic neutron scattering intensities with energy window 
of [−0.075, 0.075] meV at 0.3 and 22 K with Ei = 10.3 meV. (d) Q dependences of the neutron scattering 
intensities at several energy windows at 1.7 K. Each energy window was [1.5, 2.5] meV with Ei = 7.5 meV, 
[2.5, 3.5] meV with Ei = 10.3 meV, [3.5, 4.5] meV with Ei = 15.0 meV, and [4.5, 5.5] meV with Ei = 23.9 meV, 
respectively. (e) Q dependences of the neutron scattering intensities with [1.5, 2.5] meV at 0.3 and 22 K using 
Ei = 7.5 meV. (f) Dynamical spin susceptibilities at Q = [0.6, 0.8] Å−1 for 0.3, 10, 22, and 40 K. Solid lines are the 
"tting results by the quasielastic Lorentzian as described in the main text. (g) Temperature dependences of static 
spin susceptibility χ′ (le& scale) and relaxation rate Γ (right scale) obtained by the "tting in panel (f). Solid line 
is a scaled bulk magnetic susceptibility (χbulk = M/H) measured with H = 1 T.

Iida et al.,  
Sci. Rep. 9, 1826 (2019)

consistent with each spin-1=2 moment being highly distrib-
uted over a Mo3O13 cluster, similar to observations in
systems of mixed-valence Ru dimers [25].
For x ¼ 0.2, x ¼ 0.4, and x ¼ 1, we find an inhomo-

geneous mix of disordered static magnetism (giving a
quickly relaxing signal) and a weakly relaxing dynamic
fraction as shown in Fig. 2(b). The frozen fraction
represents 49%, 25%, and 43% of these samples, respec-
tively. On the other hand, PðtÞ for x ¼ 0.6 shows no
indication of static fields originating from electron spins to
as low as 25 mK, which suggests that the entire sample is in
a homogeneous QSL phase. In fact, the μSR asymmetry
profile for x ¼ 0.6 is very similar to that of LZMO [26].
To fit the inhomogeneous samples, a Lorentzian Kubo-

Toyabe function was used for PSðtÞ [27]. This fitting has
been performed in zero and longitudinal field, BL, as shown
in Fig. 2(d) and in the Supplemental Material [24]. This
analysis conclusively demonstrates that we have correctly
identified the frozen and dynamic fractions of the sample

since the muon spins are much more quickly decoupled
from static than dynamic magnetism. For the homogeneous
QSL sample, small BL quickly decouples the muon spins
from the nuclear moments, but higher field relaxation
persists, indicating that the relaxation is purely of dynamic
origin, as seen in Fig. 2(c). As shown in Fig. 3(a),
1=T1ðBLÞ for the QSL fractions is fairly well fit with
Redfield theory [28] using a sum of two characteristic
fluctuation frequencies. Meanwhile, 1=T1 of the liquid
fractions shows relaxation plateaus at temperatures below
∼1 K, a common but still poorly understood feature of QSL
candidates [3,29–31].
Evidently, the concentration of Sc does not monotoni-

cally change the ratio of static and QSL fractions, but rather
there is an optimal concentration of x ¼ 0.6 where a
homogeneous QSL is stabilized. The phase diagram as a
function of x, presented in Fig. 4(c), is highly correlated
with the behavior of the breathing parameter λðxÞ as shown
in Fig. 1(d). This suggests that the magnetic phenomenol-
ogy of this material is intimately connected to the sym-
metry of the BKL and that past a critical value of λ the
system passes from antiferromagnetic (AFM) to QSL.
At critical values of λ, such as for x ¼ 0.2 and x ¼ 1,
inhomogeneous phases result.
The way in which λ influences the charge degrees of

freedom, and consequently the spins, may be better under-
stood with the magnetic susceptibility χ measurements in
Fig. 4(a). Our measurements of the end points of the series
(x ¼ 0 and x ¼ 1) are consistent with previous work [20].
For intermediate concentrations, χðTÞ is very different. For
the homogeneous QSL sample (x ¼ 0.6), χ−1ðTÞ displays
two apparent linear Curie-Weiss regimes distinguished
by different Curie constants and a smooth crossover
between the two regimes. The x ¼ 0.4 and x ¼ 0.8 samples
show similar behavior [24]. This strong, qualitative change
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FIG. 3. (a) Spin-lattice relaxation rate vs longitudinal field at
base temperature for the liquid phase of several samples, with fits
given by Redfield theory with two different fluctuation frequen-
cies. (b) Relaxation rate as a function of temperature in longi-
tudinal field of 55 G, showing relaxation plateaus typical of QSL
materials. Curves are guides to the eye.
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FIG. 4. (a) Temperature dependent inverse magnetic susceptibility χ−1 for select samples. For x ¼ 0, a sharp feature at the onset of
AFM order is indicated by an arrow at 11 K. Here, χ−1ðTÞ for the homogeneous QSL sample, x ¼ 0.6, shows two apparent Curie-Weiss
regimes. The fit is described in the text. (b) Magnetic specific heatCM of select samples. The fit to the x ¼ 0 data is a T3 power law plus a
CN ∝ T−2 nuclear contribution. The specific heat of x ¼ 0.6 is compared with a T2=3 power law plus nuclear contribution, as well as a T-
linear dependence. (c) Magnetic phase diagram for Li2In1−xScxMo3O8. Red squares show the onset of freezing determined by specific
heat (for x ¼ 0 and 0.2) μSR (for the remaining samples). The dark red region shows AFM ordering, whereas pink regions show spin
freezing, either spin glass (SG) or disordered antiferromagnetism. The blue region shows the approximate temperature onset of the
relaxation plateau in μSR.
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quickly relaxing signal) and a weakly relaxing dynamic
fraction as shown in Fig. 2(b). The frozen fraction
represents 49%, 25%, and 43% of these samples, respec-
tively. On the other hand, PðtÞ for x ¼ 0.6 shows no
indication of static fields originating from electron spins to
as low as 25 mK, which suggests that the entire sample is in
a homogeneous QSL phase. In fact, the μSR asymmetry
profile for x ¼ 0.6 is very similar to that of LZMO [26].
To fit the inhomogeneous samples, a Lorentzian Kubo-

Toyabe function was used for PSðtÞ [27]. This fitting has
been performed in zero and longitudinal field, BL, as shown
in Fig. 2(d) and in the Supplemental Material [24]. This
analysis conclusively demonstrates that we have correctly
identified the frozen and dynamic fractions of the sample

since the muon spins are much more quickly decoupled
from static than dynamic magnetism. For the homogeneous
QSL sample, small BL quickly decouples the muon spins
from the nuclear moments, but higher field relaxation
persists, indicating that the relaxation is purely of dynamic
origin, as seen in Fig. 2(c). As shown in Fig. 3(a),
1=T1ðBLÞ for the QSL fractions is fairly well fit with
Redfield theory [28] using a sum of two characteristic
fluctuation frequencies. Meanwhile, 1=T1 of the liquid
fractions shows relaxation plateaus at temperatures below
∼1 K, a common but still poorly understood feature of QSL
candidates [3,29–31].
Evidently, the concentration of Sc does not monotoni-

cally change the ratio of static and QSL fractions, but rather
there is an optimal concentration of x ¼ 0.6 where a
homogeneous QSL is stabilized. The phase diagram as a
function of x, presented in Fig. 4(c), is highly correlated
with the behavior of the breathing parameter λðxÞ as shown
in Fig. 1(d). This suggests that the magnetic phenomenol-
ogy of this material is intimately connected to the sym-
metry of the BKL and that past a critical value of λ the
system passes from antiferromagnetic (AFM) to QSL.
At critical values of λ, such as for x ¼ 0.2 and x ¼ 1,
inhomogeneous phases result.
The way in which λ influences the charge degrees of

freedom, and consequently the spins, may be better under-
stood with the magnetic susceptibility χ measurements in
Fig. 4(a). Our measurements of the end points of the series
(x ¼ 0 and x ¼ 1) are consistent with previous work [20].
For intermediate concentrations, χðTÞ is very different. For
the homogeneous QSL sample (x ¼ 0.6), χ−1ðTÞ displays
two apparent linear Curie-Weiss regimes distinguished
by different Curie constants and a smooth crossover
between the two regimes. The x ¼ 0.4 and x ¼ 0.8 samples
show similar behavior [24]. This strong, qualitative change
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CN ∝ T−2 nuclear contribution. The specific heat of x ¼ 0.6 is compared with a T2=3 power law plus nuclear contribution, as well as a T-
linear dependence. (c) Magnetic phase diagram for Li2In1−xScxMo3O8. Red squares show the onset of freezing determined by specific
heat (for x ¼ 0 and 0.2) μSR (for the remaining samples). The dark red region shows AFM ordering, whereas pink regions show spin
freezing, either spin glass (SG) or disordered antiferromagnetism. The blue region shows the approximate temperature onset of the
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Akbari-Sharbaf et al.,  
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Li2ScMo3O8 (or Li2In0.4Sc0.6Mo3O8) show a spin-liquid behaviour!

Haraguchi et al.,  
PRB 92, 011409 (2015)

J  =112 K

J  =67 K

μeff = 1.61μB

ΘCW = − 242K

μHT
eff = 1.65μB

ΘCW = − 127K



34

Ferromagnetism in ZnScMo3O8
4

FIG. 4: (color online) For ZnScMo3O8, (a) the inverse dc susceptibility at 1.0 T as well as the Curie-Weiss fit of the data
from 50-400 K. The inset shows the temperature dependence of the dc susceptibility at various magnetic field strengths; (b)
the isothermal magnetization curve at 2 K; (c) the temperature dependence of the ac susceptibility at 0.055 T using various
frequencies. The inset shows the temperature dependence of the derivative of the ac susceptibility; (d) the temperature
dependence of the specific heat measured at various magnetic field strengths; (e) the entropy below 20 K obtained from the
specific heat measurements; (f) the temperature dependence of resistivity, the inset shows the linear fitting to the VRH model.

C. Phase Diagram

In order to explore the correlation between the
breathing kagome lattice and the magnetic ground
states of the Mo3O8 cluster magnets, we summa-
rized the up triangle Mo-Mo bond length (UMo), �,
and the magnetic ground states for studied samples
including ZnScMo3O8(ZnSc), MgScMo3O8(MgSc),
Li2ScMo3O8(Li2Sc), Li2InMo3O8(Li2In),
Li2In0.4Sc0.6Mo3O8(Li2In0.4Sc0.6), LiZn2Mo3O8(LiZn2),
the reported Na3Sc2Mo5O16(Na3Sc2(r)), and the
Na3Sc2Mo5O16(Na3Sc2) studied here. As shown in Fig.
6, two obvious trends are observed: (i) the � decreases
with increasing UMo; (ii) with decreasing �, the ground
states switches from QSL (for Na3Sc2, Na3Sc2(r), LiZn2,
and Li2In0.4Sc0.6) to AFM (for Li2In and Li2Sc), and
then to FM (for ZnSc and MgSc). The two critical� are
around 1.26 for boundary between QSL and AFM and

1.30 for boundary between AFM and FM.
IV. DISCUSSION

How to explain the phase diagram, especially the FM
for ZnSc and MgSc sample. Is it possible to theoretically
calculated this phase diagram with �?

V. CONCLUSION

I

Acknowledgments

Q.C. R. S. and H.D.Z. thank the support from NSF-
DMR through Award DMR-1350002.

1 J. Rodriguez-Carvajal, “FULLPROF: A Program for Ri-
etveld Refinement and Pattern Matching Analysis”, Ab-

stracts of the Satellite Meeting on Powder Di↵raction of the
XV Congress of the IUCr, p. 127, Toulouse, France (1990).

4

FIG. 4: (color online) For ZnScMo3O8, (a) the inverse dc susceptibility at 1.0 T as well as the Curie-Weiss fit of the data
from 50-400 K. The inset shows the temperature dependence of the dc susceptibility at various magnetic field strengths; (b)
the isothermal magnetization curve at 2 K; (c) the temperature dependence of the ac susceptibility at 0.055 T using various
frequencies. The inset shows the temperature dependence of the derivative of the ac susceptibility; (d) the temperature
dependence of the specific heat measured at various magnetic field strengths; (e) the entropy below 20 K obtained from the
specific heat measurements; (f) the temperature dependence of resistivity, the inset shows the linear fitting to the VRH model.

C. Phase Diagram

In order to explore the correlation between the
breathing kagome lattice and the magnetic ground
states of the Mo3O8 cluster magnets, we summa-
rized the up triangle Mo-Mo bond length (UMo), �,
and the magnetic ground states for studied samples
including ZnScMo3O8(ZnSc), MgScMo3O8(MgSc),
Li2ScMo3O8(Li2Sc), Li2InMo3O8(Li2In),
Li2In0.4Sc0.6Mo3O8(Li2In0.4Sc0.6), LiZn2Mo3O8(LiZn2),
the reported Na3Sc2Mo5O16(Na3Sc2(r)), and the
Na3Sc2Mo5O16(Na3Sc2) studied here. As shown in Fig.
6, two obvious trends are observed: (i) the � decreases
with increasing UMo; (ii) with decreasing �, the ground
states switches from QSL (for Na3Sc2, Na3Sc2(r), LiZn2,
and Li2In0.4Sc0.6) to AFM (for Li2In and Li2Sc), and
then to FM (for ZnSc and MgSc). The two critical� are
around 1.26 for boundary between QSL and AFM and

1.30 for boundary between AFM and FM.
IV. DISCUSSION

How to explain the phase diagram, especially the FM
for ZnSc and MgSc sample. Is it possible to theoretically
calculated this phase diagram with �?

V. CONCLUSION
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Diamagnetism in Nb3Cl8
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ABSTRACT: We grew large single crystals of the cluster magnet
Nb3Cl8 with a magnetic triangular lattice and investigated its magnetic
properties and crystal structure. In Nb3Cl8, the [Nb3]

8+ cluster has a
single unpaired spin, making it an S = 1/2 triangular lattice anti-
ferromagnet. At low temperatures, Nb3Cl8 exhibits a magnetic−
nonmagnetic phase transition driven by a charge disproportionation,
in which the paramagnetic [Nb3]

8+ clusters transform into alternating
layers of nonmagnetic [Nb3]

7+ and [Nb3]
9+ clusters. The observed

exotic phenomenon with the strong correlation between the magnetism
and structure are based on the nature of the cluster magnetism.

■ INTRODUCTION
Cluster units consisting of several ions are occasionally found in
inorganic crystal structures. Clusterization occurs for the gain of
electron energy to form a large direct overlap among several
ions. “Cluster magnets,” in which each cluster has unpaired
electrons similar to a radical ion, are classified as localized spin
systems. Such localization is stabilized by a suitable ratio
between the transfer integral and the on-site Coulomb
repulsion among clusters. When the optimum ratio is
hampered, charge fluctuations within a cluster would be
enhanced resulting in an itinerant system. The charge
fluctuation properties are among the important characteristics
of cluster magnets but are absent in the ordinal localized spin
systems of magnetic ions. As a result, cluster magnets are
expected to produce novel phenomena and have been
extensively investigated.1−7

Recently, the class of compounds [A]M3X8 (A = interstitial
cations, M = transition metal, X = anion) has attracted the
attention of theorists and experimentalists.8−14 As shown in
Figure 1a, the M ions form a “breathing” kagome ́ network,
which consists of two kinds of metal triangles with two distinct
metal−metal distances. This deformation of the kagome ́ lattice
produces metal−metal bonding in the short trimers owing to
the overlap of their orbitals of d electrons, which results in the
formation of a cluster-based triangular lattice. Mo3 cluster
compounds typically have the chemical formula [A]M3X8. On
the one hand, these clusters often have [Mo3]

12+ and [Mo3]
10+

oxidation states and are nonmagnetic because of the absence of
unpaired spins.9,15−18 On the other hand, in LiZn2Mo3O8,
Li2ScMo3O8, and Li2InMo3O8, since the valence state is
[Mo3]

11+ with one unpaired spin, each Mo3 cluster shows S =

1/2 magnetism.9−11 Indeed, these compounds show the
characteristic phenomena of triangular lattice anti-ferromag-
nets: valence bond solid formation observed in LiZn2Mo3O8,
spin liquid condensation in Li2ScMo3O8, and magnetic ordering
with 120° structure in Li2InMo3O8.

9−11

In this study, we focused on the [A]M3X8-type niobium
chloride Nb3Cl8,

19,20 in which three Nb ions form a Nb3 trimer
resulting in the formation of a Nb3Cl13 cluster unit (Figure 1b).

Received: December 12, 2016
Published: February 27, 2017

Figure 1. (a) Transition-metal trimers forming the triangular lattice.
(b) Nb3Cl13 cluster unit. (c) Schematic view of the molecular orbitals
formed in a Nb3 trimer with the ground-state electron configuration.
(d) Stacking layer structure of Nb3Cl8.
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Each Nb3 trimer has quite short Nb−Nb intracluster distance
(dNb−Nb ≈ 2.8 Å).20 This fact indicates the formation of metal−
metal bondings. In other short Nb−Nb distance compounds,
for example, elemental Nb (dNb−Nb = 2.853 Å), LiNbO2
(dNb−Nb = 2.907 Å), NbO2 (dNb−Nb = 2.688 Å), and Nb6F15
(dNb−Nb = 2.799 Å), the formation of the metal−metal
bondings has been discussed.21−24 As a result of the metal−
metal bondings, the molecular orbitals are formed from three
t2g orbitals as depicted in Figure 1c. Each Nb3 trimer has seven
d electrons yielding a valence state of [Nb3]

8+. Thus, the
[Nb3]

8+ clusters would display S = 1/2 magnetism. On the one
hand, this electronic state is similar to the above-mentioned
[Mo3]

11+ systems. On the other hand, Nb3Cl8 exhibits strong
lattice instability, because the magnetic layers are connected
only by weak van der Waals’ forces without binding cations
(Figure 1d). Therefore, Nb3Cl8 is expected to display different
novel phenomena when compared to the other [A]M3X8
systems.
In this paper, we report the investigation of the charge

disproportionated magnetic−nonmagnetic phase transition at
∼100 K in Nb3Cl8. We discuss the mechanism of the charge
disproportionation based on X-ray diffraction and NMR
measurements.

■ EXPERIMENTAL PROCEDURE
Sample Preparation and Characterization. Powders of NbCl5

and elemental Nb were used as starting materials. For the synthesis of
the precursor, a mixture of the starting materials with the molar ratio
Nb/Cl = 3:8 was calcined in a sealed silica tube under an Ar
atmosphere at 700 °C for 48 h. Single crystals of Nb3Cl8 were grown
at 750 °C for 150 h from the precursor powders by the solvent
evaporation PbCl2 flux method. After the growth was complete, the
remaining PbCl2 was removed by soaking the crystals in hot water.
Powder samples of Nb3Cl8 were prepared by sonicating the obtained
single crystals, to prevent chemical decomposition by the mechanical
grinding. The scanning electron microscopy (SEM) images, obtained
by using an SEM/energy-dispersive spectrometer (SU1510, HITA-
CHI), reveal that the powder samples consist of a conglomerate of
thin nanoscale single crystals (see Figure S2 in Supporting
Information). The samples were characterized by powder X-ray
diffraction (XRD) on a diffractometer using Cu Kα radiation.
Measurement of Physical Properties. The temperature depend-

ence of the magnetization was measured under several magnetic fields
(up to 7 T) by using the magnetic property measurement system
(MPMS; Quantum Design) at the LTM Research Center, Kyoto
University. The 93Nb NMR measurements were performed by the
spin−echo technique with a standard phase-coherent-type NMR-
pulsed spectrometer. The 93Nb nucleus with I = 9/2 has a nuclear
gyromagnetic ratio γ = 10.407 MHz/T. 93Nb NMR spectra were
recorded by summation of the fast Fourier transform of spin echo
signals at several frequencies in the range of 60−65 MHz. Typical
pulse lengths were 5 and 10 μs for the π/2 and π pulses, respectively,
with a pulse separation of τ = 150 μs.
Single-crystal XRD experiments were performed with using Rigaku

AFC8 diffractometer equipped with a Eulerian 3 circle CCD detector
with Mo Kα radiation. Data were collected and processed with
solutions and refinements of the crystal structures using the package
program of Crystal Clear SM1.3.6 SP3.r6 (Rigaku/MSC Inc., 2006). A
plate-like crystal (0.47 × 0.45 × 0.06 mm) was used for single-crystal
data analysis. For the low-temperature experiment, a single crystal of
Nb3Cl8 was glued with epoxy cement on the tip of a quartz fiber and
mounted on a goniometer head.

■ RESULTS AND DISCUSSION
Fine single crystals of Nb3Cl8 were successfully grown. As
shown in the inset of Figure 2, the obtained single crystals are

dark green hexagonal plates with a typical size of 3 × 3 × 0.5
mm. They are strongly cleavable along the ab plane similar to
black mica, indicating that the magnetic layers are connected by
weak van der Waals forces. XRD patterns of the powder and
single-crystal samples are shown in Figure 2. All peaks of
powder sample were indexed to Bragg reflections based on the
space group P3 ̅m1, indicating that a single-phase sample was
obtained. The XRD pattern of the single crystal was measured
in the condition of the scattering vector parallel to 00l. Only 00l
diffractions can be obtained without other diffractions,
suggesting a single domain crystal.
Figure 3 shows the temperature dependence of the magnetic

susceptibility of single crystal and powder samples Nb3Cl8 (χs

and χp). There is a large difference between the χs and χp
curves. At T* ≈ 100 K, χs drops rapidly with a large hysteresis
indicating the magnetic phase transition. Below T*, the value of
χs approaches to ∼0, indicating that Nb3Cl8 in the low-
temperature phase is nonmangetic. In a low-temperature
region, χs shows a small Curie tail with sample depending.
On the one hand, such an extrinsic Curie tail is sometimes
observed in nonmagnetic compounds including a slight
paramagnetic impurity. On the other hand, there is no anomaly
at T* in χp, indicating that the phase transition is suppressed in
the powder sample. In the high-temperature region, both χ are
well-fitted to the Curie−Weiss function

Figure 2. XRD patterns of the single-crystal and powder samples of
Nb3Cl8. Vertical bars at the bottom indicate the positions of Bragg
reflections, and the Miller indices are indicated in the plot. (inset) A
typical single crystal.

Figure 3. Temperature dependence of the magnetic susceptibilities of
single-crystal (χs, red ●) and powder (χp, black ○) samples of Nb3Cl8.
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The deviation in the shift of the Nb ions from the center of
NbCl6 octahedra results in different degrees of distortion in
each NbCl6 octahedron. As a scale parameter of distortion of
octahedra, we introduce two parameters. The quadratic
elongation is defined as

∑λ⟨ ⟩ =
=

l l
n
/

i

i

1

6
0

(2)

where n is the coordination-number of anions around the
central cation, li is the bond length between the central cation
and the ith coordinating anions, and l0 is the bond length in a
polyhedron with Oh symmetry whose volume is equal to that of
the distorted one. The bond angle variance is expressed as

∑σ
φ φ

=
−
−= m

( )
1i

i

1

12
0

2

(3)

where m is the number of anion−cation−anion bond angles, ϕi
is the ith bond angle of the distorted coronation polyhedra, and
ϕ0 is the bond angle of the coordination polyhedra with Oh
symmetry.27 The parameters ⟨λ⟩ and σ represent the deviation
of each bond length of Nb−Cl and bond angle of Cl−Nb−Cl,
respectively. Using these parameters, the degree of the
deviation in the NbCl6 octahedra can be evaluated. Table 2
shows the estimated ⟨λ⟩ and σ for each NbCl6 octahedron in
the high- and low-temperature phases. The values of both

parameters in the shrunk Nb1 trimers increase, while the values
in the expanded Nb2 trimers decrease. The ⟨λ⟩ and σ values
directly relate to EFG. Thus, the different ⟨λ⟩ and σ values for
the Nb1 and Nb2 sites are consistent with the 93Nb NMR
results.
The phase transition accompanied by the expansion and

shrinking of the Nb3 trimers at T* can be explained by the
charge disproportionation model as schematically described in
Figure 6. In the high-temperature phase, the valence state of the

uniform Nb3 trimers is [Nb3]
8+ with seven 4d electrons. In this

state, each Nb3 trimer exhibits S = 1/2 magnetism. However,
when the Nb3 trimers undergo charge disproportionation into
[Nb3]

7+ and [Nb3]
9+, they become nonmagnetic due to the

absence of unpaired spins. In this way, the observed magnetic−
nonmagnetic phase transition at T* could be described by
2[Nb3]

8+ → [Nb3]
7+ + [Nb3]

9+. The average length of the Nb−
Cl bond ⟨dNb−Cl⟩ in the NbCl6 octahedron is expected to
increase along with the valence of Nb. As shown in Table 2,
⟨dNb1−Cl⟩ shrinks from 2.499 to 2.492 Å, and ⟨dNb2−Cl⟩ expands
from 2.499 to 2.507 Å. This change of the bond lengths is
consistent with the charge disproportionation model.
The expansion/shrinking of the cluster bonding length

increases/decreases the energy level of the bonding 2a1 orbital
(see the schematic view of 2a1 molecular orbital of the Nb3
trimer, right side, Figure 7). In the [Nb3]

8+ cluster, the 2a1

orbital is occupied by a single d electron. During the oxidization
([Nb3]

8+ → [Nb3]
9+), the 2a1 orbital becomes unoccupied,

while reduction ([Nb3]
8+ → [Nb3]

7+) results in a fully occupied
orbital. In the expanded (Nb1)3 trimers and shrunk (Nb2)3
trimers, the energy level of the bonding 2a1 decreases and
increases, respectively. Therefore, from the point of view of the
energy level, the magnetic−nonmagnetic phase transition

Figure 5. Crystal structures of Nb3Cl8 at 300 K (left) and 24 K (right).
The Nb−Nb bond lengths within the Nb3 trimers are indicated.

Table 2. Intracluster Nb−Nb Bond Length dNb−Nb, Average
Nb−Cl Bond Length ⟨dNb−Cl⟩, Quadratic Elongation ⟨λ⟩,
and Bond Angle Variance σ for the NbCl6 Octahedra in
Nb3Cl8 at 300 and 24 K

T (K) site dNb−Nb (Å) ⟨dNb−Cl⟩ (Å) ⟨λ⟩ σ (deg)

300 Nb 2.8109(9) 2.499(1) 1.0268(4) 9.68(4)
24 Nb1 2.801(3) 2.492(2) 1.0250(6) 9.29(6)
24 Nb2 2.8207(17) 2.507(2) 1.0285(8) 10.04(7)

Figure 6. Schematic view of the charge disproportionation of the Nb3
trimers at T* = 100 K in Nb3Cl8.

Figure 7. (left) The schematic view of energy levels in the bonding
orbitals of [Nb3]

n+ trimers (n = 7, 8, 9) with corresponding bond
lengths and with their electron configurations. (right) A schematic
view of the 2a1 molecular orbital of the Nb3 trimer.
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Fig. 6 Subtle electronic and magnetic interactions can cause materials
to avoid frustration. Simpli�ed band pictures show Jahn-Teller (JT)
active distortions upon entering low temperature phases in (a) NaTiO2

and (c) GaNb4S8. (e) The HT phase of Nb3Cl8 has a multi-site
interaction between a1 orbitals on adjacent, inter-layer Nb3Cl13 clusters.
The distortion to the LT phase is driven by a SOJT effect, despite the
� 1 eV energy gap, and thus, vanishingly small thermal population of
the degenerate e orbitals. Magnetic order in various materials is
achieved (b) by the formation of 1D chains (in plane Ti-d orbitals shown)
via orbital ordering (OO) in NaTiO2, (d) OO and singlet formation in
GaNb4S8. Further neutron scattering experiments are required to
determine either (f) 1D chains or singlets as the magnetic ground state
in Nb3Cl8.

of these cases, the orbital degree of freedom plays a crucial role in
driving the structural distortion that relieves magnetic frustration
and results in either magnetic order or a singlet state.

Nb3Cl8 exhibits similar physics despite the absence of an orbital
degeneracy (i.e. �rst-order Jahn-Teller instability) or signi�cant
thermal population of the �rst excited state. The results of band
structure calculations on LT-Nb3Cl8 [Fig. 5 (c)] indicate second-
order Jahn-Teller (SOJT) like orbital mixing, since upon entering
the LT state, HT degenerate e bands [blue bands, Fig. 5 (a)] break
their degeneracy and a scissoring of the Nb3 triangles is expected
from the SOJT effect. This is surprising given the � 1 eV energy
gap to the degenerate e states in the HT band structure, which
are expected to have little-to-no thermal population at T � 90 K.
The HT band structure calculation predicts an electronic interac-
tion by orbital overlap between magnetic electrons in adjacent
Nb3Cl8 layers—yielding effective bonding/antibonding states—
possibly inducing the SOJT effect and is suggestive of an inter-
layer singlet ground state in the LT phase. Such a singlet ground
state would be highly unusual given the large distance between
Nb ions in adjacent layers, although magnetic exchange interac-
tions are possible on such length scales, as in �-RuCl3 45–47, which
harbors an out of plane magnetic interaction and similar stacking
faults as LT Nb3Cl8. Alternatively, the concurrent change in intra-

layer, inter-cluster Nb-Cl-Nb bond angles upon entering the LT
phase could result in a intra-layer Se f f = 1/2 1D chain singlet
state. While at present, the LT magnetic ground state cannot be
unambiguously determined, singlets that lie in between adjacent
layers or a intra-layer Se f f = 1/2 1D chain appear to be the most
likely candidates. Indeed, while no in-plane dimerization is ob-
served, dimerization via electronic interaction in the c-direction
exists even in the HT phase.

The DFT calculations af�rm the HOMO in each HT Nb3Cl13

cluster are non-degenerate (a1), so the transition in Nb3Cl8 can-
not be ascribed solely to single-site orbital ordering. Related
phenomena are observed in two-dimensional organic salts where
charge ordering is the cause of the metal-insulator transition as
in � -(BEDT-TTF)2RbZn(SCN)4

48. The observation of a dielec-
tric response in the geometrically frustrated dimer Mott insula-
tor 
-(BEDT-TTF)2Cu2(CN)2

49 suggests charge order plays a role
in the putative spin liquid state. Devoid of a screw-axis, the HT
P3̄m1 space group is symmorphic, and therefore the formation
of a gapped, trivial magnetic ground state is allowed without
a structural distortion in Nb3Cl8 50,51. Instead, the observation
of the SOJT effect and subsequent non-magnetic ground state
in the presence of non-degenerate HOMO bands and unpopu-
lated degenerate e bands reveals that the electronic interaction
[Fig. 6 (e)] due to orbital overlap plays a crucial role in the avoid-
ance of a magnetically frustrated, classically degenerate ground
state. Estimates of the change in entropy and enthalpy from the
speci�c heat measurements in Fig. 2 (c) suggest the �rst-order
transition is entropically driven, by the enhanced spin entropy
of the frustrated magnetic HT phase over that of a supposed
spin singlet LT phase. The apparent lack of long-range mag-
netic order in LT-Nb3Cl8 is a natural consequence of the two likely
magnetic ground state scenarios—formation of a spin-ladder net-
work of inter-layer singlets or intra-layer 1D chains, illustrated in
Fig. 6 (f). The �rst-order nature of the transition prevents estima-
tion of the low temperature magnetic exchange interactions (e.g.
the magnitude of the spin gap) based on the HT phase properties.
The deeply suppressed magnetic response in the LT phase implies
a gap in the LT state, � � 150� 650 K (see ESI†), that is signi�-
cantly larger than the HT Weiss temperature, but not inconsistent
with the � 200 meV splitting of the a1 orbitals at the 	-point in
the DFT calculations. Further spectroscopic investigations, such
as inelastic neutron scattering, are required to elucidate the exact
nature of the LT magnetic ground state.

Lastly, the discovery of extraordinary physical properties of
graphene52,53 and other 2D VdW materials—such as transition
metal dichalcogenides54–57—has prompted materials scientists to
feverishly search for new systems with properties suitable to, e.g.,
fabricate technologically useful devices. Like Nb3Cl8, these ma-
terials are (strongly) covalently bonded in two dimensions while
adhesion in the third dimension is controlled by comparatively
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Summary on Mo3O8 (Nb3Cl8) systems

LiZn2Mo3O8          Valence bond condensation     T*=96 K 

Li2InMo3O8            1200 AFM                                    TN=12 K 

Li2ScMo3O8           Quantum spin liquid?                T*~40 K                              

ZnScMo3O8           Ferromagnet                              TC=6 K   

Nb3Cl8                        Diamagnetic                              TD=100 K              

T* - temperature of 2/3 spins “freezing”

TD - temperature of transition to diamagnetic state
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Model: 1/6-filled extended Hubbard model 
on Kagome lattice

Filling: 1 electrons per Mo3

Filling 1/6 => U is NOT operative

ℋ = ∑
⟨mm′ ⟩ ∈ 𝒯

σ

t(c†σ
m c σ

m′ + H . c . )+ Vnmnm′ 

+ ∑
⟨mm′ ⟩ ∈ 𝒯′ 

σ′ 

t′ (c†σ
m c σ

m′ + H . c . )+ V′ nmnm′ + U∑
m

n↑
mn↓

m

Electrons can be localized by  
intersite Coulomb interaction (V,V')

Chen, Kee, Kim, PRB 93, 245134 (2016)
Chen, Lee, PRB 97, 035124 (2018)

Chen, Kee, Kim, PRL 113, 197202 (2014)

Mo3O8 systems: Model treatment

𝒯- trimers



Quantum dimer model on  
honeycomb lattice

Trimers

V’ V

V,V’: Massive ground state degeneracy, which covering is better?

t /V′ ≪ 1, t′ /V ≪ 1, t ∼ t′ 

Ground state:

Chen, Kee, Kim, PRB 93, 245134 (2016)

frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23

Turning to the QDM, its Hilbert space consists of hard-
core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".

The Hamiltonian of the QDM can thus be represented as a
sum over plaquettes of the following plaquette Hamiltonian:

!1"

It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .

The structure of this paper is as follows. In Sec. II, we
discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"

As one decreases v through t, the ground state moves into
another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.

The point v/t!1 is the RK point where each equal-
amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25

shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads
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Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.

To generate equivalent Hilbert spaces, one has to take the
limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26

The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23

Turning to the QDM, its Hilbert space consists of hard-
core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".

The Hamiltonian of the QDM can thus be represented as a
sum over plaquettes of the following plaquette Hamiltonian:
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It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .

The structure of this paper is as follows. In Sec. II, we
discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"

As one decreases v through t, the ground state moves into
another sector, which contains an exponentially large number
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sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.

The point v/t!1 is the RK point where each equal-
amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25

shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
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pairs in adjacent layers. Bi is the in-plane exchange field
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limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
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→%' , with the quantum inverse temperature (Q given by
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system with infinite extent in the stacking direction. The con-
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the energy per plaquette is min%0,v#t&, and only !#$ satu-
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figuration corresponding to !#$ turns out to constitute a to-
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the same topological sector if one can be obtained from an-
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The point v/t!1 is the RK point where each equal-
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Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.

To generate equivalent Hilbert spaces, one has to take the
limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26

The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
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Ground state: Plaquette charge order (PCO)
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FIG. 2. The correlated and collective motion of the three electrons
on the elementary hexagon. The arrow indicates the hopping direction.
Note that the hoppings of the three electrons happen at the same time.

occupancy. This is quite different from a conventional Mott
insulator where the electrons are localized on the lattice sites.
It is the intersite interactions V1 and V2 that localize the electron
on the triangular clusters of the kagome system. Despite being
localized on the triangular clusters, the electrons manage to
fluctuate in a collective fashion due to the extensive degeneracy
of the electron occupation configuration on the kagome lattice.
As U is often quite large compared to t1,t2,V1,V2, one could
safely ignore the electron configurations with any double
occupancy. With a third-order degenerate perturbation of the
electron hoppings, we obtain an effective Hamiltonian that
operates on the degenerate electron occupation manifold and
is given as [6]

Heff = −
∑

!

∑

αβγ

[K1(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

+K2(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.)], (2)

where we have

K1 = 6t3
1

/
V 2

2 , K2 = 6t3
2

/
V 2

1 , (3)

and “1, 2, 3, 4, 5, 6” refer to the six vertices on the elementary
hexagon of the kagome lattice. Heff describes the correlated
and collective motion of the three electrons on the elementary
hexagon (see Fig. 2). By mapping the electron occupation to
the dimer covering on the dual honeycomb lattice [6,31], the
previous work has obtained a plaquette charge order where
the electrons preferentially occupy 1/3 of the hexagons in a
periodic fashion (see Fig. 1) [6,14,16–18,32]. This plaquette
charge order is a quantum effect because the three electrons are
resonating on the hexagons and form a linear superposition of
the two occupation configurations [6]. In the strong plaquette
charge ordered limit, the electron (charge) occupation wave
function would be well approximated by a simple product state
with

|$〉c =
∏

R

1√
2

[|!R〉A + |!R〉B], (4)

where R refers to the position of the resonating hexagons,
and A and B label the two charge occupation configurations
of the three electrons on the resonating hexagon (see Fig. 1).
The spin quantum number can still be transferred via the spin
exchange interaction, so |$〉c merely represents the charge
wave function.

III. THE EMERGENT ORBITALS AND THE LOCAL
MOMENTS

In this section, we focus on the strong plaquette charge
ordered regime and reveal the different features of the local
moment structure. The three electrons are well localized on the
resonating hexagons but still move in a collective fashion that
is governed by Heff. This collective motion tunnels the electron
spins that are interacting with the superexchange interaction at
the same time. As a comparison, the localized electrons on a
lattice site of a conventional Mott insulator are fully governed
by the atomic electron interactions and the Hund’s rules. Here,
the right model that describes the localized electrons on an
individual resonating hexagon is

H!R
= −K1

∑

αβγ

(c†1αc6αc
†
5βc4βc

†
3γ c2γ + H.c.)

−K2

∑

αβγ

(c†1αc2αc
†
3βc4βc

†
5γ c6γ + H.c.) + Hex,R, (5)

where the superexchange interaction is given as

Hex,R = J
∑

〈〈ij〉〉∈!R

(
Si · Sj − 1

4

)
ninj . (6)

It is interesting to note that the above superexchange differs
from the usual form of the exchange interaction by having
extra electron density operators ni and nj . This is because the
positions of the electrons are not fixed due to their collective
tunneling on the hexagon plaquette. The local Hilbert space
of H!R

also differs significantly from the on-site one for a
conventional Mott insulator, and is instead spanned by the
electron states that are labeled by both the positions and the spin
quantum numbers of the three resonating electrons. Because
the electrons are separated from each other by one lattice
site due to the repulsive interaction, the Hilbert space for the
electron positions is highly constrained. For the resonating
hexagon centered at R, there are in total 16 states that are
labeled by

|αβγ 〉A ≡ |n1 = 0〉|n2 = 1,α〉|n3 = 0〉
×|n4 = 1,β〉|n5 = 0〉|n6 = 1,γ 〉, (7)

|αβγ 〉B ≡ |n1 = 1,α〉|n2 = 0〉|n3 = 1,β〉
×|n4 = 0〉|n5 = 1,γ 〉|n6 = 0〉, (8)

where α,β,γ (= ↑,↓) refer to the electron spins at the occupied
site. Since the hexagonal Hamiltonian H!R

commutes with the
total spin Stot and Sz

tot of the three resonating electrons, we use
{Stot,S

z
tot} to label the spin states of the hexagon plaquette. From

the spin composition rule for three electron spins, we have the
following relation,

1
2 ⊗ 1

2 ⊗ 1
2 ≡ 1

2 ⊕ 1
2 ⊕ 3

2 , (9)

where the left-hand side is the product state of the three electron
spins and the right-hand side is the total spin states Stot. For
both A and B occupation configurations, there are eight spin
states. Note that we have two pairs of Stot = 1/2 states for each
occupation configuration.
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FIG. 3. Three spin-singlet positions for both A and B occupation
configurations. The (orange) dimer refers to the spin singlet, and the
(red) arrow is the dangling spin. The three spin-singlet configurations
are related by the threefold rotation around the hexagon center.

The two states with Stot = 3/2 are simply the ferromagnetic
states and are certainly not favored by the antiferromagnetic
exchange interaction Hex,R. Directly solving the Hamiltonian
H!R , we find that when

J > 2
3

[
K1 + K2 −

(
K2

1 − K1K2 + K2
2

) 1
2
]
, (10)

the local ground states are four symmetric states with
Stot = 1/2. Here, the “symmetric” states refer to being sym-
metric between the A and B occupation configurations in
Fig. 3. This is understood by the fact that the collective
motion of three electrons favors symmetric states rather than
antisymmetric ones. These fourfold degenerate states can be
effectively characterized by two quantum numbers {sz,τ z}
with sz = ± 1

2 and τ z = ± 1
2 , where sz refers to the total spin

sz ≡ Sz
tot = ± 1

2 . The pseudospin-1/2 operator τ refers to the
emergent orbitals that will be explained below.

The wave functions of the four degenerate states are labeled
by |τ zsz〉R and are given as to the order of O(K2/K1) [33],

|↑↑〉R = 1
2

[|↑↑↓〉A − |↑↓↑〉A + |↓↑↑〉B − |↑↑↓〉B], (11)

|↓↑〉R =
√

3
6

[2|↓↑↑〉A − |↑↓↑〉A − |↑↑↓〉A

+ 2|↑↓↑〉B − |↑↑↓〉B − |↓↑↑〉B], (12)

and these other two states |↑↓〉R,|↓↓〉R are simply obtained
by applying a time-reversal transformation to the above two
states,

|↑↓〉R = 1
2

[|↓↓↑〉A − |↓↑↓〉A + |↑↓↓〉B − |↓↓↑〉B], (13)

|↓↓〉R =
√

3
6

[2|↑↓↓〉A − |↓↑↓〉A − |↓↓↑〉A

+ 2|↓↑↓〉B − |↓↓↑〉B − |↑↓↓〉B]. (14)

We clarify the physical origin of the fourfold degeneracy
of the above four states for the hexagon plaquette. First, the
twofold degeneracy of sz = ±1/2 is simply protected by time-
reversal symmetry. The remaining twofold degeneracy comes

from the point group symmetry of the resonating hexagon. This
is ready for us to see if we can fix the occupation configuration
of the three electrons. To be more specific, let us start with the
A configuration in the upper panel of Fig. 3. To optimize the
antiferromagnetic exchange interaction, two electron spins out
of the three must form a spin singlet, leaving the third electron
as a dangling spin. As shown in Fig. 3, the spin singlet can
be formed between any pair of electrons, and the different
arrangements of the spin singlet are related by the threefold
rotation. Although there seems to be three possible singlet
arrangements, only two of them are linearly independent and
are responsible for the twofold degeneracy. Likewise, for the B
configuration on the lower panel of Fig. 3, we again have two
such degenerate states. When the three electrons start to move
collectively within the hexagon between the A and B configu-
rations, the corresponding states start to hybridize and the sym-
metric states are favored energetically. The twofold degeneracy
survives and is given as the τ z = ↑,↓ states in Eqs. (11)–(14).

The three electrons are localized on the resonating hexagon
but are delocalized within the resonating hexagon. It is hard for
them to move out of the resonating hexagon, but easy for them
to move within the resonating hexagon. Due to this collective
motion, the wave functions of |τ zsz〉 are extended and span
across the resonating hexagon, and the τ z = ↑,↓ states behave
as two degenerate orbitals that are defined on the resonating
hexagon. Since the degeneracy of τ z = ↑,↓ states originates
from the arrangements of the spin singlets, the pseudospin τ is
even under the time-reversal transformation. The two emergent
orbital states that are defined in Eqs. (11) and (12) comprise
the two-dimensional E-type irreducible representation of the
point group, and thus their twofold degeneracy is protected by
the point group symmetry of the resonating hexagon.

IV. THE KUGEL-KHOMSKII SPIN-ORBITAL
INTERACTION

In this section we study and derive the interaction between
the spins and the emergent orbitals that live on the neighboring
resonating hexagons. This interaction is necessarily of the
Kugel-Khomskii type. Based on the Kugel-Khomskii model,
we obtain the Curie-Weiss temperature and Curie constant in
the strong plaquette ordered regime, and compare with the
high-temperature results.

A. The Kugel-Khomskii model

The neighboring resonating hexagons are connected by a
“bowtie” structure that is composed of corner-shared up and
down triangles (see Fig. 4). The local moment interaction
comes from the remaining exchange interaction between the
two electron spins that reside on the four exterior vertices of the
bowtie. To illustrate the idea, we consider the bowtie structure
that connects the two resonating hexagons centered at R and
R + a1 (see Figs. 1 and 4). To derive the local moment interac-
tion, we need to project the remaining electron spin exchange
interaction onto the fourfold degenerate local moment states
|τ zsz〉 of each resonating hexagon. For this purpose, we first
write down the interhexagon exchange interaction between the
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN

i=1(xi+1 �xi)/2
p

(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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Experiment:  
LiZn2Mo3O8
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H7 =
P

7
P

��0�00(g1 + g2)
�
|AihB| + |BihA|

�
with g1 =

6t03/V 2 and g2 = 6t3/V 02, where the sum runs over all
hexagons [29, 30]. When mapped onto the dual hexago-
nal lattice, the ground state of H7 for spinless electrons
is described by the PCO shown in Fig. 3c with an emer-
gent triangular lattice of resonating hexagons, that will
be regarded as the strong interaction limit of Eq. (1) [31–
33].

One can further include antiferromagnetic spin fluctu-
ations between next-nearest neighbours in each hexagon
HS = Jnn

P
hhijii ninj

�
Si ·Sj �

1
4

�
, where Jnn = 4t2

nn
/U

and tnn is the corresponding hopping. Assuming that the
PCO e↵ectively decouples hexagons, HD = H7+HS for
a single hexagon can be solved exactly yielding four four-
fold degenerate states [27]. When g1 and g2 have opposite
signs, regardless of the value of Jnn the ground state of
HD displays valence bond condensation with one orphan
spin, as shown in Fig. 4a:
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.

with g̃ =
p
g21 � g1g2 + g22 . Such an unusual entangle-

ment with dangling spins originates solely from the asym-
metry of tunnelling processes that in turn maximises sin-
glet pairing between the resonating electrons, while the
unpaired spins behave paramagnetically in a thermody-
namic limit. Interestingly, a similar situation can be
realised when g1 < 0 and g2 < 0 with large antiferro-

FIG. 4. a) Valence bonds at the resonating hexagon with one
dangling spin; b) Specific heat and inverse spin susceptibility
of a single resonating hexagon.

magnetic coupling Jnn > 2
3 (�g1 � g2 � g̃), which was

earlier suggested to pair 2/3 of the spins at low temper-
atures [22, 25]. However, the calculated thermodynamic
properties shown in Fig. 4b clearly demonstrate that two
paramagnetic regimes possess a much higher TC when
g1 and g2 have opposite signs. Our first-principles cal-
culations will show that the strong interaction limit is
realised in LiZn2Mo3O8, where g1 and g2 have opposite
signs and Jnn is negligibly small.
Cluster Hubbard Model. As |t| increases, the electrons

start moving freely within the T triangle, and the number
of electrons at the adjacent T 0 triangles fluctuates. When
|t| ⇠ V 0, the perturbation theory considered above breaks
down, and the electrons minimise their energy by forming
bound “molecular” states. As a result, the kagomé lattice
is trimerised, and the original model in Eq. (1) can be
reformulated as a three-orbital extended Hubbard model
on the triangular lattice formed by the T triangles:

HCF =
�

3

X

mm02T ,�

c†�
im

0

@
0 1 1
1 0 1
1 1 0

1

A

mm0

c�
im0

with � = 3t. As follows, HCF has the form of crystal
field that splits the electronic states at the T triangle
into the single a1 and double degenerate e1 states with
energy levels 2�

3 and �
�
3 , respectively: |a1i =

1p
3

�
|1i+

|2i + |3i
�
, |e(1)1 i = 1p

3

�
w|1i + w̄|2i + |3i

�
, and |e(2)1 i =

1p
3

�
w̄|1i + w|2i + |3i

�
with ! = e2⇡i/3. Importantly,

the a1 state is occupied when � < 0 (t < 0). Despite
the weak interaction limit, the electrons are localised at
the T triangles by their kinetic energy due to a dilute 1/6
filling. We refer to this state as a cluster Mott insulator as
opposed to the PCO phase where localisation is entirely
driven by intersite Coulomb interactions.
As shown in Fig. 2, when both t < 0 and t0 > 0

are large the localised electrons can develop long-range
magnetic order. In this limit, the on-site eU = U+2V

3
comes back into play and forbids any double occupancy
at the T triangles, and the corresponding spin model
H4 =

P
hiji J4Si · Sj on the triangular lattice can be

derived to second order in t0/U and t0/�:

J4 =�
8t02

3(2V + 3|�|� 2V 0)
+

4t02

3(U + 2V � 2V 0)

+
8t02

3(U + 2V + 3|�|� 2V 0)
,

(2)

which can be both ferro- and antiferromagnetic, that ex-
plains why some of the recently found Mo3O8 systems are
ferromagnetic insulators [28]. Stability of the magnetic
order is directly related to the strength of t and t0 in the
sense that it can be suppressed by thermal or quantum
fluctuations when t or t0 are not strong enough to avoid
electron fluctuations at the T

0 triangles.
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FIG. 5. a) Band structures of LiZn2Mo3O8, Li2ScMo3O8, and Li2InMo3O8; b) Wannier functions corresponding to the a1 and
e1 states in Li2InMo3O8; c) Wannier functions of the neighbouring Mo3O13 clusters in one layer of Li2InMo3O8; d) Exchange
coupling J4 calculated from Eq. (2) with U = 2.0 eV, V = 1.1 eV, and V 0 = 0.9 eV. Li2ScMo3O8 and Li2InMo3O8 are
schematically shown with diamonds.

First-principles. Electronic structure calculations for
each system have been performed within local density
approximation [35] by using projected augmented wave
formalism [36], as implemented in VASP [37], and norm-
conserving pseudopotentials, as implemented in Quantum

ESPRESSO [38]. The calculated band structures are shown
in Fig. 5a, indicating the a2 and e2 states below the Fermi
level, which are responsible for the Mo-Mo bonding in
the Mo3O13 cluster, and the molecular a1 and e1 states
occupied by unpaired electrons. The latter were adopted
for constructing the extended Hubbard model, Eq. (1),
in the basis of Wannier functions, which were obtained
with wannier90 [39], as shown in Fig. 5b. The full set of
model parameters is given in Table I [27].

According to our results, the splitting between the a1
and e1 states varies significantly within the systems [40],
and the values of t/V 0 and t0/V point out at di↵erent
regimes of electron localisation for each system. Further-

TABLE I. Model parameters (in eV) for the one-orbital ex-
tended Hubbard model, Eq. (1).

U t V t0 V 0 tnn

LiZn2Mo3O8 2.0 �0.134 0.8 0.113 0.6 0.026

Li2ScMo3O8 2.0 �0.281 1.0 0.147 0.8 0.014

Li2InMo3O8 2.1 �0.409 1.2 0.181 0.9 0.010

more, t and t0 always have opposite signs. This is re-
lated to the fact that in the Mo3O13 clusters with short
Mo-Mo bonds the direct d-d (always negative) hopping
dominates, as shown in Fig. 5c. Because this term van-
ishes rapidly with metal-metal distance (⇠ 1/r5 [41]), the
hopping process via common oxygens having the opposite
sign starts to dominate between the clusters, and t0 turns
out to be positive. We believe that the opposite signs of
t and t0 is a fundamental aspect of the trimerised kagome
lattice at 1/6 filling. According to the general Jahn-Teller
theorem, the trimerisation should lift the degeneracy of
the ground state so that a single electron resides at the
a1 orbital of the T triangle forming a one-dimensional
representation of the point group, that occurs only when
t < 0 and t0 > 0.

One can see that t/V 0 and t0/V are small in
LiZn2Mo3O8, preventing the electrons from being lo-
calised at the molecular states and thus leading to an
emergent PCO with unpaired spins at the resonating
hexagons. Moreover, a negligibly small Jnn = 1.4 meV
eliminates all previously suggested scenarios for decou-
pling 1/3 of the spins at low temperatures [22, 25, 42].
In fact, valence bond condensation in LiZn2Mo3O8 is
driven solely by the asymmetry of tunnelling processes
caused by the formation of the Mo3O13 clusters. Given
g1 = 13.5 meV and g2 = �40.1 meV, the calculated
TC ⇠ 92.0 K between two paramagnetic regimes is in
excellent agreement with experiments [18, 27].

In contrast, Li2ScMo3O8 and Li2InMo3O8 have larger
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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FIG. 5. a) Band structures of LiZn2Mo3O8, Li2ScMo3O8, and Li2InMo3O8; b) Wannier functions corresponding to the a1 and
e1 states in Li2InMo3O8; c) Exchange coupling JC calculated from Eq. (2) with U = 2.0 eV, V = 1.1 eV, and V 0 = 0.9 eV.
Li2ScMo3O8 and Li2InMo3O8 are schematically shown by diamonds.

is directly related to the strength of t and t0 in the sense
that it can be suppressed by thermal or quantum fluctua-
tions when t or t0 are not strong enough to avoid electron
fluctuations at the adjacent T 0 triangles.

First-principles. Electronic structure calculations for
each system have been performed within local density
approximation [35] by using projected augmented wave
formalism [36], as implemented in VASP [37], and norm-
conserving pseudopotentials, as implemented in Quantum

ESPRESSO [38]. The calculated band structures are shown
in Fig. 5a, indicating the a2 and e2 states below the Fermi
level, which are responsible for the Mo-Mo bonding in
the Mo3O13 cluster, and the molecular a1 and e1 states
occupied by unpaired electrons. The latter were adopted
for constructing an extended Hubbard model, Eq. (1), in
the basis of Wannier functions (shown in Fig. 5b) which
were obtained with wannier90 [39]. The full set of model
parameters is given in Table I [27].

TABLE I. Model parameters (in eV) for the one-orbital ex-
tended Hubbard model, Eq. (1).

U t V t0 V 0 |t|/V 0 t0/V tnn

LiZn2Mo3O8 2.0 �0.134 0.8 0.113 0.6 0.22 0.14 0.026

Li2ScMo3O8 2.0 �0.281 1.0 0.147 0.8 0.35 0.15 0.014

Li2InMo3O8 2.1 �0.409 1.2 0.181 0.9 0.45 0.15 0.010

According to our results, the splitting � between the
a1 and e1 states varies significantly depending on a sys-
tem [40], but more importantly t and t0 always have oppo-
site signs. This is related to the fact that in the Mo3O13

clusters with short Mo-Mo bonds the direct d�d (always
negative) hopping dominates. Because this term rapidly
vanishes (as 1/r5[41]) as metal-metal distance r increases
the hopping process via the common oxygens having the
opposite sign starts to dominate between the clusters and
t0 turns out to be positive.

One can see that both |t|/V 0 and t0/V are small in
LiZn2Mo3O8, thus preventing the electrons from being
localised at the molecular states and leading to an emer-
gent PCO with one unpaired spin at the resonating
hexagons. However, a negligibly small Jnn = 1.4 meV
eliminates previously suggested scenarios for decoupling
1/3 of the spins at low temperatures [22, 25, 42]. In
fact, valence bond condensation in LiZn2Mo3O8 is driven
solely by asymmetry of the tunnelling processes whose
asymmetry intrinsic to the trimerized Mo3O8 systems.
Given g1 = 13.5 meV and g2 = �40.1 meV, the calcu-
lated TC ⇠ 92.0 K between two paramagnetic regimes is
in excellent agreement with experiments [18, 27].

In contrast, Li2ScMo3O8 and Li2InMo3O8 have larger
splittings between the a1 and e1 states, and the ratio
t/V 0 favours electron localisation at the Mo3O13 clusters
leading to a cluster Mott insulator phase. Indeed, having
the largest t/V 0 and t0/V , Li2InMo3O8 reveals an antifer-
romagnetic order with JC = 9.5 meV (109.8 K) in good

DFT results
Hoppings: Wannier90 
U,V,V’: cRPA

What about real materials?

LiZn2Mo3O8 Theory: T*=92 K Experiment: T*=96 K

Perturbation theory t/V’?
t ≫ t′ Electrons localized on trimers?

LiSc2Mo3O8

LiIn2Mo3O8
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3 orbital Hubbard  
model on triangular  

lattice

• Li2InMo3O8 strong AFM coupling     
(                   ) results in 1200 AFM; 

• Li2ScMo3O8: exchange coupling is 
suppressed and quantum fluctuations 
may result in QSL formation; 

• This explains how ZnScMo3O8 may 
appear to be FM;

J△ = 110K

Li(InSc)2Mo3O8: Heisenberg model 
on triangular lattice
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FIG. 5. a) Band structures of LiZn2Mo3O8, Li2ScMo3O8, and Li2InMo3O8; b) Wannier functions corresponding to the a1 and
e1 states in Li2InMo3O8; c) Wannier functions of the neighbouring Mo3O13 clusters in one layer of Li2InMo3O8; d) Exchange
coupling J4 calculated from Eq. (2) with U = 2.0 eV, V = 1.1 eV, and V 0 = 0.9 eV. Li2ScMo3O8 and Li2InMo3O8 are
schematically shown with diamonds.

First-principles. Electronic structure calculations for
each system have been performed within local density
approximation [35] by using projected augmented wave
formalism [36], as implemented in VASP [37], and norm-
conserving pseudopotentials, as implemented in Quantum

ESPRESSO [38]. The calculated band structures are shown
in Fig. 5a, indicating the a2 and e2 states below the Fermi
level, which are responsible for the Mo-Mo bonding in
the Mo3O13 cluster, and the molecular a1 and e1 states
occupied by unpaired electrons. The latter were adopted
for constructing the extended Hubbard model, Eq. (1),
in the basis of Wannier functions, which were obtained
with wannier90 [39], as shown in Fig. 5b. The full set of
model parameters is given in Table I [27].

According to our results, the splitting between the a1
and e1 states varies significantly within the systems [40],
and the values of t/V 0 and t0/V point out at di↵erent
regimes of electron localisation for each system. Further-

TABLE I. Model parameters (in eV) for the one-orbital ex-
tended Hubbard model, Eq. (1).

U t V t0 V 0 tnn

LiZn2Mo3O8 2.0 �0.134 0.8 0.113 0.6 0.026

Li2ScMo3O8 2.0 �0.281 1.0 0.147 0.8 0.014

Li2InMo3O8 2.1 �0.409 1.2 0.181 0.9 0.010

more, t and t0 always have opposite signs. This is re-
lated to the fact that in the Mo3O13 clusters with short
Mo-Mo bonds the direct d-d (always negative) hopping
dominates, as shown in Fig. 5c. Because this term van-
ishes rapidly with metal-metal distance (⇠ 1/r5 [41]), the
hopping process via common oxygens having the opposite
sign starts to dominate between the clusters, and t0 turns
out to be positive. We believe that the opposite signs of
t and t0 is a fundamental aspect of the trimerised kagome
lattice at 1/6 filling. According to the general Jahn-Teller
theorem, the trimerisation should lift the degeneracy of
the ground state so that a single electron resides at the
a1 orbital of the T triangle forming a one-dimensional
representation of the point group, that occurs only when
t < 0 and t0 > 0.

One can see that t/V 0 and t0/V are small in
LiZn2Mo3O8, preventing the electrons from being lo-
calised at the molecular states and thus leading to an
emergent PCO with unpaired spins at the resonating
hexagons. Moreover, a negligibly small Jnn = 1.4 meV
eliminates all previously suggested scenarios for decou-
pling 1/3 of the spins at low temperatures [22, 25, 42].
In fact, valence bond condensation in LiZn2Mo3O8 is
driven solely by the asymmetry of tunnelling processes
caused by the formation of the Mo3O13 clusters. Given
g1 = 13.5 meV and g2 = �40.1 meV, the calculated
TC ⇠ 92.0 K between two paramagnetic regimes is in
excellent agreement with experiments [18, 27].

In contrast, Li2ScMo3O8 and Li2InMo3O8 have larger

J△ = −
8t′ 2

3(2V + 3 |Δ | − 2V′ )
+

4t′ 2

3(U + 2V − 2V′ )

+
8t′ 2

3(U + 2V + 3 |Δ | − 2V′ ) Δ = 3t, where

Heisenberg 
model on triangular  

lattice
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Take-home messages

• Physical properties of cluster Mott magnets 
can be very different from their conventional 
counters;

• There are typically two types of orbitals: 
molecular and site-localized. These orbitals 
can behave very differently: Orbital-selective 
behaviour;

• Cluster Mott magnets often can be 
spontaneously formed by (orbitally) induced 
Peierls transitions;
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =PN

i=1(xi+1 �xi)/2
p

(�yi+1)2 +(�yi)2, where the error bars
are given by �SN, and �yi is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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RAPID COMMUNICATIONS

ORBITAL-DEPENDENT SINGLET DIMERS AND ORBITAL- . . . PHYSICAL REVIEW B 89, 161112(R) (2014)

〉

〉

FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U " t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′

mm′ = U − 2JH , Uσσ
mm′ = U − 3JH . The Hund’s

rule exchange was considered in the Ising form.
The field dependence of the magnetization presented in

Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c
electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c
electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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Эффект Яна-Теллера или спин-
орбитальное взаимодействие:  

кто кого?
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Cпасибо за внимание !


