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A self-sustained analytic theory of a wind-driven sea is presented. It is shown that
the wave field can be separated into two ensembles: the Hasselmann sea that consists of
long waves with frequency ω < ωH, ωH ∼ 4−5ωp (ωp is the frequency of the spectral
peak), and the Phillips sea with shorter waves. In the Hasselmann sea, which contains
up to 95 % of wave energy, a resonant nonlinear interaction dominates over generation
of wave energy by wind. White-cap dissipation in the Hasselmann sea in negligibly
small. The resonant interaction forms a flux of energy into the Phillips sea, which plays
a role of a universal sink of energy. This theory is supported by massive numerical
experiments and explains the majority of pertinent experimental facts accumulated in
physical oceanography.
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Quasi-Conservative Hasselmann equation

It is accepted by the physical oceanography community that deep water ocean
gravity surface waves are described by the Hasselmann equation. This equation is also
known as the kinetic equation for waves, sometimes it is called the Bolzmann equation
or energy balance equation:

∂ε

∂t
+
∂ωk
∂k

∂ε

∂r
= Snl + Sin + Sdiss (1)

The wave energy spectrum ε = ε(ωk, θ, r, t) is a function of wave frequency ωk =
ω(k), angle θ, two-dimensional real space coordinate r = (x, y), and time t. The terms
Snl, Sin and Sdiss are the nonlinear, wind input and wave-breaking dissipation source
terms. We will consider the deep water case only: the dispersion law is ωk =

√
gk,

where g is the gravitational acceleration and k = |k| is the absolute value of the vector
wavenumber k = (kx, ky). Since Hasselmann’s work, Eq.(1) has become the basis of
operational wave forecasting models.
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While the physical oceanography community agrees on the general applicability of
Eq. (1), there is no consensus on universal parameterizations of the source terms
Snl, Sin and Sdiss. For the Hasselmann sea we put Sdiss = 0.

This is the quasi-conservative Hasselmann kinetic equation written for the wave
action spectrum Nk(t).

dN

dt
= Snl (2)

Snl = πg2

∫
k1,k2,k3

(Tkk1k2k3)
2

(NkNk2Nk3 +Nk1Nk2Nk3 −NkNk1Nk2 −NkNk1Nk3) ×

×δ(k + k1 − k2 − k3) δ(ω + ω1 − ω2 − ω3) dk1 dk2 dk3
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Coefficient Tkk1k2k3 is the coupling coefficient Tk1k2k3k4 = 1
2

(
T̂k1k2k3k4 + T̂k3k3k1k2

)

T̂k1k2k3k4 = −1

4

1

(k1k2k3k4)1/4

{
1

2

(
k2

1+2 − (ω1 + ω2)4
)
×
(
k1k2 − k1k2 + k3k4 − k3k4

)
−1

2

(
k2

1−3 − (ω1 − ω3)4
)
×
(
k1k3 + k1k3 + k2k4 + k2k4

)
−1

2

(
k2

1−4 − (ω1 − ω4)4
)
×
(
k1k4 + k1k4 + k2k3 + k2k3

)
+

(
4(ω1 + ω2)2

k1+2 − (ω1 + ω2)2
− 1

)
× (k1k2 − k1k2)(k3k4 − k3k4)

+

(
4(ω1 − ω3)2

k1−3 − (ω1 − ω3)2
− 1

)
× (k1k3 + k1k3)(k2k4 + k2k4)

+

(
4(ω1 − ω4)2

k1−4 − (ω1 − ω4)2
− 1
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}
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k1 + k2 = k3 + k4; ω1 + ω2 = ω3 + ω4
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Figure 1: A wave vector quadruplet of a long-short interaction. A curve
ω1+ω2 = const is drawn; any two points of the curve constitute a resonant quadruplet.
The θ1 and θ3 angles are given with respect to the vector k1 + k2 = k3 + k4. The
eight-shape figure is the Phillips curve.
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Let us underline one important property of the resonant manifold k1 + k2 =
k3 + k4; ω1 + ω2 = ω3 + ω4. Suppose that the three wave vectors, k1, k2, k3

are bound in length by some number |ki| < k0, i = 1, 2, 3. However, the last term
might have a longer absolute value. In fact, in virtue of the resonant manifold we have
|k1| < 5/4 k0.

Hereafter we define k1 = |k1|, k2 = |k2|, etc. We have k1 ≈ k3 � k2 ≈ k4.
After tedious algebra one may find the following asymptotic behavior for the coupling
coefficient:

Tk1,k2,k3,k4) →
1

2
k2

1k2Tθ1θ3, Tθ1θ3 = (cos θ1 + cos θ3)(1 + cos(θ1 − θ3))

Here θ1 is the angle between the small vector k1 and k1 +k2; the same stands for θ3.

In the diagonal case θ1 = θ3, k1 = k3, k2 = k4.

T (k1,k2) = 2k2
1k2 cos(θ1)
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Another important point is the question of conservation laws. The widely accepted
opinion is that the quasi-conservative Hasselmann equation has basic conservation laws,
i.e. wave action, energy and momentum:

N =

∫
Nk dk, E =

∫
ωkNk dk, M =

∫
kNk dk

Let us study more carefully the conservation laws. Apparently

dE

dt
=

∫
ωk Snl dk

If we boldly perform the permutation of integration order we will end up with relation

dE

dt
= πg2

∫
|Tkk1k2k3|

2Nk1Nk2Nk3(ωk + ωk1 − ωk2 − ωk3)δ(ωk + ωk1 − ωk2 − ωk3)

× δ(k + k1 − k2 − k3) dk dk1 dk2 dk3 (3)
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It seems that this equation means that dE/dt = 0, but this would be correct only if
all terms in this relation are finite and represented by convergent integrals. Now assume
that Nk has asymptotic behavior Nk → 1/k4, k → ∞. Then all terms will diverge
logarithmically and will actually be infinite. Thus, in the presence of spectral tails, the
conservation of energy and momentum fails. The asymptotic behavior Nk ∼ 1/k4

means that Ik ' k−5/2 and F (ω) ' ω−4. These spectra are commonly observed in
the wind-driven sea in the spectral range ωp < ω < 5ωp, where ωp the is frequency of
the spectral peak.

– Typeset by FoilTEX – 8



Let us add a little piece of pure mathematics. Strictly speaking, even this simple
equation is not correct. Permutation of integration order in multi-dimensional integrals
is allowed under strict limitations that are dictated by the so-called ”Fubini theorem.”
In our case this theorem demands that action spectra should decay fast enough at
k →∞:

N(k) <
c

k25/6+ε
, ε > 0

This means that the energy spectrum F (ω) must decay faster than ω−13/3. In the
short-scale region of a real sea we usually observe the Phillips spectrum F (ω) '
αg2/ω5. Because 5 > 13/3 the integrals are conserved.
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Let us notice that this takes place in the Phillips sea, consisting of short waves
(ω > ωH), outside of the Hasselmann sea, consisting of long waves (ω < ωH ∼ 5ωp).
The resonant nonlinear interaction throws energy and momentum from the Hasselmann
sea into the Phillips sea. Thus:

P = −
∫ 2π

0

dθ

∫ ωH

0

dε(ω, θ)

dt
dω, Rx = −1

g

∫ 2π

0

dθ

∫ ωH

0

ω cos θ
dε(ω, θ)

dt
dω

P and Rx are fluxes of energy and momentum from the Hasselmann sea into the Phillips
sea. Because they are not zero, one can call equation dN

dt = Snl a quasi-conservative
equation. This equation is a natural model for study of the ocean swell evolution. We
have solved this equation numerically and have observed a permanent loss of energy
and momentum.
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Kolmogorov-type spectra

Let us study isotropic solutions of the stationary quasi-conservative Hasselmann
equation:

Snl = 0 (4)

We assume that the solution of the kinetic equation is a powerlike function N = ak−x.
Then

Snl = a3 g
3
2 k−3x+19

2 F (x)

where F is a dimensionless function depending on x only.

It was shown that F (x) = 0 at the two points x = 4 and x ' 23/6 only. This
is a strict mathematical theorem, which is supported by careful numerical experiments.
Integrals in Eq. (4) converge if 5/2 < x < 19/4. Function F is shown on Fig. 2.
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Figure 2: F function graph and its asymptotes. The second picture is the closeup of
the function zeroes.
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This means that the stationary kinetic equation Snl = 0 has exactly two powerlike
solutions:

N
(1)
k = cp

P
1/3
0

g2/3

1

k4
, N

(2)
k = cq

Q
1/3
0

g1/2

1

k23/6
.

Here P0 is the energy flux and Q0 is the wave action flux. The dimensionless constants
cp and cq are defined from the first derivatives of F

cp =

(
3

2π F ′(4)

)1/3

, cq =

(
− 3

2π F ′(23/6)

)1/3

Our numerical calculation of the derivatives of F at x = 4 and x = 23/6 gives

cp = 0.203, cq = 0.194
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The integrated by angle energy spectra E(ω) are connected with the isotropic wave
action spectra by the relation

F (ω) dω = 2πωkNk k dk

Hence we find the following exact solutions for the stationary kinetic equation:

F1(ω) =
4π cp
ω4

g4/3P
1/3
0

It is a Kolmogorov-type spectrum that presumes the presence of a source of energy
P0 = dε/dt at k = 0. This is the spectrum of ”direct inverse cascade” similar to
the classical Kolmogorov spectrum in the theory of turbulence in a three-dimensional
incompressible fluid.
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The second spectrum is the following:

F2(ω) =
4π cq
ω11/3

g Q
1/3
0

It describes the ”inverse cascade” of wave action, and can be compared with the
Kolmogorov spectrum of the energy inverse cascade in the theory of turbulence in
a two-dimensional incompressible fluid. The existence of solutions of the stationary
kinetic equation originates from possibility of splitting Snl as follows:

Snl = Fk − ΓkNk,

Fk = πg2

∫
|Tkk1k2k3|

2 δ(k+k1−k2−k3) δ(ωk+ωk1−ωk2−ωk3)Nk1Nk2Nk3 dk1dk2dk3

Γk = πg2

∫
|Tkk1,k2k3|

2 δ(k + k1 − k2 − k3) δ(ωk + ωk1 − ωk2 − ωk3)×

×(Nk1Nk2 +Nk1Nk3 −Nk2Nk3) dk1dk2dk3
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To outline a broader class of solutions, let us introduce the elliptic differential
operator:

Lf(ω, φ) =

(
∂2

∂ω2
+

2

ω2

∂2

∂φ2

)
f(ω, φ)

with following parameters: 0 < ω <∞, 0 < φ < 2π. The equation

LG = δ(ω − ω′) δ(φ− φ′)

with boundary conditions G|ω→0 = 0, Gω→∞ <∞, G(2π) = G(0) is resolved as

G(ω, ω′, φ−φ′) =
1

4π

√
ωω′

∞∑
n=−∞

ein(φ−φ′)×

[(ω
ω′

)∆n

Θ(ω′ − ω) +

(
ω′

ω

)∆n

Θ(ω − ω′)

]
,

where ∆n = 1/2
√

1 + 8n2. Now we define:

A(ω, φ) =

∫ ∞
0

dω′
∫ 2π

0

dφ′G(ω, ω′, φ− φ′)Snl(ω′, φ′).
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Then the kinetic equation takes the following form

∂N

∂t
= LA

and the stationary equation is

LA = 0

The operator A is a regular integral operator. If we assume that

A =
H0

g4
ω15N3,

then the nonlinear term Snl turns into the elliptic operator:

Snl =
H0

g4

(
∂2

∂ω2
+

2

ω2

∂2

∂φ2

)
ω15N3.
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This is a so-called ”diffusion approximation”. In spite of being very simple, this
approximation grasps the basic features of the wind-driven sea theory. The real case
does not differ much from it, at least qualitatively.

H0 is a dimensionless tuning constant. In the kinetic equation, N = N(ω, φ),
ε(ω, φ) = ωN(ω, φ). The elliptic operat A has the following anisotropic KZ solution

A =
1

2π g

{
P + ωQ+

Rx
ω

cosφ

}
,

where P and Rx are fluxes of energy and momentum as ω → ∞ and Q is the flux
of wave action directed to small wave numbers. In a general case, A is a nonlinear
integral equation; however in the diffusion approximation the KZ solution can be found
in the explicit form:

N(ω, φ) =
1

(2πH0)1/3

g

ω5

(
P + ωQ+

Rx
ω

cosφ

)1/3

.

– Typeset by FoilTEX – 18



For the real sea, the stationary equation is a nonlinear integral equation which can
be solved numerically only. The ”toy” diffusion model allows us to find the explicit
equation for the KZ-solution which grasps the main features of real solution. One can
assert that the real KZ solution is

F (ω) =
g4/3P 1/3

ω4
R

(
ωQ

P
,
Rx
g ω P

, φ

)
In the limit P → 0, Rx → 0 we have R→ 4π cp. In the limit Rx = 0, P → 0

R→ 4π cq

(
ωQ

P

)1/3

Q is the flux of wave action coming from the spectral area of very small scales. In the
majority of physical situations one can put Q = 0.
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From the physical viewpoint the most interesting case is Q = 0, for which

F (ω) =
g4/3P 1/3

ω4
R0

(
Rx
g ω P

, φ

)
Here R0 is an unknown function that we believe describes the angular spreading of
wave spectra. It was shown long ago that at ω → 0

R0 → 4π cp

(
1 +

λRx
g ω P

cosφ+ · · ·
)

where λ is a dimensionless constant. In the ”toy” diffusion model λ = 1/3. We should
stress that all KZ spectra are isotropic in the limit ω → ∞ and are very close to
F (ω) ∼ 1/ω4.

– Typeset by FoilTEX – 20



Energy balance in wind-driven sea

The most painful question is: which source terms in the kinetic equation are
dominant? To answer, we should present Snl in the split form. After the splitting,
the kinetic equation takes the following form:

∂N

∂t
+
∂ωk
∂k

∂N

∂r
= Fk − ΓkNk + Sin + Sdiss

The forcing terms Sin and Sdis are not known well enough, thus it is reasonable to
accept the simplest models of both terms assuming that they are proportional to the
action spectrum:

Sin = γin(k)N(k), Sdis = −γdis(k)N(k).

Hence
γ(k) = γin(k)− γdis(k).
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In reality γdis(k) depends dramatically on the overall steepness µ. So far, let us notice
that the stationary balance equation can be written in the form

Fk − ΓkNk + γkN = 0

The stationary solution of kinetic equation is the following:

Nk =
Fk

Γk − γk
.

The positive solution exists if Γk > γk. The term Γk can be treated as the nonlinear
damping that appears due to four-wave interaction. In the presence of nonlinear
damping the dispersion relation must be renormalized

ωk → ωk +
1

2

∫
Tkk1kk1 Nk dk + iΓk
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The main point of the proposed theory is that the nonlinear dumping has a very powerful
effect. In reality, Γk � γk. Let k � kp. Then for Γk we get

Γk = 2πg2

∫
|Tkk1,kk3|

2 δ(ωk1 − ωk3)Nk1Nk3 dk1dk2.

Γω = 36πω

(
ω

ωp

)3

µ4
p cos2 θ, µ2

p =
g2E

ω p4

It includes a huge enhancing factor: 36π ' 113.04. For very modest value of steepness,
µp ' 0.05, we get

Γω ' 7.06 · 10−4ω

(
ω

ωp

)3

cos2 θ.
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Figure 3: Split of nonlinear interaction term Snl (central curve) into Fk (upper curve)
and ΓkNk (lower curve)
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Figure 4: Dimensionless wind input for u10 = 10m/sec .
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Figure 5: Comparison of experimental data for the wind-induced growth rate
2π γin(ω)/ω and the damping due to four-wave interactions 2π Γ(ω)/ω, calculated
for narrow in angle spectrum at µ ' 0.05 (dashed line)
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We pay special attention to two models:

1. The Plant model γ = 0.03ρaρω ω
(
ω U
g

)2

cosφ, cosφ > 0

2. ZRP model γ = 0.05ρaρω ω
(
ωU
g

)4/3

cos2 φ, −π/2 < φ < π/2

In both models γ ' ω1+s is a powerlike function on frequency.

Comparison of all known models for Sin with the nonlinear dumping term Γk is
presented on Fig. 5 One can see that Γk, at least in order of magnitude, is larger than
γin(k). This figure conspicuously demonstrates that the nonlinear wave interaction is
the leading term in the energy balance of a wind-driven sea.

– Typeset by FoilTEX – 27



Experimental evidence of Snl domination

As far as in the Hassenlmann sea the term Sdiss cannot be stronger than γin
(otherwise waves would not be excited), the term Snl dominates over. This fact
is supported by experimental data collected in a broad ranges of wind velocities:
3m/sec < U, 30m/sec. Hereafter we will use the dimensionless duration and fetch,
as well as the dimensionless frequency and energy:

τ =
tg

U
, χ =

xg

U2
, σ =

ωU

g
, F =

εg2

U4

Also, we introduce integral dimensionless quantities

F̃ =

∫ ∞
0

F (σ)dσ, σ̃ =
1

F̃

∫ ∞
0

σF (σ)dσ
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The steepness of the main energy capacity wave can be estimated as follows

µp ' F̃ σ̃4

During the last seven decades many experiments measuring energy spectra of a wind-
driven sea and its integral characteristics were performed in laboratory, on lakes, and
in the different parts of the ocean. The most significant experiments were conducted
in the ”fetch dominating frame,” where the sea is stationary in time and the wind has
the opposite direction. In these experiments, F̃ and σ̃ were measured as functions of
fetch only: F̃ = F̃ (χ), σ̃ = σ̃(χ). All experimenters unanimously agree that F̃ and
σ̃ are powerlike functions

F̃ = ε0 χ
p, σ̃ = ω0 χ

−q

Exponents p, q are different in different experiments. They vary inside the following
ranges

0.7 < p < 1.1 0.22 < q < 0.33
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Suppose that F obeys the stationary Hasselmann equation. After transition to
dimensionless variable this equation reads

cos θ

2σ

∂F

∂χ
= Snl + γin(σ)F

We include in this equation the interaction with wind. Let us make a very crude estimate
of the different terms in this equation. Neglecting the wind input term we come to the
following balance relation

F

σ̃χ
' σ̃ F µ4

p

or, after cancelling F
χF̃ 2 σ̃10 ' 1

Substituting the powerlike functions into kinetic equation one can see that dependance
on χ drops out if the exponents p, q are connected by the relation

10q − 2p = 1
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We call it the ”magic relation.” In virtue of this relation

q = qth =
2p+ 1

10

Moreover, we can conclude that s = ε
1/5
0 ω0 is a universal constant. Comparison with

numerical experiments show that

s = ε
1/5
0 ω0 ' 1

Results of experiments performed in the open sea and Lake Michigan are presented in
Table 1, which represents the majority of the field experiments collected in physical
oceanography for almost half of a century. Experimental data are compared with
predictions of the analytic theory. According to theory, the exponents qchi must
coincide with the theoretically predicted value qth = 2pχ + 1/10. One can see that
the relative difference δq ' 1

qχ
|qχ − qth| does not exceed 10%. According to theory,

the dimensionless quantity s = ε
1/5
0 ω0 must be a universal constant of order one.
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Case ε0 × 107 pχ ω0 qχ qth S

1 Wen. et al. (1989) 18.900 0.700 10.40 0.23 0.24 0.75
2 Donelan et al. (1985) var. der 8.410 0.760 11.60 0.23 0.25 0.71
3 Dobson et al. (1989) wind. int 12.700 0.750 10.68 0.24 0.25 0.71
4 Kahma & Calkoen (1992) stabl 9.300 0.760 12.00 0.24 0.25 0.75
5 Evans & Kibblewhite (1990) stra 5.900 0.786 16.27 0.28 0.26 0.92
6 Romero & Melville (2009) unstab 5.750 0.810 10.64 0.23 0.26 0.60
7 Hwang & Wang (2004) 6.191 0.811 11.86 0.24 0.26 0.68
8 Davidan (1996), U10 scaling 5.550 0.840 16.34 0.29 0.27 0.92
9 Evans & Kibblewhite (1990) neut 2.600 0.872 18.72 0.30 0.27 0.90
10 Black. Sea 4.410 0.890 15.14 0.28 0.28 0.81
11 Kahma & Calkoen (1992) composit 5.200 0.900 13.70 0.27 0.28 0.76
12 Kahma & Pettersson (1994) 5.300 0.930 12.66 0.28 0.29 0.70
13 Kahma & Calkoen (1992) unstab 5.400 0.940 14.20 0.28 0.29 0.79
14 Walsh, US coast (1989) 1.860 1.000 14.45 0.29 0.30 0.65
15 Mitsuyasu (1971) 1.600 1.000 21.99 0.33 0.30 0.96
16 JONSWAP (1973) 2.890 1.008 19.72 0.33 0.30 0.97
17 Donelan et al. (1992) 1.700 1.000 22.62 0.33 0.30 1.00
18 Kahma (1986)average. growth 2.000 1.000 22.00 0.33 0.30 1.01
19 Kahma (1981, 1986)rapid. growth 3.600 1.000 20.00 0.33 0.30 1.03
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We solved the stationary Hasselmann equation numerically, using various models
for γ(ω, θ). The results are presented in the Table.

Table 1: Data of numerical experiments

Experiment px qx 10q − 2p ε0 ω0 ε
1/5
0 ω0

ZRP 1 0.3 1 2.9 ·10−7 21.35 1.05
Snyder 0.7 0.23 1 1.24 ·10−5 9.04 0.94
Tolman-Chalikov 0.5 0.2 0.9 3.2 ·10−5 7.91 1.00
Hsiao-Shemdin 0.5 0.19 0.9 2.0 ·10−5 8.16 0.94
Donelan (with dissipation) 0.6 0.21 0.83 6.1 ·10−6 10.17 0.92
Donelan (without dissipation ) 0.53 0.19 0.84 2.05 ·10−5 7.85 0.91
Plant 0.77 0.254 1 2.9 ·10−6 12.89 1.006
Stuart-Plant 0.5 0.21 1.1 1.15 ·10−5 9.48 0.975
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Self-similaruty of wind-driven sea

Now we can answer the most ”sharpest” questions: Why do both field and
laboratory experiments assert that F̃ = F (χ) and σ = σ(χ) are powerlike functions?
Why are the exponents p, q are contained inside intervals 0.7 < p < 1.1, 0.22 <
q < 0.33? We will discuss the Hasselmann sea only, where the Hasselmann equation is
applicable. Let us consider the dimensionless kinetic equation and assume that γin(σ)
is a powerlike function

γin(σ) = γ0 σ
1+l · f(φ)

One can check that this equation has the following self-similar solution

F = χp+qG(σ, χ, φ)

which leads to powerlike expressions, where

ε0 =

∫ 2π

0

dφ

∫ ∞
0

G(σ, φ) dσ ω0 =
1

ε0

∫ 2π

0

dφ

∫ ∞
0

σG(σ, φ) dσ
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In the self-similar solution

q =
1

2 + l
, p =

8− l
2(2 + l)

The function G(ξ, φ), ξ = σχq, satisfies the following equation:

cosφ[(p+ q)G+ qξ
∂G

∂ξ
] = S̃nl + γ0ξ

1+l f(φ)G

Here S̃nl is a dimensionless Snl and γ0 ' 10−5 is a dimensionless small parameter. This
term can be split into income and outcome terms. Each of them dominates over Sin;
thus near the spectral peak Sin can be neglected and the condition s = ε1/5 ω0 ∼ 1
still holds.
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Now let us notice that in the ZRP model of Sin , l = 4/3. This gives q = 0.3, p =
1, in good accordance with experiments 11-19 presented in Table 1. For the Plant
model, l = 2; this gives q = 0.25, p = 0.75, in good accordance with experiments
2-6 in Table 1. In all offered models for Sin, γ(σ)/σ is a growing function, and
1 < S < 2.3. This gives the following frames for the variation of exponents:

0.67 < p < 7/6, 0.22 < q < 0.33

These frames are very close to experimentally observed results presented in the Table.
The results of numerical experiments collected in the other Table show that models
of Snl different from the ZRP and Plant models lead to exponents outside the frames
0.7 < p < 1.1 0.22 < q < 0.33. This is not a weak point of theory; rather it
is a weakness of the discussed models. The major prediction of the theory, the magic
relation 10q − 2p = 1, is satisfied pretty well.
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In these models, γ(σ) are not pure powerlike functions. However Sin is still a small
term in the dimensionless kinetic equation, and we may seek ”quasimodular solutions”
such that exponents are ”slow functions” of fetch p = p(χ), q = q(χ).

Critical analysis of data from field, wave tanks and numerical experiments shows
that in a huge range of fetches, 10 < χ < 106 the magic relation is valid!

But it doesn’t mean that all models for Sin are equally good. The analytic model
predicts the ”magic relation” between p and q as well as a relation between ε0 and
ω0, but it says nothing about absolute values of these quantities. Comparing the first
line of Table 1 (Wel et al experiments) with the second line in Table 2 (Snyder model
prediction) we see very good qualitative coincidence but large quantitative differences.
The Snyder model overestimates the rate of energy growth with fetch by almost an
order of magnitude.
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We cannot discuss now an extremely important question: the shape of spectra in
the universal spectral range 1 < σ < 5. The dimensionless kinetic equation does not
preserve energy that leaks from the Hasselmann sea to the Phillips sea, forming an
energy flux P . Thus it’s solution must have asymptotic behavior

G(ξ)→ β
P 1/3

σ4

As far as γ0 � 1, β is a small number. This implies the inevitable formation of
Zakharov-Filonenko spectral tails F (ω) ∼ 1/ω4. Such tails are routinely observed in
numerous field and laboratory experiments. This important subject deserves a special
consideration.
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Conclusions

Let us summarize the results. We claim that the majority of data obtained in field
and numerical experiments can be explained in a framework of a simple model

dε

dt
= Snl + γin(ω, φ)ε

Moreover, most of the facts can be explained by the assumption that γin(ω, φ) is a
powerlike function on frequency, γin(ω, φ) = γ0 ω

1+s f(φ). Here 1 < s < 2.3 and
f(φ), γ0 are tunable. This model pertains only to the description of the Hasselmann
sea, 0 < ω < ωH, ωH ' (4− 5)ωp.
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In fact, this model is a simplification of the widely accepted model in oceanography.
What is the difference between these models? The main difference is obvious: we
excluded from our consideration any mention of wave energy dissipation. This does not
mean that we deny a crucial role of wave-breaking in the dynamics of ocean surface.
But, from the spectral viewpoint, the wave-breaking takes place outside the Hasselmann
sea. It is going into the Phillips sea, in the spectral area of short scales. This very
important statement is supported by experimental data and by numerical solutions of
dynamical phase-resolving equations for a free surface.

What we offer could be called ”poor man’s oceanography.” A ”poor man” refuses
attempts to derive the equation for Sin from ”first principles,” but has in his possession
powerful analytic and computer models to use as test beds for compatibility of models
for γin(ω, φ) with experimental data. The Snyder model does not pass this test and
should be excluded from operational models.
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Introduction

∂ε
∂t + ∂ωk

∂~k

∂ε
∂~r = Snl + Sin + Sdiss

ε = ε(~r , ~k , t)

Snl - nonlinear 4-waves interaction term

Sin - wind input

Sdiss - wave-breaking dissipation

Basis of operational models WaveWatch, WAM
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Motivation of the research

Observation of non-stationary limited fetch regime

Connection to SSS in homogeneous case
∂ε
∂t = Snl + Sin + Sdiss
Connection to SSS in stationary case
∂ωk

∂~k

∂ε
∂~r = Snl + Sin + Sdiss
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Motivation of the research
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Problem statement

∂ε
∂t + 1

2
ωk

k cos θ ∂ε
∂x = Snl + Sin + Sdiss

Exact SNL

ZRP (Zakharov, Resio, Pushkarev 2010) forcing

Dissipation spectral tail ∼ ω−5
k starting from fdiss = 1.1 Hz

Channel of 40 km width: La-Manche

40 points in real space, 10◦ angular resolution, 72 frequencies

wind 10 m/sec blowing from France to UK

6 / 22



Problem statement

7 / 22



Problem statement

8 / 22



Problem statement

9 / 22



Results
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Results

Sector from  -80 to   80 degrees

10 20 30 40
Fetch (km)

0.05

0.10

0.15

0.20

E
n

e
rg

y

Time = 2.1h

Time = 3.1h

Time = 3.9h

Time = 5.0h

Time = 6.1h

Time =40.0h

Self-similar solution 2017

15 / 22



Results
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Results

Sector from  -80 to   80 degrees

1 10
Fetch (km)

1.0

<
f>

Time = 2.1 h
Time = 3.1 h

Time = 3.9 h

Time = 5.0 h

Time = 6.1 h

Time =40.0h

Self-similar solution 2017

17 / 22



Experimental evidence

18 / 22



Experimental evidence

19 / 22



Experimental evidence

20 / 22



Conclusions

Nonlinear Ocean Waves Amplifier

NOWA

21 / 22



Conclusions

1 Wave turbulence splits into 2 regimes in space and time:

Initial dual self-similar
Subsequent mix of self-similar wind sea and
quazi-monochromatic waves orthogonal to the wind

2 Initial self-similar regime is self-similar threshold-like propagation

3 Subsequent regime works as Nonlinear Ocean Waves Amplifier
(NOWA)

4 The system asymptotically evolves into stationary mixed state of
wind sea and quasi-monochromatic waves orthogonal to the wind
waves, slating at universal 15◦ closer to the origination shore

5 Laser-like radiation is apparently the attractor of complex
nonlinear wave system

6 The obtained results are applicable to half-open ocean
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