

Кластерные моттовские магнетики.

Эффект Яна-Теллера или спинорбитальное взаимодействие: кто кого?

Стрельцов С.В.

Институт физики металлов УрО РАН

Collaborators

Cologne university, Germany

D. Khomskii

Institute of Metal Physics, Russia

A. Poteryaev J. Komleva

L. Taran

R

2/23

V. Irkhin

Hamburg university, Germany

A. Lichtenstein M. Harland

NIMS, Japan

Seoul National University, Korea

J.-G. Park

Rutgers Univer. USA

S.-W. Cheong

I. Solovyev S. Nikolaev

Часть I

Кластерные моттовские магнетики

Account of strong electronic correlations

Transition metal oxides are fun to work with

Mn

Cu

Spin ordering (magnetism)

Charge ordering

Transition metal oxides are fun to work with

Mn

Orbital ordering

KCuF₃: AFM S=1/2 chains!

Transition metal oxides are fun to work with

Mn

+ site

Typical geometries of cluster magnets (on examples of MeL₆ octahedra)

Typically there are two types of orbitals: molecular orbitals and site-localized

Examples of cluster Mott magnets N=2 (Dimers)

Streltsov et al., PRL 96, 249701 (2006)

Van Wezel, Van den Brink, EPL 75, 957 (2006)

Valence bond liquid:

T > 540 K

Li₂RuO₃ Ru⁴⁺ (S=1)

Valence bond solid: T < 540 K

Dimers flow over the lattice

Kimber et al., PRB 89, 081408 (2014)

Examples of cluster Mott magnets N=3 (Trimers)

Linear trimers: e.g. Ba₄Nb(Rh,Ir)₃O₁₂

$$\mu_{eff}^{ionic} = 2.48 \mu_B / f. u \,.$$

 $Ir^{3.66+}/Rh^{3.66+}$

 $t_{2}^{5.33}$

Spin liquid?

Nguyen, Cava, PRM 3, 014412 (2019)

Examples of cluster Mott magnets N=3 (Trimers)

Triangles: LiV(O,S,Se)₂, LiZn₂Mo₃O₈, Nb₃Cl₈

 $LiV(S,O,Se)_2 = V^{2+} (3d^2)$ or 6 electrons per V₃

nonbonding

bonding

Pen et al., PRL 78, 1323 (1997)

Katayama et al., PRL 103, 146405 (2009)

Kojima et al., PRB 100, 235120 (2019)

Examples of cluster Mott magnets N=4 (Tetramers)

Examples of cluster Mott magnets N=7 (Heptamers?)

Spinel AIV₂O₄

Mechanism: Peierls-like transition

Y. Horibe et al Phys. Rev. Lett. 96, 86406 (2006). A. Uehara, H. Shinaoka, and Y. Motome, Phys. Rev. B 92, 195150 (2015).

Orbitals reduce dimensionality: 3D ---•0D

Examples of cluster Mott magnets N=8 (Octamers)

CuIr₂S₄: spinel

Nominally: $Ir^{3.5+}(t_{2g}^{5.5})$

T<230 K:

- 1) charge ordering $Ir^{3+}(t_{2g}^{6})$ and $Ir^{4+}(t_{2g}^{5})$
- **2) tetragonal elongation** c/a>1
- **3) dimerization** Ir⁴⁺ — Ir⁴⁺ dimers

Radaelli et al., Nature 416, 155 (2002)

What is the reason for such complex distortions?

Cluster Mott magnets: Mechanisms of formation

1. There are structural clusters (dimers, trimers, ...)

2. Charge density wave instabilities / Peierls transitions

3. Orbitally induced distortions / Peierls transitions

Cluster Mott magnets: Mechanisms of formation

Peierls transition: 1D chain

Half-filling (1 electron/site)

doubling of the u.c.!

Instability at $|q| = 2k_F$ Half-filling (1 electron/site): $|k_F| = \frac{\pi}{2a}$, $|q| = \frac{\pi}{a}$

Gain in kinetic energy: $\sim -|\Delta|^2 \ln |\Delta|$ Loss in elastic energy: $\sim |\Delta|^2$

Lattice deformations are possible for other fillings!

Cluster Mott magnets: Mechanisms of formation

Peierls transition: 1D chain

Instability at $|q| = 2k_F$

quarter-filling (1/2 electron/site):

 $|k_F| = \frac{\pi}{4a} \ |q| = \frac{\pi}{2a}$

quadrupling of the u.c.!

Cluster Mott magnets: Orbitally induced Peierls transition

Spinels: AB₂O₄

Natural formation of 1D bands due to orbitals...

Cluster Mott magnets: Orbitally induced Peierls transition

CuIr₂S₄: spinel

Orbitals reduce dimensionality: 3D ---> 0D

Cluster Mott magnets: Orbitally induced Peierls transition

Khomskii & Mizokawa, PRL 94, 156402 (2005)

Orbitals reduce dimensionality: 3D 1D

Some features of cluster Mott magnets

1. Formation of molecular orbitals

2. Orbital-selective behaviour

3. (Cluster) spin-state transitions

4. Suppression of a long-range magnetic order

The simplest cluster: a dimer (one electron / site)

 t_{\perp}

An isolated dimer

Dimerized chain

 $t_{\perp} \gg \{t, U\} \qquad S=0 \text{ dimers}$ $t_{\perp} \sim t \sim U \qquad ???$ $U \gg t \sim t_{\perp} \qquad \text{AFM Bonner-Fisher} \text{chain (insulator)}$

Dynamical Mean Field Theory (DMFT)

Bethe lattice

$$H = -t \sum_{\langle ij \rangle, \sigma} (a_{i\sigma}^{\dagger} a_{j\sigma} + b_{i\sigma}^{\dagger} b_{j\sigma}) - t_{\perp} \sum_{i\sigma} (a_{i\sigma}^{\dagger} b_{i\sigma} + b_{i\sigma}^{\dagger} a_{i\sigma}) + U \sum_{i\sigma} (n_{ai\uparrow} n_{ai\downarrow} + n_{bi\uparrow} n_{bi\downarrow})$$

$$22$$

The simplest case: Bethe lattice of dimers (one electron/site)

More complicated situation: a dimer with two different orbitals

The double exchange (maximum Stot) state can be suppressed!

More complicated situation: a dimer with two different orbitals

Exact diag. (T=0) for a dimer

<u>Dimer:</u> 2 orbitals/site; 1.5 electrons/site

 $\begin{array}{ll} \underline{\text{Model:}} & H = H_0 + H_U \\ H_0 = t_c c_2^{\dagger} c_1 + t_d d_2^{\dagger} d_1 + H.c. \\ H_U = \frac{1}{2} \sum_{\substack{j \\ mm'\sigma}} U^{mm'} n_{j,m}^{\sigma} n_{j,m'}^{-\sigma} + \\ & + \frac{1}{2} \sum_{\substack{j \\ \langle mm' \rangle \sigma}} (U^{mm'} - J_H^{mm'}) n_{j,m}^{\sigma} n_{j,m'}^{\sigma} \end{array}$

Transition from molecular-orbital to double exchange regime is discontinues 25

Dimerized chain: Orbital-selective effects

Dimerized chain: cluster-DMFT results

Dimerized chain: Orbital-selective effects

Dimerized chain:

c and *d* orbitals "work" at different *T* Orbital-selective behaviour! *c* and *d* orbitals "work" at different *B* Orbital-selective behaviour!

0.4 0.5 0.6 0.7 0.8 0.9 Magnetic field μ_BB_{ext} (eV)

l_⊔=0.1 eV

_=0.3 eV

0.9

1.1 1.2

1

1.3

Streltsov and Khomskii, Physics-Uspekhi 60, 1121 (2017).

 $g \langle S_i^z \rangle$

Magnetiation

0.3

0.2

0.1

0.3

0.6

Magnetic field $\mu_B B_{ext}$ (eV)

O-O Total

★→ c electrons
□→□ d electrons

3.5

3

2.5

1.5

0.5

Magnetiation $g\left< S_{i}^{z} \right> \mu_{B}$

Two orbitals, two planes Bethe lattice: Orbital-selective effects

Cluster-DMFT

12

Suppression of a long-range magnetic order in the transition region!

Harland, Poteryaev, Streltsov, Lichtenstein, PRB 99, 045115 (2019)

Examples of cluster Mott magnets

1. Orbital selective behaviour in Y₅Mo₂O₁₂

2. "Mo₃O₈" cluster magnets: quantum spin liquids, quantum paramagnets, 120⁰ AFM, ferromagnets, diamagnets

Orbital-selective effects: example of real materials

Suppression of magnetic moments in $Y_5Mo_2O_{12}$

Mo^{4.5+}: 4d^{1.5} $\mu_{eff} = 3.24 \mu_B$ /dimer

Crystal structure: dimerized chains

S=1/2 per dimer $\mu_{eff} = 1.73 \mu_B$ /dimer

I have

Other examples: $Ba_3YRu_2O_9$, CdV_2O_4 , MoO₂, Nb₂O₂F₃ 30

A very important examples of cluster Mott magnets

Valence-bond condensation in LiZn₂Mo₃O₈?

Possible

model

nature materials

LETTERS

PUBLISHED ONLINE: 6 MAY 2012 | DOI: 10.1038/NMAT3329

Possible valence-bond condensation in the frustrated cluster magnet LiZn₂Mo₃O₈

J. P. Sheckelton, J. R. Neilson, D. G. Soltan and T. M. McQueen*

T(V)

32

see also Mourigal et al., PRL 112, 027202 (2014)

Quantum spin-liquid in LiIn_{1-x}Sc_xMo₃O₈

Haraguchi et al., PRB 92, 011409 (2015) Iida et al., Sci. Rep. 9, 1826 (2019) Akbari-Sharbaf et al., PRL 120, 227201 (2018)

Li₂ScMo₃O₈ (or Li₂In_{0.4}Sc_{0.6}Mo₃O₈) show a spin-liquid behaviour!

Ferromagnetism in ZnScMo₃O₈

What? Ferromagnetic insulating oxide?

Q. Chen et al., private communication

MgScMo₃O₈ also shows FM behavior at HT...

Diamagnetism in Nb₃Cl₈

Sheckelton et al., Inorg. Chem. Front. 4, 481 (2017)

Summary on Mo₃O₈ (Nb₃Cl₈) systems

LiZn ₂ Mo ₃ O ₈	Valence bond condensation	T*=96 K
Li ₂ InMo ₃ O ₈	120 ⁰ AFM	T _N =12 K
Li ₂ ScMo ₃ O ₈	Quantum spin liquid?	T*~40 K
Zn <mark>Sc</mark> Mo₃O ₈	Ferromagnet	T _C =6 K
Nb ₃ Cl ₈	Diamagnetic	T _D =100 K

 T^* - temperature of 2/3 spins "freezing" T_D - temperature of transition to diamagnetic state

Mo₃O₈ systems: Model treatment

Filling: 1 electrons per Mo₃

Model: 1/6-filled extended Hubbard model on Kagome lattice

$$\begin{aligned} \mathcal{H} &= \sum_{\substack{\langle mm' \rangle \in \mathcal{T} \\ \sigma}} t\left(c_m^{\dagger\sigma} c_{m'}^{\sigma} + \mathrm{H.c.}\right) + V n_m n_{m'} \\ &+ \sum_{\substack{\langle mm' \rangle \in \mathcal{T}' \\ \sigma'}} t'\left(c_m^{\dagger\sigma} c_{m'}^{\sigma} + \mathrm{H.c.}\right) + V' n_m n_{m'} + U \sum_m n_m^{\uparrow} n_m^{\downarrow} \end{aligned}$$

Filling $1/6 \Rightarrow U$ is **NOT** operative

Electrons can be localized by **intersite Coulomb interaction** (*V*,*V'*)

Chen, Kee, Kim, PRL 113, 197202 (2014) Chen, Kee, Kim, PRB 93, 245134 (2016) Chen, Lee, PRB 97, 035124 (2018)

Quantum dimer model on honeycomb lattice

V,V': Massive ground state degeneracy, which covering is better?

Quantum dimer model

 $H_{QDM} = -t\hat{T} + v\hat{V}$

Moessner et al., PRB 64, 144416 (2001)

Chen, Kee, Kim, PRB 93, 245134 (2016) $t/V' \ll 1, t'/V \ll 1, t \sim t'$

Ground state:

Plaquette charge order explains freezing of 2/3 of spins

Ground state: Plaquette charge order (PCO)

Feature of plaquette charge order state

2/3 spins form *S*=0 !

Chen, Kee, Kim, PRB 93, 245134 (2016)

Nikolaev, Solovyev, Streltsov arXiv:2001.0747

Does it work for LiZn₂Mo₃O₈?

Hubbard model

12 sites, 1 electron/site, Breathing Kagome lattice by exact diagonalization

Nikolaev, Solovyev, Streltsov arXiv:2001.0747

Experiment: LiZn₂Mo₃O₈

What about real materials?

Li(InSc)₂Mo₃O₈: Heisenberg model on triangular lattice

- Li₂InMo₃O₈ strong AFM coupling $(J_{\triangle} = 110K)$ results in 120° AFM;
- Li₂ScMo₃O₈: exchange coupling is suppressed and quantum fluctuations may result in QSL formation;
- This explains how **ZnScMo₃O₈** may appear to be FM;

Take-home messages

- Cluster Mott magnets often can be spontaneously formed by (orbitally) induced Peierls transitions;
- Physical properties of cluster Mott magnets can be very different from their conventional counters;
- There are typically two types of orbitals: molecular and site-localized. These orbitals can behave very differently: **Orbital-selective behaviour**;

Часть II

Эффект Яна-Теллера или спинорбитальное взаимодействие: кто кого?

Спасибо за внимание !