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Preface

These volumes presents selected papers of Michael V. Sadovskii on different aspects of condensed
matter theory published by him from 1974 to 2024. From his total publication list of about 180
papers we have chosen only those which we consider conceptually most important. This choice is
of rather subjective nature and is not related to any of currently popular metrics, like e.g. citation or
Hirsch indices.

Selected reviews by M.V. Sadovskii were published in separate two — volume edition. All
experimental papers as well as papers devoted to calculations of different properties of specific
materials were just excluded from this edition.

All papers are published in original form without any editorial work or corrections of some minor
misprints mainly of a technical nature.

At the end of this volume we present an extended list of the books, reviews and research papers by
M.V. Sadovskii, which includes many of those dropped from this edition.
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Effect of crystal lattice disorder on Peierls transitions

L. N. Bulaevskii and M. V. Sadovskii

P. N, Lebedev Institute of Physics,

Academy of Sciences of the USSR, Moscow
{Submitted November 30, 1973)

Fiz, Tverd, Tela, 16, 1159-1164 (April 1974)

The effect of disorder on Peierls structural transitions is considered for quasi-one-dimensional crystals
of the K,Pt(CN) Bry 50" 3H,0 type and for salts based on TCNQ. The exactly solvable Lloyd disorder
model and the "fragment” model are considered. It is shown that in both models disorder causes a
strong suppression of the Peierls transition, and its effect is qualitatively similar to the effect of mag-
netic impurities on the superconducting transition. Possible experimental consequences are discussed.

The synthesis and study of physical properties of highly
condueting quasi-one-dimensional crystals on bases of
TCNQ salts! and of plane complexes of transition elements
of the platinum group [the K, Pt(CN),Bry, 33 * 3H,0 type]
raised the problem of applicability to those compounds of
the Peierls argument on instability of one-dimensional
electron systems with respect to a change in the lattice
period. According to these concepts, a displacement by
awave vector 2kp (kg is the electron Fermi momentun)
should appear at low temperatures in the original crystal
lattice affected by the electron system, and below a tem-
perature Ty, the one-dimensional system must remain a
dielectric, since a gap appears in the electron system at
the Fermi surface. In K,PT(CN) Bry g * 3H,0 compounds
diffuse x-ray scattering’® and inelastic neutron scatter-
ing* indicate that the Peierls instability is indeed observed.
According to the data of ref. 3 a static displacement of
atoms (a sixfold increase of the period) occurs at a tem-
perature below 77°K, and at higher temperatures this
static distortion is preceded by softening of phonon fre-
quencies with quasimomentum ~ 2kp. Obviously, a
Peierls period occurs also in the highly conducting TTF—
TCNQ salt,” while at the same time this transition has not
been so far observed in magnetic data of other investiga-
ted TCNQ salts. Indeed, for a Peierls transition the pa-
ramagnetic susceptibility should fall with temperature
lowered below Tp. Exactly such susceptibility behavior

is observed® in TTF-TCNQ, but not in other highly con-
ducting TCNQ salts.”

It is clear that crystal lattice disorder has a large
offect on the Peierls transition, Indeed, disorder washes
out those features in the density of states of one-dimen-
sional electron bands which lead to lattice instability in
the displacements with gap formation at the Fermi sur-
face. An internal instability, however, is inherent in all
quasi-one-dimensional crystals, besides TTF—TCNQ. In
platinum complexes halogen ions fill only part of the sites
which they can occupy, and their site distribution is ran-
dom. In the highly conducting TCNQ salts disorder is re-
lated toa random orientational distribution of asymmetric
cations. Only for the TTF—TCNQ complex is the TTF
cation totally symmetric and lattice disorder can be re-
lated only to structure defects.

In this paper we consider the effect of lattice disor-
ler on the temperature and the order parameter of the
Peierls transition. The calculations indicate that this ef-
fect is as strong as the effect of magnetic impurities on
the superconducting transition. The results obtained be-
low explain why the Peierls transition is not observed in
all quasi-one-dimensional crystals., We also discuss new
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properties added to this transition by lattice disorder.

1. INITIAL EQUATIONS AND
DISORDER MODEL

We consider only the simplest example of a Peierls
transition, one with a doubled period. Such a transition
occurs if the original electron band is half full, and only
in this case is a lattice change not accompanied by a re-
distribution of electron charge.® For this ratio a transi-
tion with a doubled period is simplest, and to evaluate the
transition temperature T in the static approximation it
is necessary to know only the dependence of the electronic
density of states on the displacement of the lattice atoms
and the degree of lattice disorder. In doubling the dis-
placement up of atom nwe use

= (—1]"u. (1)

For a half-filled band the free energy of the electrons
and the lattice is expressed in terms of the parameter
u as
Fla, T)=—T S dFp (u, E)In (1+¢ff’)-:--1,~£uﬂ, (2)

—m

where K is the lattice elasticity coefficient with electrons
localized at the sites,? and p (u, E) is the electronic den-
sity of states for displacement u. We consider below only
disorder models leading to p (u, E) symmetric with re-
spect to the energy E - 0,i.e..p (u, E) = p (u,~E). In this
case the electronic chemical potential is u = 0. Below
the Peierls transition temperature TP the free energy is
lowered at u # 0, and TP is the temperature for which

the equation

OE (1, T)

du il

(3)

=1,

has a nontrivial solution u # 0 for the first time.

The problem thus reduces to the determination of the
electronic density of states p (u, E) in a disordered lat-
tice. The possibility of applying approximate methods in
determining the density of states in a one-dimensional
system seems doubtful; therefore we consider disorder
models which allow accurate determination of the density
of states. Such are the Lloyd® and the "fragment"!’ models.

2, THE LLOYD MODEL

In this model it is assumed that the electrons are
described in the tight binding approximation by means of
the Hamiltonian
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= E {2nlhs g F b1 (820510 T @irs00) )0 (4)
n,e

in which the transition parameter (the resonance integral)
bn. n + 1 is not a random quantity, but the potentials eyare
randomly distributed over the sites n. It is assumed that
the distributions &, are independent for different sites,
and are all described by a Lorentz distribution

(5)

1 5y
Pla1=—1;?+1g-

Obviously, this model is qualitatively adequate for
the platinum complexes, in which disorder in the Br or
Cl ion positions leads to a random potential, acting on the
conduction electrons of the chain. For the distribution
(5) the density of states p (E) in the disordered lattice
(e;# 0) is expressed in terms of the density of states
pp(E) in an ideal lattice (g4 = 0) by the relation

T fa (z)
pe)="1 | 4 iy =

In an ideal lattice with a doubled period the electron
spectrum is of the form

N
e (k) = + VAT 47 cos® Ky k=%—. n=0, £1, £2, ..., £, (7)

where N is the number of atoms in the system, 2b is the
half-width of the original band (the band without doubling)
2b=bp n_t + bn,n+and A = |by,n+ 1=bn, n—1l; &/2b
1 (we consider only the case of small atomic displace-
ments, i.e., Tp <«<2b), The plus sign in (7) corresponds to
the upper part of the band, and the minus signto the lower.
The density of states, proportional to the derivative dk/de,
is infinite at the band edges (k = 0, 27) for N — = This
feature also causes the Peierls instability of the original
ideal lattice.

We notice that in the Lloyd model the electronic free
energy is infinite due to the slow decrease of the Lorentz-
ian distribution function (5) for £ — ; this divergence,
however, is not erucial for us since the part of the elec-
tronic free energy which depends on the displacements u,
i.e.,d8E (u,T)/0u, is finite. Physically the divergence in(2)
for large E is removed if the ion energy is included in the
same potential field gy,

We further choose for the transition parameter not
the displacement u, but the guantity A proportional to it,
which determines the gap in the electronic spectrum of
an ideal lattice with the doubled period. We introduce also
the dimensionless eleectron—lattice interaction constant g
by means of the relation Ku® = A%/rg’2h. Taking into ac-
count the condition A/2b <1 for weak disorder £4/2b «1,
we obtain from (2), (3), (6), (7) for an infinite system the
following equation for the transition temperature:

thas. (8)

2h
de £
1=:25 ——
Vi-(z)
0

For an ideal lattice (g, = 0) Eq. (8) differs from the
BCS equation for the superconducting transition temper-
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ature by the factor [1—'(2'./’2b)3}"1f2 only. This factor de-
scribes the electronic density of states in the tight hind-
ing approximation, and its appearance in (8) is related to
the fact that the whole electron band contributes to the
Peierls instability, while in a superconductor the elec-
tron—phonon interation differs from zero onlyinan energy
interval of the order of the Dehye frequency wyy « 2h around
the Fermi surface. In this narrow energy interval the
density of states can be considered constant. The features
of the density of states at the band edges, washed out by
disorder, leads to the appearance in (8) of the factor
£/(e? + £4%), regular for € =0, which decreases the tran-
sition temperature Tp-

Equation (8) is easily transformed into the form

T 1
P 1 g : I)_ b -7 {9)
B rn—q‘(a'*'?r-i") '*‘(2 i fp e s

where In y = C is the Euler constant, and 9 (x) is the di-
gamma function. In (9) we see the full analogy between
the effect of lattice disorder on the Peierls transition and
the effect of magnetic impurities on the superconducting
transition.'' For increasing £y the transition temperature
Tpdrops and the Peierls instability disappears when ¢, -
Eie = A¢/2, where A is the Peierls gap of an ideal crys-
tal at T = 0, equal TrTPu/Y.

The dependence of the parameter A on the instability
gy is determined for T = 0 from the equation

o

s [l VBT
L3

E3 i 4 =2 s

In

For small disorder (g; << Ay) we obtain from (9),(10)

3

and close to €., when the temperature Tp is low (Tp< Tpy),

Tp, 8y A 2 A
gl R T Lo J e I ) A
Tp= e In g z 5 ln T (12)

It is seen from (11) and (12) that in the Lloyvd model
the ratio A/ Ty, varies from r/y (the BCS value) to zero
for g varying from zero to g¢c.

We notice that in a disordered system the Peierls
transition does not cause a gap appearance in the elec-
tronie spectrum, since in this case the density of states
remains nonzero in the energy interval from — A tod,
although a pseudogap occurs in this region. Thus, in the
center of the original band we have for E = 0

4 |
P(U}=H< pul:f}):.‘i'b‘.

3. THE "FRAGMENT" MODEL

The "fragment" model is realized if a quasi-one-di-
mensional erystal has structural defects or impurity
atoms, through which conduction electrons with energies
Around the Fermi surface cannot pass (for example,
closed-shell impurity molecules). In the Hamiltonian (4]
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this situation corresponds to the case £y = 0, but the
resonant integral bp, n + 1 is a random quantity, vanishing
for several neighboring atoms n, n+ 1, while having for
other neighhoring atoms the ideal lattice value. The lin-
ear system of atoms is then decomposed into a number of
"fragments" and the Peierls transition in each of these
fragments takes place independently at a temperature Tp
depending on the number of atoms in the fragment. In a
system of N atoms the electronic spectrum in the tight
binding approximation is described, after doubling the pe-
riod by Eq. (7). For finite N the discrete nature of the
spectrum causes a weakening of the Peierls instability,
and for decreasing N the transition temperature Tp —0.

For the density of states we have from (7)

Nj2

p(E)= X

n=—y/2

5(5 4 V A? 4 4b2 cos? i’:,j) (13)

Further, let N be twice an odd number. The chemical
potential is then g = 0, and this simplifies the calculations
considerably (the final results are, obviously, independent
of the choice of N). From (2), (3), and (11) we obtain the
T dependence of A,

. - 2nn
N2 V_\E - 4b? cost —7 1

= A T 2rn
V.\'-‘ -+ 4b? cos? v

n=—N2
The Poisson summation equation allows to write (12)
in the form

1 th( 1 IT
hlss V o + 22
. .2 =2 7 S8 (i +2 2 cos Nn arccos z) . (15)
¥{ —zx? A?
i+ =

- (14

1 =g?

Using the condition Tpg <<2b and choosing N as twice
an odd number, we obtain from (15) an equation for the
ransition temperature:

Tp - . 2
In —-lr 2 1 m 1]— By =T (16)
n=1 N g1

For the order parameter A at T = 0 we have

g =2 3~ Ko[n ), a7
=1

where K;(x) is the modified Bessel function. From (16),
(17) we obtain for large N (when g, < A)

X4

) p— B
?'P.-_—.::"Pu(l—g 'N); _\=_\',(1__ _ﬁe ‘N)‘ (18)

and for small Tp « Tp, we have

T ! T
L ) LT (19)
L] ! VIT(3) Ex

where ¢ (x) is the Riemann function. A Peierls transition
does not occur if N < Ng = 2b/Tpg. In this model the ra-
tio A/Tp varies from n/y to « for N varying from « to Nc.
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4, DISCUSSION

The models considered by us differ in the pature of
their instability. Tocompare their results and to compare,
in particular, the Peierls transition critieria, we intro-
duce a universal quantity for one-dimensional disordered
systems, such as the electron localization length, which
can ve calculated if the density of states is known.'? This
quantity replaces in the one-dimensional case the mean
free path and is essentially of similar nature. Clearly,
in the "fragment” model the localization length [, ex-
pressed in interatomic distances, equals N. In the Lloyd
model the localization length was calculated by Thouless,!
and in the center of the original band at electron energies
E = 0 and g <« 2b it equals 2b/g, (at the edge of the orig-
inal band it is twice as large). Expressed in terms of the
localization length 7 the parameters g; and ey, character-
izing disorder in the Lloyd and "fragment" models, coin-
cide and equal 2b/]. For the critical localization lengths
in these models we obtain the very close values (2v/r)
(2b/Tpg) = 1.13 (2b/Tpy) and 2b/Tp,, respectively.

Thus, the criterion of Peierls transition appearance,
expressed in terms of the localization length

B has 20)
]

is, obviously, useful for any disorder. At the same time
the ratio A/Tp can vary from n/y to either side, depend-
ing on the nature of the disorder.

Applied to the platinum complexes, the results ob-
tained allow us to assume that the smallness of the ratio
Tp/2B n K,Pt(CN),Bry g+ 3H,0 (Tp€ 77°K; 2b ~ 2 eV)
be related to disorder in their Br ions, We notice that a
suppression of Peierls instability is also caused by elec-
tron transitions between chains, which destroy the sym-
metry condition of the electron spectrum

e(k)—p=—z(k+q)+p (21)

(g is the wave vector of Peierls deformation), necessary
for the occurrence of lattice instability!® " in a three-di-
mensional crystallin a one-dimensional system Eq. (21) is
always satisfied at least for electrons around the Fermi
surface for q = 2kgl. If the resonance integral of inter-
chain transitions leading to violation of {21) is denoted by
by, the transition temperature Tpis reduced' by about
by/Tp,y. At room temperature the conductwlly anisotropy’
in K, Pt(CN)Bry, 5, - 3H,0 exceeds 10%, and for this com-
pound by «Tpy.

An attempt has been made'® to explain the drop in
conductivity in Ky Pt(CN) Bry 5, * 3H,0 by the appearance
of a Peierls gap. As noted above, in a disordered system
the gap is replaced by a "pseudogap," so that the appear-
ance of an order parameter A does not, generally speak-
ing, cause an exponential decrease of conductivity with
temperature. The low-temperature conductivity is deter-
mined in this case by electron jumps over the energy
levels inside the pseudogap. At the same time the elec-
tronic specific heat at low temperatures, proportional to
the density of states at the Fermi surface, is strongly
suppressed if the system undergoes a Peierls transition.
Therefore, the small magnitude of electronic heat ca-
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pacity in K, Pt{CN),Cl, 5 * 3H,0 at low temperatures, mea-
sured by Greene and Little,'® can be explained by the oc-
currence of a Peierls transition in this crystal, as well
as in KzPT.lCN)_{BI‘c_;;(. * 3H,0.

According to the results of ref. 7, in highly conduct-
ing crystals on a TCNQ base with asymmetric cations the
transition resonance integral is a random guantity and
can acquire arbitrarily small values. In this case the
localization length is small and the Peierls transition can
indeed be totally suppressed.

Y, F. Shchegalev, Phys, Status Soldi (a), 12, 9(1972),

%R, Comes, M. Lambert, H. Launois, and H, Zeller, Phys, Rev., BB, 571
(1973).

3R, Comes, M. Lambert, and H, Zeller, Phys. Status Solidi (b), 58, 587
(1973).

4, Renker, H. Rictschel, L. Pintschovins, W, Gliser, P, Briesch, D. Kuse,
and M. L Rice, Phys. Rev. Lett,, 30, 1144 (1973).

746 Sov. Phys. Solid State

5. B. Coleman, M. I. Cohen, D, I, Sandman, F, G, Yamagashi, A. F.
Garito, andA. J. Heeger, Solid State Commun,, 12, 1125 (1373,

A. F. Garito and A. 1. Heeger, Proc, Intern, Conf, on Magnetism, Moscow
(1973, '

.. N, Bulaevskii, A, V, Zvorykina, Yu, S. Karimov, R. B. Lyubovskii, and
L. F, Shchegalev, Zh, Eksp, Teor, Fiz., 62, 725 (1972) [Sov. Phys.—JETP,
36, 384 (1972)).

®s. Baridic, Phys. Rev,, 58, 932, 941 (1972),

*p. Lloyd, I, Phys, C 2, 1717 (1969

19, 1, Rice and I Bernasconi, J, Phys. 3, 55 (1973).

Up, G. de Gennes, Superconductivity of Metals and Alloys, Benjamin
(1966),

p, 1. Thouless, I, Phys. C 5, 77 (1972).

Ba, M. Afanas'ev and Yu, Kagan, Zh, Ekep, Teor, Fiz., 43, 1456 (1962)
[Sov. Phys,— JETP, 16, 1030 (1963)].

Yy, v, Kopaev and . Kh, Timerov, Zh, Ekep. Teor. Fiz., 63, 290 (1972)
[Sov, Phys,— JETP, 36, 153 (1879)]

"1, R Zeller, Solid State problems [in German], Vol. XIII, 31, Viewag,
Braunschweig (1973),

Q. 1. Greene and W. A. Little, Phys. Rev. Lett., 29, 718 (1872),



A model of a disordered system (A contribution to the theory of

“liquid semiconductors~)

M. V. Sadovskii

P. N. Lebedev Physics Institute, USSR Academy of Sciences
(Submitted November 1, 1973)
Zh. Eksp. Teor. Fiz. 66, 1720-1733 (May 1974)

A model of the electronic properties of disordered systems of the “liquid-semiconductor” type is
proposed. The one-electron Green’s function is obtained and leads to a density of states with the
characteristic “pseudo-gap” in the energy range corresponding to the forbidden band of the crystal.
The dielectric properties, conductivity, and optical absorption are considered. Electron localization of
the Bragg type is obtained, together with the analog of interband absorption in an ideal
semiconductor. The dielectric properties of the model considered turn out to be intermediate between
those of typical metals and insulators. It is noted that the results obtained can be applied to
interpret the properties of quasi-one-dimensional systems (of the TTF-TCNQ type) near the Peierls

structural transition point.

INTRODUCTION

In recent years interest has grown in both the theory
and the experimental studies of the electronic properties
of different disordered systemsm . In particular, great
attention has been paid to the experimental study of melts
of most of the known semiconductors (see the re-
Views[z"‘]). It has been found that semiconductors can
be roughly divided into three groups, according to their
kinetic properties in the liquid state.

The first contains substances of the type Ge, InSb and
other AjyBy, which, on transition to the liquid state,
give melts with purely metallic properties. Evidently,
this is connected with the fact that, in these substances,
not only the long-range order but also the short-range
order corresponding to the given crystal is destroyed on
melting. The second group is formed by substances of
the type PbTe, SnTe, PbSe, In,Te;, Ga:Tes, etc., which
are typical semiconductors in the crystalline state. On
melting, their electrical conductivity, in absolute magni-
tude and in the temperature dependence, has practically
the same behavior as in the corresponding crystal. The
sign of the thermoelectric power, as a rule, indicates
p-type conductivity. In the Hall effect, however, they dis-
play typically metallic properties: the Hall constant is
almost independent of temperature, its sign corresponds
to n-type conductivity, and in absolute magnitude it is
slightly greater than the value for a metal with two free
electrons per atom. Thus, these substances, which are
usually called "'liquid semiconductors,' form a group
intermediate between typical metals and semiconductors.
To all appearances, their properties can be considered
in the framework of the nearly-free electron approxima-
tion, with allowance for strong scattering of the '"Bragg"
type in the energy range coinciding with the forbidden
band of the corresponding crystal. Finally, the third
group is formed by substances of the type GeS, SnS, etc.,
with very low electron mobility, which, evidently, must
be treated in the approximation of tight binding of the
electrons to the ions.

In this paper we propose a simple model that makes
it possible to understand qualitatively the appearance of
the distinctive type of '"band structure' in the energy
spectrum of substances of the second group, which ap-
pears in the form of a characteristic ""pseudo-gap' (of
the type assumed in the work of Mott and other au-
thors) in the density of electron states. Also consid-
ered are the dielectric properties, high-frequency con-

845 Sov. Phys.-JETP, Vol. 39, No. 5, November 1974

ductivity and optical absorption. The ''quasi-one-dimen-
sional" character of the model permits us to hope that a
considerable proportion of the results obtained below
can be applied to describe the properties of one-dimen-
sional systems (of the TTF-TCNQ type) near the Peierls
structural transition point.

1. THE ONE-ELECTRON GREEN FUNCTION
We write the Hamiltonian of the interaction of an
electron with the ions in the form

1
Hm,=WZ<P+I[|V|P>“:M‘1PP11 (1.1)
Pq

where

Pq=2 ek
is the Fourier component of the ion density (R1 are the
positions of the ions and N is their total number),
(p +q|V|p) is a matrix element of the (generally speak-
ing, nonlocal) ionic pseudo-potentialt®l, and a.f) and aj,
are electron operators in second quantization.

We introduce the one-electron Green function in the
Matsubara temperature technique:

G(pr) =—<T.a,(1)3,*(0)?, (1.2)
and also the Green function of the ion subsystem:
F(g7) =—(T:pq (1) p* (0)). (1.3)

For the Fourier transform of (1.3) we have the spectral
representation*®
A(go’)

F(qmm)= j. dm’m,

(1.4)

where wp, =2mmT (T is the temperature),

A(qo)=2Z"! Zexp [—%] | (pq)mnlz{i—exp [— 1},"1]}6(0)—&)".»),

mn

Omn=E,—E., (pg)m.=Cmlpglnd, Z= Zexp [—-E—;], (1. 5)

and m and n label the exact level of the ion subsystem.

Next we introduce the dynamical form factor of the
liquid t™

_ E, .
S(qw)=2Z ‘Zﬂl|(pq)m..|’exp[—-—T—]é(m—mm). (1.6)
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Comparing (1.5) and (1.6}, we see that

Algn}=S{qu} {l—e—T}. (1.7)

The simplest contribution to the electron self-energy
part has the form

T
Z(s,.p)=F2 l<p+qlV]p? ZF(qm..‘) :
q n

-
. T
{0 o TV S

£.—(nt1inl,  Ba—pilm—p. (1.8)

We note that the characteristic energies of the ionic
excitations (the frequencies at which S({gw) is nonzero)
satisfy, in the liquid, the condition w/T < 1, whereas we
are interested in the electron spectrum in a substantially
wider range of energies Z T, This enables us to neglect
the effect of the dynamics of the ion subsystem, i.e., to
take into account only the terms with m = n in (1.6):

Slqul=5iqtbla}, (1.9)

1 -
Slay= | duS(ga),

(1.10)

where S(g) is the static structure factor of the liquid 7,
Using (1.4)—(1.7) and (1.9) in (1.8), we obtain the static
approximation

1
E(s..P)EWZI(pﬂ]Ile)I’S(q) - (1.11)

1
Bn—§p+¢
This approximation was used by Edwards in his well-
known papers[”] . The averaging he used, over all possi-
ble ion configurations, is contained implicitly in the
definitions (1.5) and (1.6), in which averaging over the
canonical ensemble of the liquid is performed.

The static structure factor S(g) is determined experi-
mentally from data on the elastic scattering of x-rays or
neutrons. Its typical behavior in a liquid is represented
in Fig. 1.

First we shall consider a one-dimensional model of a
liquid. We shall model the structure factor by two nar-
row peaks at g = K, this being the natural analog of
Fig. 1 in the one-dimensional case. We shall assume
that the Fermi level of the free electrons passes through
the degeneracy points of their spectrum, at which Bragg
gaps are formed in the case of an ideal periodic struc-
ture (see Fig. 2). We therefore take 2pF = K, where pp
is the Fermi momentum of the free electrons, The latter
condition is typical for "liquid semiconductors' %,

K being the analog of the reciprocal-lattice vector of the
ideal erystal.

From (1,11) we have (L is the length of the system)

Ld
S(ew) = 5 G [0+l VIP IS () et (1112)
P SN )

. L pdyg .
A —W_Il—z;f(p-i-qlwp}l S(q). {1.13)
Here we have made use of the characteristic structure
of 8(q), with two narrow peaks at q = +K.

It is not difficult to convince oneself'® that correc-
tions for the finite width of the peaks are small if the
conditions

1-%4:@—,:!;' or  up(€al, (1.14)
are fulfilled, where » is the width of the peaks, v is the
Fermi velocity of the free electrons, and the parameter
Ry, defined in (1.14), in the one -dimensional case plays
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the role of the correlation length of the short-range
order.

From Fig. 2 the following symmetry properties of the
free-electron spectrum in the one-dimensional case can
be seen:

Erex=--¢, fOT p~+K/2

(1.15)
Eoaw=—% fOr p~—H/2,

Then, considering the electron with p ~ +K/2 (the treat-
ment of p ~ —K/2 is analogous), we may take into account
only the first term in the right-hand side of (1,12):

Zetp) =A'Gofen, —L,). (1.16)

Thus, the use of the characteristic form of the liquid
structure factor makes it possible to replace the real
interaction Kp +q|V |p}1°8(q) in the liguid by the model
interaction 27NL A% (g — K). Then, the remaining per-
turbation

Algy=[<p+elVIp>[*8(g) ~2nNL' A% (g - K)

is unimportant, if the treatment is confined to the region
specified by the conditions (1,14). It should be empha-
sized that the introduction of this model interaction does
not imply the introducticn of long-range crystalline
order. The analysis is performed under the assumption
of a microscopically homogeneous liquid, and the ¢ondi-
tions (1.14) impose a restriction in the sense that the
correlation length of the short-range order should be
sufficiently large. The presence of long-range order
entails the appearance of "anomalous' Green functions,
which describe Umklapp processes (19 and substantially
alter the structure of the equations.

With the model interaction introduced above, we can
now sum all the important diagrams, It is not difficult to
see'® that, in each order of perturbation theory, dia-
grams with an alternating sequence of Green functions
fie, — gp}'l and {ie, + £p1™ (we are considering p ~ K/2)
and an alternating sequence of vertices with incoming or
outgoing interaction lines transferring momentum + K
give equal contributions (see Fig. 3), The general term
in the expansion for the Green function then has the form

Al
(ie—E.) " (ie+Ep) " Ue—Es)

&n {ep) = =niz2"(2k,)Goleiks), (1«17)
where A® is defined by (1.13), n is the order of perturba-
tion theory in A%, and z(e;£p) = A*Gol€; & p)Goles ; —Ep)-
The factor n! arises from simple combinatorial consid-
erations. In fact, there are 2n points to which interaction
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lines are attached. Of these, n points have an outgoing
line, which c¢an enter the remaining n free vertices
(corresponding to incoming lines) in any of n! ways, We
shall use the identity

2 Al Z jdt e-b(gz)"= J dt et 1C7-

Bl nmé o

{1.18)

Then the one-electron Green function is

i |+ »
Glap)= Zs'n(erp) jdte“%_‘l—,'mm(mp)h,(1-19)
where
ie,+ Ly
Gatepp)= . (1.20)

is the normal Green function of an ideal semiconductor
with energy gap 2{A|, and

L= fdﬁe“. ..
¢

is a particular type of averaging over the "fluctuations"
of the energy gap. Thus, the model considered for the
disordered system is equivalent to an ensemble of ideal
semiconductors, in the spectrum of which the energy gap
takes random values, with a distribution of a special
form.

Periorming the analytic continvation to real frequen-
cies in the usual way, we obtain the retarded (or ad-
vanced) Green function, The density of electron states
c¢an be found from the formula

Ney=— 2 g, 1m 02, (1.21)

where Ny is the density of free-electron states, From
(1.19) we have

Im G*4 (e, &, )_:Fnjdce'c(E"' )8 {e*-k, 1 4%)

(1.22)

- ¥%(e+gp} B(e!_ pi)e‘“'—')'”-"

and the density of states is
| 4 ' J KT (a=/A= ;)"- =2 |Aih|.e:p[_:_:]Erﬁ(Ai)'

Erii(x)=I dz e

N(e)

(1.23)

is the error function of imaginary argument. The den-
sity of states (1.23) is represented graphically in Fig. 4.

We have thus obtained a "pseudo-gap," of the type
proposed in the numerous papers of Mott and other au-
thors in order to interpret the properties of "liquid-
semiconductors.'” The width of the pseudo-gap is equal
in order of magnitude to the width of the forbidden band

<pegivip>

L #
g afz k4

FIG. 5
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of the corresponding crystal. The asymptotic behavior of
(1.23) has the form

N(E) { if
2e4*+0  for lz|-0.

We emphasize that the Green function (1.19) has no
pole singularities in the vicinity of the "Fermi surface”
and, in this sense, does not describe the spectrum of the
elementary excitations in the regicn of energies corre-
sponding to the pseudo-gap. The first of the conditions
(1.14) indicates that the formulas obtained are inapplica-
ble in the immediate vicinity ¢ ~ 0 of the Fermi level.
Far Rc 20a, where a is the interatOmic spacing, this

lel-s oo

(1.24)

_ hm1tat1on is extended to the region |£B| =~ 0.05 €p (e

is the free-electron Fermi energy),
IA] ~ (0.1—0.2)ep amounts to approximately (1/4)—
of the width of the pseudo-gap. The situation is im=-
proved with increasing R, but the vanishing of the den-
sity of states in the middle of the pseudo-gap raises
doubts. Moreover, for "liquid semiconductors' the esti-
mate T ~ |A| is typical, so that the second condition
(1.14) is already fulfilled when R, 2 10a.

The generalization of the results obtained to the
three-dimensional case encounters certain difficulties.
In particular, if in (1,11) we make use of the usual
local-pseudo-potential approximation, then, on integra-~
tion over the polar angle between the vectors p and g,
there arises a characteristic logarithmic expression for
the self-energy part '™ **) which is considerably less
singular than (1.12) in the energy region of interest and
leads only to weak changes in the density of states as
compared with the case of free electrons. It was pointed
out by Ziman"® that, under certain assumptions con-
cerning the higher correlation functions of the ions (in
particular, the four-ion correlation function), contribu-
tions to the electron self-energy part that have a "one-
dimensional” form of the type (1.12) can appear. Without
denying this possibility, we should like to remark that
these assumptions are too stringent, the more so0 be-
cause, at present, no theoretical or experimental me-
thods exist that permit one to find the higher ionic
correlators in the liguid. Incidentally, it turns out to be
sufficient to impose only one condition on the ionie
pseudo-potential (based essentially on its nonlocal na-
ture) in order to obtain a result of the type (1,16) in the
three-dimensional case. The matrix element {p + q|V|p;
of a nonloeal pseudo-potential depends not only on |g],
but also, in the general case, on |p| and [p +q|, i.e., it
depends also on the mutual orientation of the vectors p
and q'*). It then turns out that, in the region |q/ ~ 2pg
of interest, the pseudo-potential ¢corresponding to

"almost-backward' scattering is considerabl { greater
than for scattering through small angles [®+1?

ich, for typical
(1/8)

A typical dependence of the matrix element
(p +qlVIp) (Pl ~ PR, Il = 2pp) on the scattering angle
is shown in Fig. b. We shall assume that for the sub-
stances in which we are interested there is a sharply
pronounced peak in the pseudo-potential in the region of
scattering angles ¢ ~ #. Then, from (1.11) we obtain
{20 is the volume per atom)

dcos B1<p+ql ¥ip} 25 {q)

i8n=Epra

AN —E ot
(1.25)

and the problem reduces to a one-dimensional one.
Here,

S{eap) = jdq q-—~f

- i 1
A’—andqqzmIdc-osﬂl<p+q|V|p>|’S(q). (1.26)
n —1
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We assume that the conditions (1.14) are fulfilled and
that the integration over cos 6 is effectively cut off in
the interval

1981* <[ p—ps|/|2r] OF |80|* 20776, (1.27)

about 8§ ~ 7; this singles out a narrow cone, correspond-
ing to the dominant role of the backward scattering. For
p —ppl ~ 0.05pf we have [66] S 0.22. Therefore, in
the three-dimensional variant of our model the real
interaction [p + ¢|V[p)?S(q) is replaced by the model
interaction

g
E“—Asﬁ (q—K)ﬁ(cOS 9+1) .

The remaining perturbation

: ]

Ay, B)-|<p+q|V|p)|'S(q)—%A‘6 (g—K)8(cos8+1)
leads to the appearance of the above-mentioned weak
renormalizations of the density of states. It is not diffi-
cult to see that, in the three-dimensional case, in place
of (1.15) we have

Ep-xi=—% for |[p|~K/2. (1.28)

The subsequent treatment coincides with (1.17)—(1.23),
and all the formulas remain valid for the three-dimen-
sional system too.

2. THE VERTEX PART, POLARIZATION OPERATOR
AND DIELECTRIC FUNCTION

It is of interest to study, in the model under consider-
ation, the properties of the vertex part describing the
response of the system 1o an external electromagnetic
perturbation. We have the following expression for the
variation of the one-electron Green function on introduc-
tion of a weak external fieldt®:

4G (2p)
84,(qw)
where 0A  (qw) = {GAqw; —ﬁwqw} is the variation of the

external field and JH(epe + wp +q) is the required vertex
part. In this case we have for the free Green function:

=G (ep}*(epetoptq) G letoptyg), (2.1)

Gy {ep) .
W=G|(BP)JI} (EPB+mp+l])Go(E+.mP+‘])- (2,2}
where the free vertex
—epime -1,2,3
!.ll + + - ep L} P’ * '+
{epetoptyg) {e‘ 4=0 (2.3)

In the model considered, the variational derivative (2.1)
can be caiculated directly. In fact, from (1.17)—(1.19)
we have

8G(ep) 8 -
Mu(::) -5 {(E[;z(ep)r)‘f}o(ep)}
= (2 Z[;z(sp 1™ GGT{FP) [{z(etwptq) )™

el Ml

3Gy (ep)

X G (etoptq)+ 2 [tz (ep) ]“W

Amg

(2.4)

since 6G(ep)/6 A, @w) is cbtained from the set of dia-
grams of the type shown in Fig, 3 by inserting external-
field lines into any of the electron lines in Fig. 3 (see
Fig. 6a). In (2.4), m is the label of that block z(<p) of
Fig. 6a into which the external-field line enters. Using
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(2.2), it is not difficult to convince oneself that (see Fig.
6b)

[
ﬁ==Ga(sp)J,"(epe+wp+q)z(e.+wp+q)

+z(ep) /i (ep—Ketop—K+q) Gy (et op—K+q). (2.5)

Substituting (2.2) and (2.5) into (2.4), after certain
transformations we obtain

86 (ep)
8d.iqu)

X < Z ¢z (ep) Z trzm{etwptq) >:

Al med

=J M (epetaptq) Glep) Gy (2 top+q)

2.6)
+It{ep—Ketop—K+q) ( C,A‘Z Lzt (sp)E E‘"'”‘(e+mp+q)>

-l

which reduces immediately to

_SGAER) _ e (epetopa) (Gra(epn) Gro (e +op+ap+a) .
ﬁAn(qm) )

+I (ep—Ke+wp—K+q)<Gra{epp—K) G (e top—Ktqptq) 2, (2.7)

where Ga2(epp) is defined in (1.20), while

A

Gplie.pp—K} = +'m

(2.8)
is the anomalous Green function of the ideal semicon-
ductor, describing the elementary Umklapp process
p—p—K.

We see that, in the model considered, the electro-
magnetic response is described by the same formulas
as in an ideal semiconductor of the excitonic-insulator
type, but with a fluctuating energy gap. Finite expres-
sions arise, associated with pair products of anomalous
Green functions, while the average (of the type (1,19)) of
(2.8) is absent, corresponding to the absence of long-
range order in the system. The model interaction intro-
duced above is the direct analog of the Bragg scattering
in the ideal crystal and is responsible for the formation
of the distinctive kind of band structure (the psendo-gap)
in the electron spectrum. However, like the scattering
in the ideal crystal, it is insufficient for a correct des-
cription of the kinetics, for which we must take into ac-
count the dissipative scattering {the analog of defects and
phonons in the crystal) associated with the discarded part
of the real interaction,

We now turn to consider the dielectric properties of
our system. Since the polarization operator is directly
related to the scalar vertex, from (2.7) we have

= &
T{qun) = ~2 ;[d; ey Ty (Gent (£2B) Gun (et amp+ap+a)
+Gh'(3 in_K) GtA’(3n+'9m P""'IP—K'HI) }-<HIA‘ (q(l)m) . (2-9}

Summing over the Matsubara frequencies in the stan-
dard manner and performing the analytic continuation
jwp, — w + 10, we obtain [
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1 &'p  EpEorqthplprytd’

Il =-— t7(E E }
algw) 3 @ E\Epre f( ) —f(Epiy)
>‘:{ 1 + 1 } _1 e
Eyv—Epatotib E—Ep c—w—ib 24 {2n)* Epllpyy
' 1 1

U~ o) —f Epy { e} @2.10)

i.e., the pola.nzatmn operator of an ideal semiconductor.
Here Ej, = (Ep + AHYE (B (Ep) = {exp(Ep/T) + 1} !is the
Fermi dlstrlbutmn function.,

E,E,  tutid

As A® — 0 the second term in (2.10} tends to zero,
while the first gives the usual polarization operator of
the electron gas. On the other hand, for T — 0 but A®
# 0, the first term in (2,10) vanishes, so that

a'p  EEprq—Erbpeq—4A°

H,e(qm)-— TE Ebos (2.11)
X{ E,+E,,i+m+£6 * E,+E,:—m—i6}'
The dielectric function is
elgo) =1+ %H(qm)-(em(qm);, (2,12}
where
£.0(00) =14 [T u(q0) (2.13)

is the dieleciric function of the ideal semiconductor.

We shall consider first the case w = 0, For vpq
<. |A| we obtain from (2,11)

_vie mp @ v (2.14)
Lela0) == i ™ e 1847
so that '
ear(90) =1+, %/ 184 =1 +0,/64°, (2.15)
where «° = 4mppe®/r is the square of the inverse Debye

screening length and w; = 47ne%m is the square of the
plasma frequency (n is the total electron density).

On the other hand, for vpq 2> |A]| it follows from
(2.10)—(2.11) that

a2 (g0 =map s/ n* =n’/ dme®, {2.16)

s0 that

e (D) =1+u%g?, (2.17)

i.e., we have the usual Debye screening,

We shall use the simplest interpolation from (2.15) to
(2.17);

2

£a{q0) =1+ (2.18)

g +184% v

Then for our model of a disordered system we obtain

e(qO}—Idte-‘eu-(QO)-i— 1&4*‘“‘ p(jgj,)m.( "'9') (2.19)

1847
where Ei{(—x) is the integral exponential function, For
vpa & |Al we use the asymptotic form

Ei{~x} = —e*/x

Tab s

and obtain (2,17). For vpq < |A| we use

Ei{—z} ~ Inz,
E—eil
so that
oy UP2K2 D’Rq’ 2 2
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Correspondingly, the effective Coulomb interaction
takes the form

T {q0) =4na¥/q*, (2.21)
. B I vy’
i /(1 1847 " TEar ) (2.22)

which formally resembles the well-known "zero-charge"
situation in field theory. Behavior of the type
(2.20)—(2,22) has been obtained recently in a treatment
of the so-called zero-gap semiconductors''®

We turn to the analysis of the case w # 0, vpg << |A|,
From (2,11} we have

A - nyq mps A
e Hl.¢ (qu) = — 1 f o T (223)
qu mPv A?
Im M (gu}= J ENW
x{-s ?—(§P=+A=)'*]—.5[2—+(§,,=+A?)'*']}. (2.24)

We first consider the real part of the dielectriec fune-
tion. From (2,23) we obtain

net At 1
Ree (o) =1 +i_f .
m

2 m ® Ay A (2.25)

For w — 0 (w <& 2]A]}, (2.15) follows naturally from this,
For w 3 2|A| we obtain the plasma limit:

Re eyilo)=1—w, o’ [2.26}
We shall use the simplest approximation:
w® w,t w?
Reea bA’ (1_2?)"(,)_39(23?_1)' (2.27)
Then, from (2.12),
@t . w? o aan
Ree(w)=1-goki{ - 7r )= Tit—eish (2.8)

From this, for w >» 2]A|, the plasma limit (2.26) fol-
lows. For w << 2|A| we obtain, analogously to (2,21),

H
Ree(wm)=1— 2—ln

64 (2.29)

i1}
Th

We emphasize that the qualitative behavior of Re €(w)
turns out to be practically independent of the method of
interpolation in the formulas of the type (2.19) and (2.27).
We can combine (2,20) and (2.29) by writing a single ex-
pression, valid with logarithmic accuracy:

max{w®; vigth
44* ’

This result is valid only for w <€ 2|A|, vpa < |Aj, The
interpolation formula (2.28) describes the entire fre-
quency interval. One can easily convince oneself that
Re €(w) given by (2.28) has no zeros other than the
plasma zero, which arises in the limit w > 2|A],

2.30)

The behavior of the imaginary part of the dielectric
function is of special interest, since it determines, in
particular, the optical absorption in the system, The
absorption is determined by the real part of the conduc-
tivity, which is related to Im e{w) as follows:

Be ¢{w)=0 Im e{w)/4n.

From (2.11) and (2.12) we obtain

(2.31)
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%5

# net ¢ ¢
Ime(w}= -4—7‘_‘[ dl e t__[nd'é» e reds)®

Aol

—gereant] - o] T rrean ]}

onet 14| s L
=2 —— b
1 (MEJ;&A:_;).-’,
_ @y Al o w® d )
~+(2) ool - M = e | - (2.32)
Correspondingly,
ne' Al w? wt d C L @
Ren(o)=r “p{_rw }{tw _'Eta_} Bl o L-. '
(2.33)
We have the following asymptotic behavior for
w = 2)Al:
2 A ]
Ime()=a(=2) (=), (2.34)
A ]
Rea(m)z—n(T)‘ (2.35)
For w € 2|A|,
Im & (o) 2n0,64%, (2.36)
net
Beﬂ(ﬁj)z?ﬂ b’Az+0 for w=+{, (2.37)

The static conductivity in our approximation vanishes,
indicating a particular type of Bragg electron-localiza-
tion. Analogously, the static conductivity of the ideal
semiconductor at T = 0 equals zero, We have obtained
the analog of the usual interband absorption, In addition
(2.36) shows that our model describes a substance in-
termediate between a metal and an insulator: in a metal
Im €{w) = 1/, and in an insulator Im €(w) = 0 for w = 0.
In our case, Im e{w) has a finite discontinuity at w = 0
(Im €{w) = —Im €(-w)).

It should be noted that, generally speaking, in view of
the fact that the entire treatment is invalid (in the sense
of the first of the conditions (1.14)) near the center of
the pseudo-gap, when ¢ ~ £_ ~ 0, our formulas are not
valid in the region of low frequencies. Therefore, the
calculation performed for the polarization operator is
valid, clearly, only in the region of sufficiently high fre-
quencies:

W F ey =0/ R, {2.38)

where y and R, are defined in (1.14). For Rc 20a, we
are concerned w1th irequencies greater than or of the
order of (1/4)—(1/8) of the width of the pseudo-gap. The
condition (2.38) has a clear meaning—in the characteris-
tie time of variation of the external field the electron
moves over a distance less than R;. Naturally. allow-
ance for the finite temperature will also change the
asymptotic behavior of €({gw) for small q and w, because
of the appearance of excited carriers in the "upper
band".

In conclusion, we note that the model ¢onsidered and
all the results obtained above can be used in the analysis
of the properties of one-dimensional systems (of the
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TTF-TCNQ type) undergoing a Peierls structural tran-
sition, since the strong fluctuations of the order param-
eter in the one-dimensional case make such systems
similar in a certain sense to "liquid semiconductors" [*%],
Inasmuch as Ry, in this case can reach hundreds of inter-
atomie spacings, and the temperatures are sufficiently
low, the region of applicability of the theory is substan-
tially broadened.
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Quasi-one-dimensional systems undergoing a Peierls transition
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A model of a quasi-one-dimensional system undergoing a Peierls structural transition is analyzed on the
basis of the Ginzburg— Landau one-dimensional model, The electronic-state density with a pseudogap
{s derived for a strictly one-dimensional system, in which there is no true transition, The pseudogap
arises because of fluctuations in the short-range order corresponding to a Peierls lattice distortion. The
dielectric propertics of the system turn out to occupy an intermediate position between those of metals
and dielectrics, An analysis is also made of the role of fluctuations below the temperature of the true
transition, which is stabilized in a three=-dimensional system. These fluctuations lead to the formation
of a pseudogap in the state density, so that measurements of the electronic characteristics of the system

cannot reveal the point at which the true transition occurs,

Quasi-one-dimensional systems having a metallic conduc-
tivity have recently been the object of considerable experi-
mental work.!»? Study of erystals based on TCNQand plat-
inum complexes [of the type K;Pt(CN);Brg 333H,0] has
spurred interest inthe familiar Peierls arguments regard-
ing the instability of a one-dimensional metal with respect
to a change in the lattice constant.” According to x-ray
structural®’ and neutron-diffraction® data, a Peierls transi-
tion actually occurs in the compound K;Pt(CN)yBry, 333H,0,
so that at temperatures T € 80°K the initial lattice con-
stant is increased by a factor of 6, while at higher tem-
peratures there is a pronounced softening of the frequency
of phonons having a quasimomentum =~ 2py (p is the Fermi
momentum of the electrons). It is also highly probable
that a Peierls transition has been observed in the com-
pound’ TFF—TCNQ, although as yet there is no directevi-
dence for a doubling of the lattice constant in this system.

Below we describe a model for systems of this type
under conditions such that the correlation length for the
fluctuations in the order parameter corresponding to the
deformation of the lattice with the new lattice constant is
much longer than the interatomic distance. We analyze
the one-electron spectrum and the state density of the
system. We then turn to the dielectric constant corre-
sponding to the reaction to an electric field oriented par-
allel to the metallic chains, and we analyze the conductiv-
ity along the chains at high frequencies. The properties
of this system turn out to occupy an intermediate position
between typical metallic and typical semiconducting prop-
erties, implying that there are certain unique features in
quasi-one-dimensional systems in which the fluctuations
of the order parameter near a second-order phase tran-
sition are extremely important.

We begin from the Hamiltonian
\ 1
Hom D tyata+ Dottt 75 O feshosts g H k), @)
P q P

where tEp is the free-electron energy, reckoned from the
Fermi level; wq is the phonon spectrum; gp corresponds
to the electron—phonon interaction; and ap and by are the
electron and phonon annihilation operators. Theory has
already been worked out® 1 for a Peierls transition in the
self-consistent-field approximation in a strictly one-di-
mensional system; it is also known!! that fluctuations of
the self-consistent field in a one-dimensional system are
extremely important and rule out the possibility of phase
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transitions altogether in a strictly one-dimensional sys-
tem. Account of the three-dimensional nature of a real
system can help stabilize the true transition (or suppress
fluctuations). We are essentially adopting the Peierls-
transition model proposed by Lee et al.,'? which is based
on the one-dimensional Ginzburg—Landau model, which
has been analyzed in detail.!® Although there is no true
transition according to this model, the correlation radius
for short-range order becomes macroscopic at a certain
temperature Tp ~ 1/4T¢ (T is the transition temperature
in the self-consistent-field approximation). We are in-
terested in the temperature range T ~ Tp, in which this
radius is quite large. If the true (three-dimensional) tran-
sition is stabilized at a certain temperature, i.e., if long-
range order appears, the analysis must be modified. How-
ever, fluctuations are also important in the neighborhood
of the true transition. The corresponding calculations are
given in the Appendix.

Instead of the Ginzburg—Landau model we could adopt
an interaction having a soft phonon mode near the transi-
tion puint,“ but in this case we would have to use specific
models for the soft mode, and the range of applicability of
these models is unclear. For the problem under consid-
eration here the Landau free energy is'?

F (¥g) =a (T, 20| ¥ !
45T, 200 | Yo [+ (7. 200) (2 — 2201 | 1, @)
where the order parameter ¥q = gQ (bQ +bZq) is propor-

tional to the Pierles lattice deformation. The expansion
coefficients are

r—T 2 «
a=Ng—— :I",=-T}~E,.axp{—-&-}.

T, £,
Ty 1
a=N,{a,+{b1ﬁa.,)-r—‘}ﬁ: e = N (T); (3)
T (3) v 14 7%(3)

BN =15 + bo=77 h=Tgz"

where Iny =C is the Euler constant, N; is the free-elec-
tron state density at the Fermi level, Ep is the Fermi en-
ergy, and vp is the Fermi velocity. Account of the elec-
tron-band structure in the strong-coupling approximation
alters the constants in (3) only slightly.'® In this model an

electron is scattered in the static field of random fluctua-
tions of the order parameter ¥q. The simplest eigenener-
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gy part of the one-electron Green's function is %1 [g, =
(2n + 1)7T]

d 1
3 (e =0 | 5 @O @)

— i’
where S(8) is the static structural factor for fluctuations
of the order parameter, proportional to the Fourier trans-
form of the two-point correlation function for the order
parameter. For this model we have!®!?

& &1 (7) (1) )
23 Q=(g—Zr e T O F R (D)’

where ¢(T) is the correlation length for fluctuations in the
order parameter (the short-range correlation radius). At
T ~ 1/4Te the length £{T) increases exponentially with de-
creasing temperature.'* Now assuming an electron having
p ~ + pg, we find

I (20, P) =<4 [ieq + §p + tv 71 (T)]71 == A2 (e, +-Ep) 7y (6)
At =Gy, (7)

where we have used Ep-2p, = “Ep for the one-dimensional
system.

The approximate equality in (6) holds [the corrections
for the finite width of the S(Q) peak are small] under the
conditions!’

E(M>lp—rol™

UFE"l (T}@.?.r.?'. (8)

The first condition in (8) imposes a restriction on our
analysis in the immediate vicinity of the Fermi level T ~
1/4TC, where ¢(T) is large, the corresponding energy range
is extremely narrow and of no particular interest. Accord-
ing to the data of ref. 5, we have ¢a (T = 300°K) > 10%, where
a is the Pt—Ptdistance in the compound K;Pt(CN)Bry 333H,0.
Although the estimates of ref. 12 are less favorable, the
values of ¢(T) near the "transition" are undoubtedly very
large and can reach hundreds of interatomic distances.

Using approximation (6) in the higher-order diagrams,
we can sum all!) the important diagrams by the perturba-
tion-theory method proposed in ref. 17. Scalapino et al,»
analyzed the contribution of only the simplest diagram in
(6), but the higher-order approximations are extremely
important. Carrying out the summation, we find'" the one-
electron Green's function to be

(==]

ey + 6,
G (tn, p)= S e e — —tae = et (tm P, Py (9)
0

where

it &y

Gusltw Py )= T3 — B (10)

i= the normal Green's function of an ideal Peierls insula-

tor having an energy gap | Al. It is easy to say that Eq. (9)

is the Green's function of an electron in an external field

W cos 2pgx whose amplitude "fluctuates™ with a distribution
2

P{W}l=|W |/A2.c-."(W ) The integral in (9} denotes an

averaging over these fluctuations.

After the standard analytic continuation to the real
[requencies, we find the electronic-state density to be
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Fig. 1. Electronic density.
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where Erfi x = S dx®*. Figure 1 shows this state density,

(1]
which contains a typical pseudogap having a width on the
order of |A| ~ (y%)/? The temperature dependence of

(%% was calculated in ref. 13; the asymptotic behavior is

N (e) 62
le| = o; Tﬂﬂ.‘:Zﬁ—%G as |e|—=0.

N (¢)
N, -1 as

The vanishing of the state density in the middle of the
pseudogap is nonphysical; our analysis is not valid inthe im-
mediate vicinity of the Fermi level because of restriction
(8). Accordingly, in contrast with the situation in ref. 13,
the summation of all the important diagrams leads to the
existence of a pseudogap not only at T > 1/4T, but also at
T < 1/4Te. A true gap does not arise even at low temper-
atures in the "dielectric" phase.z) As is shown in the Ap-
pendix, this result holds even in the case of a true phase
transition (at T £ Tg), so that, strictly speaking, measure-
ments of the electronic characteristics of the system can-
not reveal the transition point.

We turn now to the reaction of the system to a longi-
tudinal electric field directed parallel to the metallic
chains. A variation ¢ o (@ is the wave vector along the
chain and w is the frequency of the external field) causes
a variation in the one-electron Green's function:

ot P) _ e, p)T(e, po w2+ )G (e+w, p+a),
es

(12)
where T'(g, p, € + w, p + q) is the corresponding vertex
part. In this model the variational derivative in (12) can
be calculated immediately;!" we find
3G (e, p)
P
—eGale, P, P—200) Gy (st p—2p+ 0, P49,

=—e{Grale, p, P)Gesle+o, PHa, P19

(13)

where e is the electronic charge, G,? (g, p, p) is given in
(10), and
A

Gy ity By P —2py) = (ie,)® — Eﬂi A2

(14)
is the anomalous Green's function of a Peierls dielectric,
which describes the flipping p — p—2p;. Accordingly, av-
erapges over hinary products of anomalous Green's func-
tions arise in the theory, while the anomalous functions
themselves do not, in correspondence with the absence of
long-range order in the system.

The polarization operator is (wm = 2emT)

I (qog) = — | dte~527 D Voo X
0 L



x| 4, (Gt b PG leatom p+a P+ (15)

—@

+ G:a! (e, P P — 2pg) G:a’ (tat om P+9, P— 20+ 9}} = <Hu‘ (g, '“m)>:.

where [a2(q, wm) is the polarization operator of a Peierls
dielectric, and p is the density of the metallic chains in a
eross section of the sample (here we are interested inthe
response of a unit volume of the system). The analysis
continues as in ref. 17. The dielectric constant along the
metallic chains is

hme?
elg, w)=1- PE] IT {qu) = <3:p (?"">E, (16}
where
4mel
() =1+ —5- T (a, ©) )

is the dielectric constant of a Peierls dielectric.

We consider first the case w = 0; then for this model
we find!?
pial pla? vlg?

e (g, D]:ti“_ﬁ';;_s“PWEi(_'_g%)' (18)
where n? = B-;erop is the inverse square of the Debye
screening radius, and Ei(—x) is the integral exponential
function. Hence, with vpg> |A|, we find e(g, 0)= 1 +
(»%/q%. For vpdq < | Al we find

O e s (19)

(g, U):-‘:‘l—vwln‘fw.

This £ (g, 0) behavior occupies an intermediate posi-
tion between the behavior characteristic of metals and that
characteristic of dielectrics.

Turning now to the case w = 0, vpq < | A|, we find!!

w? 2 Wl _m’
Re((Iu)ki—‘E“%Ei(—:&—!)—w—:{‘!—e E}, (20)

where w%, - sz_Hz is the square of the plasma frequency.

In the case w > 2|A| we have Re ¢ (W)=~ 1-—(w§)/w2); in
the case w <« 2| A | we have

w? Wt .
Res[m]%i—ﬁ—;ﬁlﬂ‘[ﬁ?. (21)

Of particular interest is the behavior ofthe imaginary
part of the dielectric constant, since it governsthe absorp-
tion of electromagnetic energy in the system. The real
part of the conductivity is

Rea () == Tm s (). (22)

By analogy with ref. 17 we have

w?
ar
A
Tm ¢ (o :%«;;Jm—,lg dre=t
b ar—t
caplbly B2 oo
=RupTa ¢ FETIr 7Y Rt Ml T Y ) (23)

Asymptotically we find

Wy 2 AN
Im:{w)ﬂ:ﬂ(r) (‘;_,_) ’
A nwi

A (24)
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w
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Fig. 2. Qualitative behavior of the imaginary part of the dielectric con-
stant (a) and of the real part of the conductvity (b) as functions of the
frequency of the external field.

1 w2141
b

forw » 2| A |; forw « 2| A |, we find

L] ‘*‘:
T {u) =gy 2o

(25)
1 [ @p\?
Raa(w)%-ﬁ;(]—) w—>0 for w—0.

Accordingly, the static conductivity vanishes in our
approximation. Analogously, the static conductivity of a
Peierls dielectric vanishes at zero temperature. Equa-
tion (23) describes a sort of interband absorption (Fig. 2),
having a peak at w ~ 2] A |. We also see that our model
describes a substance whose properties are intermediate
between those of metals and dielectrics: In a metal we
would have Im ¢ (w) ~ 1/w as w —0, while in a dielectric
we would have Im £ (w) = 0 atw = 0. In our case the quar
tity Im & (w) has a finite discontinuity at w = 0:

(Ime (v) = —Ilm e (—w)).

Strictly speaking, these equations do not hold at low

frequencies, since the entire analysis breaks down near

the Fermi level, according to the first condition in (8).
Our calculation of the polarization operator holds only for

w> v L (T). (26)

This condition has a clear meaning: Over the scale
time for a change in the external field an electron moves
a distance shorter than ¢ (T).

A Peierls system thus apparently represents a sub-
stance whose properties occupy an intermediate position
between those of metals and dielectrics. An experimenta
search for absorption peaks at frequencies corresponding
to the width of the pseudogap would be very interesting.
The possible anomalous behavior of £ (w) according to (2]
and (25) at w £ 2| A| emphasizes the importance of ex-
periments in the rf range. No reliable experimental data
are presently available.

In conclusion the author thanks L. V. Keldysh, L. N
Bulaevskii, and D. I. Khomskii for many discussions and
comments.

APPENDIX

A phase transition cannot occur in a strictly one-di-
mensional system because of the disruptive influence of
fluctuations.!' In particular, the self-consistent-field ap
proximation does not have a range of applicability becaus
of the large width of the critical region, AT/ Te ~ 1 (ref.
13). However, since real systems are three-dimensiona
in nature, fluctuations can be suppressed in some manne
(e.g., the fluctuation amplitude can be limited by a long-
range Coulomb interaction between electrons of neighbor



ing chains). Then a true phase transition is possible inthe
in the system at T = Te. Apparently it is this case which
oceurs in K;Pt(CN) Bry 333H,0 (ref. 4), where the true
(three-dimensional) transition stabilizes at Te¢ € 80°K.
Then, at T < Tg, a long-range order arises, and the sys-
tem can be described satisfactorily in the self-consistent-
field approximation. However, the fluctuations of the or-
der parameter, even though suppressed, can turn out to be
important even at T < Tq. In this case we have!®

Yo =2+ By, (A.1)
where
e =T a T<T
a \' %@y T A o
t T T, at =0

is the equilibrium value of the order parameter, and 8Q
is its fluctuation. Here A plays the role ofacoherent field,
which transmits a momentum 2p, and which leads to Bragg
scattering of electrons by the boundaries of the new Bril-
louin zone, and 63Q is the random field. In the diagram
technique we find two types of interaction lines: lines of the
coherent field A, which transmita momentum 2p, and lines
of the random field, which are associated with the corre-
lator {6§’JQ6¢' _Q) = (5;{.-2)8((3). Here S(Q) is again given by
(5) (ref. 13). The equations for (%*) and ¢(T) derived on
the basis of the self-consistent-field approximation!® are
now, generally speaking, inapplicable (because ofthe three-
dimensional nature of the critical fluctuations), so that
(6¢*yand ¢(T) are treated below as parameters of the the-
ory. Near the transition point (T € T¢) the quantity £(T)
inereases, so that we can again use an approximation like
that in (6)-(8). Then the random-field lines also trans-
mit a momentum 2p,. In the expansion of the one-elec-
tron Green's function a sequence of alternating Green's
functions {iej — £p }71 and {ig; + £p}_1 dominates. In per-
turbation theory of order n there are 2n vertices, of
which 2k are connected by random-field lines of the fluc-
tuations, and with which factors 6% = (6¢?) are associ-
ated; at 2(n — k) vertices, single coherent-scattering lines
arise, each of which is associated with a factor A. Then
the expansion of the Green's function is

Clnt)=3 3 B, &) (A.3)
n=0 k=0
where
B}'— [A'4}

n!
|4 k) [m:h BA[ R (g —Ep) ™ (1ag 65} (ber — {511

Actually, an electronic line has 2k vertices, to which
random-field lines are attached; of these vertices, khave
an outgoing line, which goes to the remaining k vertices
inany of k! methods. Here [n!/k!(n—k)!]? is the num-
ber of arrangements of single coherent-field lines at any
2(n — k) vertices taken from the total of 2n vertices; the
circumstance that the momentum 2p, "enters" half of
these vertices and "exits" from the other half is taken
into account. We use the identity (1 + x)™(1 + y)P =

b s kakZCEiCE?, where we have set
=0

1A A
=3 =|Le¥g i y=2%
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where

=

Sdiﬁ..‘zSdﬂetﬁlmt...:—idit”tlS o...
(1] L]

We have obtained a normal Green's function with a
gap which "fluctuates™ around A as given by Egs. (A.2).
The equation for the anomalous Green's function is obvi-
ous. As A —0, Eq. (A.5) converts into Eq. (9), and in the
case 6A —0 we find (10), i.e., an ideal Peierls dielectric.
Accordingly, the analysis above is valid for the case T 5
Te¢. Obviously, even in the case T ¢ T, the fluctuations
are extremely important. For the state density we have

AP
N(e) e g‘d%‘l‘l’a[ti_mli—h ) ]
L2

= - =l A,
Ny n V ‘!_5111+:-Er_‘;\_|2 (A.6)

Omitting the lengthy details, we state that as 6A — 0
(i.e., as T —0) we would have

l=] >4,

(A.T)

el
N (0) _’[ e
He 0 for |e|< 8,
i.e., we find an ideal dielectric with a gap 2A. When §A is
finite we always have N(g)/N;y = 0 for | £| < A.

For example, as | | = 0 we would have

o o)

(A.8)

xz

where Erfec x =2 /yn gdxe‘xz. With | €] = A we find

N(le|= ANy~ Ja/Tsal.

Accordingly, we again find a state density having a
pseudogap. In the case |6A| « A the state density in the
energy gap is of course small, but this is not generally
true in the case T £ Ty, We see that fluctuations of the
order parameter are extremely important even in the case
of a true phase transition. Near the transition, the state
density has a pseudogap at both T > T, and T # Tg. In this
sense the transition point is not defined and cannot be de-
termined from measurements of electronic characteristics
of the system. In terms of their effects, the fluctuations
turn out to be analogous to an internal disorder of the sys-
tem, analyzed in ref. 18: They suppress the true transi-
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tion and "smear" its effects on the electronic properties.

Note added in proof. D.B, Tanner recently
reported [ Phys. Rev. Lett., 32,1303 (1974)] experimental
data on IR absorption in TTF = TCNQ at 65 and 320°K. The
results are qualitatively analogous to Fig. 2b, with Re o
=2 |Al) ~ 5-10%-10% "'+ cm . Extrapolating (25)to
w = 2|A| and using the experimental values 2|A | = 0.14
eV, and wp, = 1.2 eV, we find Re ¢ (@ -2lah~8-10 07t

em-1.

) We assume that all the higher-order correlators for the order parameter
can be factored into binary correlators; this procedure is equivalent to
taking only Gaussian fluctuations inte account, '

%) pccount of non-Gaussian fluctuations could hardly have a qualitative ef-
fect on this result. The gap can appear only in the presence of a true long-
range order.
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It is shown that the most probable spatial behavior of the cme-electror_l Green function in the region of
localized states mear the mobility edge in the Anderson maxdel coincides with the spatial behavior of the
correlation function in the critical region of a second-order phase transition with a zero-component order

parameter.

PACS numbers: 71.50. 4+t

Ideas about the localization of electrons in a random
field lie at the basis of the modern theory of disordered
systems.™? The most highly developed scheme for
treating the problem of localization is the well-known
Anderson model®* describing an electron propagating
in a regular lattice with random energy levels at the
different sites, Most of the papers on the Anderson
model are devoted {0 proving the localization of elec-
tron states when the ratio of the parameter W describ-
ing the spread of levels to the amplitude V of an elec-
tron transition from site to site is sufficiently large, to
determining the critical ratio W,/V, and also to deter-
mining the mobility edges E,, i.e., the critical elec-
tron energies separating the regions of localized and
delocalized states in the band, (424 It is of great in-
terest to study the character of the electron states near
the mobility edge, since the corresponding characteris-

1008 Sov. Phys. JETP, Vol. 43, No. 5, May 1976

tics essentially determine the kinetics and other elec-
tronic properties of disordered systems. (51 Attempts
in this direction have been undertaken in papers by
Anderson, Edwards, and Freed.!®¢7

There exist a number of cbvious analogies between
the problem of the localization of an electron near the
mobility edge and the problem of describing the critical
phenomena near a second-order phase-transition point.
For example, as the electron energy approaches the
mobility edge in the region of localized states the local-
ization length of the electron wavefunction diverges,
just as the correlation length of fluctuations at a phase-
transition point diverges. This prompts the thought that
the spatial behavior of electron states near the mobility
edge can be described by the (scaling) dependences that
are characteristic for the phase-transition problem,
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wi-th critical indices determined only by the dimension-
ality of space and of the corresponding order param-
eter, 18!

In the present paper, using the method of Anderson,m

we show that the most probable spatial behavior of the

one-electron Green function at the mobility edge coin-

cides with the spatial behavior of the correlation func-

tion for the problem of critical phenomena with a zero-
component order parameter. % 10

The Hamiltonian of the Anderson model has the
formt31

H= ; Ej*a; + Z Viaita;.
i

Here, a; and a; are the electron creation and annihila-
tion operators at the lattice site ¢, and E, are the ran-
dom energy levels at the sites, distributed in accor-
dance with the law

1)

1/W, |El<'/.W

0, |Ej| >, W )

pE)={
The transition amplitude V,, from site to site is as-
sumed to be nonzero, and equal to a constant V, for
transitions between nearest neighbors only.

The character of the electron states is determined by
the one-electron Green function

a1 g ),

which is the transition amplitude from the site at the
point R, to the site at the point R; for an electron with
energy E. A renormalized perturbation—theory series
in V is constructed for this Green function. As Ander-
son has shown, *?! the localization problem reduces to
investigating the convergence of this series, where, in
view of the random character of the quantities E;, the
convergence is understood in the sense of convergence
with a certain probability. >4’ In the region of localized
states the series converges with probability unity, and
the condition for convergence determines the critical
ratio W,/V or the position of the localization edge in
the band.

3)

The most probable behavior of the Green function can

be represented in the form® 3’
C 2eV\Y gV
GulE) s~ Y ZeRRY) (S5) (-0, K), @)

N=0

where Zy(R, —R;) is the number of paths of N steps,
without intersections, linking site j with site ¢, and ¥
is a slowly varying (logarithmic) function of the ratio
V/W and of the so-called connectivity constant K of the
lattice. ®®? For simplicity we consider below an Ander-
son transition in the center of the band (at E=0). In
the general case, in (4) we must replace 2V/W by
2Vp(E), where p(E) is the density of electron states. 13!
The critical bandwidth W, corresponding to the thresh-
old of localization is determined by the equation®’

2V v
W:KW (WC’K)‘

1= 5)
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For E #0 a condition of the type (5) was discussed in‘"¥

Thus, the spatial behavior of the Green function is
entirely determined by the statistics of nonintersecting
paths, through the function Zy(R; ~R;). Anderson®!
and Thouless'!!’ used a Z,(R) obtained as the resuit of
machine experiments. We shall make use of the ana-
lytic theory of de Gennes and des Cloizeaux. '’ Using
Wilson’s e-expansion method, ‘®' de Gennes and des
Cloizeaux considered the statistics of random walks
without intersections and showed that the function Z,(R)
of interest to us is determined, in a space of d dimen-
sions, by the inverse Laplace transform

e+ioo

d:

=i

e¥*Gy (s, R) 6)

of the unrenormalized Green function Gy(s,R) of a
Euclidian field theory (Landau-Ginzburg phase-transi-
tion theory) with Lagrangian of the form

2o=13 (v0r+mion +La (Y 01)

i

(7

et

where 7 is the number of components of the field & and
is equal to zero in the problem under consideration.
(The condition =0 eliminates the “superfluous” dia-
grams with loops, which are absent in the nonintersect-
ing random-walk problem,) The dimensionless param-
eter s is related to the unrenormalized mass: s =m?2a?,
where a is a characteristic length of the order of the
lattice constant. The phase transition correspondsm
to the vanishing of the renormalized mass m of the field
theory (7) as s—s,:

8)

m~a='(s—s.) ",
where v is the critical index of the correlation length.

In (6) we must take ¢>s,. The parameter s, is re-
lated to the connectivity of the lattice!® 10,121,

K=exp (sc). (9)

Using (6) and (3), we obtain

Gy~ 2 cTW%exp{N(s—sc)}Gu(s, R—R) (%K) x\p“‘(%,x)
eplm

ds - W.
~ | -6t R.-—R,)Zoxp{N(s—sg)+Nln W}

c=ix Nl

=Gy (ln%+sc; Ri—Rj) 10)
which is the main result, showing that the most prob-
able spatial behavior of the one-electron Green function
of the Anderson model in the region of localized states
near the mobility edge (W2 W,) coincides with the be-
havior of the correlation function of the phase-transi-
tion theory (7) with =0, and W=W, corresponds to the
transition point.

For W2 W, the Green function falls off exponentially
with distancef®’:;

Gy ~ exp{—%} i IRI=|R~R;|>R,.,

loe

1)

M. V. Sadovskii 1009



where

Rigc~m='~a I W-w.

W, | K (12)

plays the role of the localization length, Analogously,
for E#0, but for ExE,,

E-E |~
E,

Rm'-a'

In the framework of the Wilson e-expansion (d =4 - ¢)
for » =0, we have

1 g 15 ,

v=2—{1+8—+2563+...}z0.592 for  em=1, (13)
in excellent agreement with Anderson’s result »=0,6, ‘"
obtained from a machine analysis of the statistics of

nonintersecting paths,

For W=W, we have

Gy R|-t-2bm (14)
where
;3
nm{ie el 008 for oot (15)

The small value of the critical index 7 implies that the

localization assumed by Thouless®!? (who evidently
used unreliable numerical values, obtained in the ma-
chine analysis, for the critical indices in the pre-ex-
ponential factor in Z,(R)), with a power-law decay of
the wavefunctions, is impossible in the given model.
In the analog of formula (14) in™!?, the exponent is
equal to 17/9, which falls in the region of possible val-
ues (from § to §, according to Thouless) of the local-

. ization exponent, In our case, d-2+7=1,032 for
d=3.

Naturally, the asymptotic formulas (11) and (14)
given above can also be obtained by direct use of the
asymptotic formulas for Z,(R) obtained by des
Cloizeanx, '

The analysis carried out is inapplicable in the one-
dimensional case, since in the model under considera-
tion, with nearest-neighbor interaction, Anderson’s re-
normalized series for the electron Green function con-
tains only two terms, corresponding to the two possible
nonintersecting paths, ***? The question of localization
reduces to an investigation of the convergence of a cer-
tain continued fraction, and the statistics of noninter-
secting paths do not play a special role, Therefore, a
one-dimensional model of a phase transition, of the
Landau-Ginzburg type, evidently has no direct relation
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to the problem of the localization of electrons in a one-
dimensional disordered system. The same conclusion
is obtained from other arguments in a recent paper by

Thouless, '#?

In conelusion, we emphasize that the most probable
electron Green function near the mobility edge was con-
sidered above.  In papers by Edwards®®! and Freed!™ an
analogy has been noted between the problem of nonin-
tersecting random walks and the problem of calculating
the one-electron Green function averaged over random
configurations of impurities. Starting from this anal-
ogy, it is not difficult to convince oneseld that the dia-
grammatic series of Edwards for this Green function,*'®!
in the Gaussian approximation for the statistics of the
impurities, is generated by the diagrammatic series for
Gy(s) of the problem (7) with » =0, after the appropriate
analytic continuation in the parameters of the Lagrang-
ian (see also the paper''*’), The important point here,
however, is that the sign of the interaction constant g,
changes, so that the correspondence with the theory of
phase transitions is evidently lost,  Physically, this is
connected with the fact that random walks without in-
tersections are equivalent to the thermodynamics of a
polymer chain with repulsion between the links, where-
as the thermodynamics of an electron in a system of
impurities is equivalent to the thermodynamics of a
polymer with attraction.®! The question of the possi-
bility of applying Wilson’s e-expansion in this problem
remains open,

The author expresses his deep gratitude to L. V.
Keldysh and Yu. A, Izyumov for discussion of a wide -
range of questions associated with this work.
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Oscillations of the phase of the order parameter are considered in quasi-one-dimensional systems that

undergo a Peierls structural transition. Their spectrum is calculated with allowance for the effects of the

Coulomb interaction of the charge-density wave (CDW) on different chains and within a single chain. It is

shown that the interaction of the CDW with charged impurities leads to pinning of the wave. Nonlinear

excitations of CDW of the soliton type are considered. CDW interaction on neighboring chains leads to a
~ binding of solitons and antisolitons into pairs that play the role of defects in the CDW structure.

PACS numbers: 64.70. —p

Recent years have seen an increased interest in the
study of the properties of quasi-one-dimensional systems,
particularly systems that undergo a Peierls structural
transition.! This interest is stimulated by the experimen-
tal observation of a Peierls transition in compounds of the
type K,Pt(CN);Br, ,3H,0(KCP) (Refs. 2-4) and TTF—TCNQ
(Refs. 5 and 6), and also the possibility of ohserving
anomalous conductivity connected with displacement of
the charge-density wave (CDW) that oceurs in the transi-
tion.”™® This latter property of such systems turns out to
be closely connected with collective excitations of CDW
(Refs. 9 and 10) which are being actively studied experi-
mentally.!!712

The present paper is devoted to a consideration of

607 Sov, Phys. Solid State, Vol. 19. Na_ 4 Anril 1977

the spectrum of the collective excitations of CDW in the
low-temperature region, on the basis of a generalized
semiphenomenological model proposed in Refs. 13 and 14,
The model is generalized from the pure one-dimensional
case to include the quasi-one-dimensional case, and the
influence of the impurities and of commensurability ef-
fects is investigated. The possible existence of new
modes of the collective-excitation spectrum of the soliton
type in a purely one-dimensional model is considered,
with a qualitative allowance for three-dimensional and
Coulomb effects.

The model is quite general, and the main results
may be applicable to CDW that are not of the Peierls

type.
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1. FORMULATION OF THE MODEL AND EXCITATION
SPECTRUM IN THE LINEAR APPROXIMATION

We consider a quasi-one-dimensional system at tem-
peratures much lower than the Peierls-transition point
[Tp ~120K for KCP (Ref. 4), Tp = 54K for TTF —TCNQ
(Ref. 6)]. In each chain there exists a nonzero order pa-
rameter of the CDW,

Re ¥ (z) = Re (A exp [iQz + ®]), (1)

where A is the amplitude of the order parameter and is
connected with the gap in the spectrum of the single-elec-
tron excitations of the Peierls phase!; & is the phase shift
of the order parameter and determines the position of the
CDW relative to the immobile coordinate system®; Q =
2py, where pf is the Fermi momentum of the electrons
and is connected with their linear density by the relation
pF = (7/2)n.

The collective excitations of the CDW correspond to
the fact that in (1) the amplitude and phase A(xt) and &(xt)
become coordinate and time functions that are different
from the equilibrium values A and &. We consider hence-
forth only excitations of the phase shift of the order pa-
rameter, which can be regarded in first-order approxi-
mation independently of the amplitude oscillations,? at
least at sufficiently low temperatures T < Tp. This ques-
tion was considered in greater detail by Brazovskii and
Dayaloshinskii.!® It will be assumed that &(xt) is a suf-
ficiently smooth function of the coordinate and of the time,

From the form of (1) it is easily seen®! that the de-
pendence of the CDW phase on the time means displace-
ment of the wave along the chain with velocity

{1 00
},1’:—?”"’?“. (2}

Analogously, the presence of a spatial gradient of the
phase means local variation of the Fermi momentum of
the electrons

1 a0
=7 Gz » (3)

and then the excitation of ®(xt) corresponds to a linear
energy density

2 1 nm* 1 fad\ §? é¢ ?
B=Tﬂ;(ap,)’+7m'u.vi=—@'[7(a_¢ +"i‘(‘a? } @

where ng is the linear density of the electrons that move
together with the CDW; m* is the effective mass con-
nected with the motion of the CDW (Refs. 13 and 14); m
is the effective mass of the electron in the chain

f=—— - (5)

The phenomenological parameters ng and m* can be de-
termined from the microscopic theory and depend on the
concrete model whereby the CDW is produced. In the sim-
plest theory of Peierls transitions at T « T, we have® 131

n,==n,
LR, . . (6)
m lmq ?\ma
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where n is the total linear density of the electrons in the
chain, A is the gap in the electron spectrum at T = 0, uj
is the characteristic frequency of the "hare" phonon
(wg~ 0p is the Debye temperature), and A is the dimension-
less constant of the electron—phonon interaction. Usually
m* > m, for example m* = 10°m for KCP (Refs. 11 and
13).

It follows from Refs. 1 and 4 that the effective La-
grangian of a CDW on an isolated chain is

smm e (5 - 1)) 0

The derivation of such a Lagrangian from the microscopl
theory is given in Ref. 10. This leads to the standard
wave equation

il [l
5 5t rrl =0, (8)

which coincides, when account is taken of (2) and (3), with
the hydrodynamic equation of motion™

v m
AL ®

where p is the chemical potential (Fermi energy) of the
electrons, and the factor m/m* determines the fraction
of the CDW mass carried by the electrons. The spectrum
of the CDW phase oscillations under the foregoing as-
sumptions takes the form

e . {l 0)

which corresponds to the Goldstone mode of Lee, Rice,
and Anderson, corresponding to the Frohlich "supercon-
ductivity" in the considered model.’?

Our purpose is to consider the role of various inter-
actions that are not taken into account by the zero-order
Lagrangian (7). These include primarily the interaction
of the CDW on various chains in a quasi-one-dimensional
systems, the role of Coulomb effects in one chain, and in-
teractions with charged impurities.

The Peierls CDW corresponds to modulation of the
density of an electron charge along the chain, in the form’

a
P (x) = ne gz cos (Qz + ®), (11)

so that this chain produces around itself an electrostatic
field with a potential

A
ep(rJ_r)—_—zuem: cos (Qz + @) K, (Qr.). 12

‘where e is the electron charge, Ey is the Fermi energy

of the chain, r, is the radial distance from the chain, and
K¢(x) is a modified Bessel function. Accordingly, in a sys-
tem of chains forming a regular lattice in a plane orthog-

onal to the chains, with a lattice constant r; = b, an elec-



trostatic interaction energy is produced (per unit length
of the system)

1
U=nm’*@'§h§"": cos {‘hn_‘hm)' (13)
w} ‘:m% (41’.‘. ) lzoﬂrf‘} Ko (Qr)l, -i' (14)

where n and m determine the positions of the chains in
the plane lattice, «p is the plasma frequency of the elec-
trons, and ¢, is the dielectric constant of the system in
a direction transverse to the chains. It suffices to take
into account in (13) the nearest-neighbor interaction,
since Ky(Qr ) is exponentially small when Qr, > 1. The
interaction (13), in particular, causes the CDW on the
neighboring chains to be conveniently aligned in such a
way that their phases differ by #, as is indeed observed
experimentally in KCP (Ref. 4).

The Lagrangian of the system now takes the form!)

RS, T
(15)

We consider a linearized variant of the theory, cor-
responding to ép<« 1, by = 7, so that (15) goes over into

P11 (=Y RS EEE P ) RO

no{(mj
(16)

n {m}

where all the &, $,; now denote small deviations from
the equilibrium values. The corresponding equations of
motion take the form

o atd
S N L JEPWY S (17)

(my

We seek the solution in the form

{(g=+q, n-wf)

D, (zt)= Vg o
2 (18)

and obtain the spectrum
w? = 52q? 4 20? {2 — cos gfb — cos g7Tb), (19)

where the lattice of chain is assumed for simplicity to be
quadratic (b is the lattice constant). For q; = 0 we have
again the acoustic spectrum (10). Thus, the interaction
of the chains does not lead to pinning of the CDW.

We now take into account the Coulomb effect in an in-
dividual chain. The phase gradient, according to (3) and
according to the connection between the Fermi momentum
and the electron density, signifies local variation of the
charge density

ad
. (20)

Bk

bg=

which produces a corresponding electric field in the chain.
To take this circumstance into account it is necessary to
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2} 3 Dt 14 con 0, — 04

solve in place of (17) a coupled system of equations of mo-
tion

w.ne 92y (21)

+ e, ey gz '

re, 1
o — &5 + el E

which take into account the action of the electric field with
potential ¢q, defined by a differential-difference Poisson
equation

oy 1 o0 i n.
D [?m‘_z‘,n.,.%_,i]=4,d—;‘z, iy (22)

i=y, x IJ.

The last term in (21) corresponds to replacement of
the chemical potential in (9) by the electrochemical poten-
tial. Here e is the dielectric constant due to electron
transitions through the Peierls gap

w=1+ g T - (23)

In (22), n; are the reciprocal-lattice vectors of the
chains, We seek the solution for & (xt)®,(xt) in the form
(18) and in analogous form for @p(xt). Solving the corre-
sponding secular equation, we obtain the spectrum of the
excitations

q q*
w? = s2g? +._& ; -
@+ ,[thq*b-—wsqrb]
b

+ 2w} [2 — cos ¢1b — cos g¥b],
(24)

where w2 = 47ne?/m*. The Coulomb effects lead to a
finite frequency u'F")'z /tp ™ (3/2)A cuzq, of the phase oscilla-
tions at g, = 0; at g, b ««1 we have

w*?

ol = ﬁ cos? 0  s2g* | wibig?, (25)

where tg6 = q, /q. For q, = (x/b, n/b) we have

ssgsferte)s -

]

The spectrum (24) constitutes a natural generaliza-
tion of the results of Refs. 9 and 14 to the case of quasi-
one-dimensional systems. The displacement of the atoms
in the n-th chain following excitation of small oscillations
of the order-parameter phase shift is proportional to

igz+ig Ln‘iur}

u, ~ exp [[Qz +i -E n - uﬂn*me
¢(M):+I(»;-+ql)n—¢qt (27}

=
ifrri—n
=e b -4 l@“ of
ke

Thus, the phase oscillations with wave vector q =
(4, g, ) correspond to excitation of phonons with wave vec-
tor (@+ q, n/b+ q¥, n/b+ ql), so that the study of the
phonon spectrum at the point (Q, n/b, 7/b) corresponds
to a study of phase oscillations with q = (0, 0, 0). As seen
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from (27), these oscillations correspond to antiparallel
displacements of the atoms in the neighboring chains.'’
Analogously, the phonon spectrum at the point (Q, 0, 0) is
connected with the phase oscillations with g = (0, n/b, 7/b)
corresponding to parallel displacements in the neighboring
chains,

Low-frequency optical phonons were observed in Ref.
12 in KCP at the points (Q, n/b, n/b) and (Q, 0, 0), which
can tentatively be interpreted as connected with oscilla-
tions of the order-parameter phase shift. The weak dis-
persion of these phonons is explained by the gap-like char-
acter of their spectrum (an unjustified comparison with the
acoustic spectrum (10) was made in Ref. 12). At the same
time, the equality of the phonon frequencies observed at
the points (@, /b, 7/b) and (Q, 0, 0) remains unexplained.
We emphasize that the absence of total three-dimensional
ordering in KCP (Ref. 4), which is apparently due to dis-
order effects, can lead to a discernible change of the re-
sults obtained above, which are valid, strictly speaking,
only for a system consisting of one-dimensional chains
of the same type, without the internal disorder inherent
1r.1 systems of the KCP type.

2. EFFECT OF IMPURITIES ON THE CDW EXCITATION
SPECTRUM

Lee, Rice, and Anderson® have advanced arguments
favoring the assumption that the interaction of CDW with
charged impurities converts the acoustic-type phase-
oscillation spectrum (10) into a spectrum with a gap, mean-
ing a pinning of the CDW on the impurities and elimination
of the Frohlich "superconductivity." At the same time, it
was stated in Ref, 16 that the interaction of CDW with ran-
dom impurities does not lead to pinning. There is as yet
no calculation of the spectrum of the phase oscillations of
the CDW with allowance for the interaction with the impur-
ities in any concrete model. We present below such a cal-
culation in the considered semiphenomenological theory.

We consider a system of charges disposed in random
fashion along a chain with CDW, at a distance r, from the
chain. Such a situation is apparently realized in KCP,
where the acceptor atoms (of the Br type) are randomly
arranged in the system along Pt chains.! The impurity
charge density

p{:):Ee‘ﬁ{:—zJ—), (28)
J
where xj are the impurity coordinates, interacts with the

CDW potential (12), so that the interaction energy per unit
length of the system is

1 1
U o= G wlay -, (008 (02, + ), (29)
J
where
w? A
oy =0 ) €14 Ko 070, @0

N is the number of atoms in the chain and v is the number
of conduction electrons per atom.
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We consider again the linearized theory (& < 1). The
Lagrangian of the system takes the form

1 [1700\2 5t foD\? 1
e=mg (3(5) —T(5F) +elmy Qein0z0
J

+ ooy 7 D, 008 0z,08). (31)
J
The equations of motion are given by
9,;; - f'% = wimp % sin Qz; 4 wim%E cos Qz ;0. (32)
4 J
In a system with impurities
® =0 (zt; {z;}) (33)

is the functional of the impurity positions. On the other
hand, the phase shift, as a component of the order param-
eter, is a thermodynamic quantity and must be averaged
over the ensemble of random impurity configurations.
Averaging (32), we obtain

(% — :’-ai:.g) (DY = wimp <% 2 cos Ozj@> .

(34)

This gives rise in natural fashion to a chain of equa-
tions expressed in terms of the Fourier components in
the form

(—ot + 5207} { Py = 0lmp (%r‘ Z cos Qr.c@)w- (35)
(—at+o1gt) (F D cos 0z _f'b/\,'m
J
= wlnp <$- 2 sin Q1 2 c0s Q:;) b(w)b(q)
F ‘
~+ wimp <% Z cos Qz; ‘ cos Q:,'ﬁ>w. (36)

Carrying out in (36) a very simple decoupling in the
impurity correlators, we obtain (at w = 0, q =0)

4
m| i
[ —ot it e g S 10}} (®@gu> =0, (37
where
S @ =77 <E e“’"“"“) (38)
i

is the structure factor of the impurity positions. From
(37) follows the phase-oscillation spectrum

w={7 8@} dapt s (39

For random impurities S(Q) is equal to the impurity
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concentration ¢ijmp. Thus, the impurities lead to pinning
of the CDW, the gap in the spectrum being

1

wh = { 3 Cmy}lh "”imn' (40)

The foregoing analysis is valid for sufficiently low
impurity concentrations, which do not influence substan-
tially the Peierls transition itself'T and which allow the
decoupling carried out above. The allowance for the
quasi-one-dimensionality and for the Coulomb effects is
in the same manner as above; leaving out the calculations
we indicate that as the result the gap u?r is simply added
to the right-hand side of expression (19) or (25). The gap
in the spectrum is different from zero at arbitrary g and
qJ_."’) It is possible that the equality of the phonon fre-
quencies at the points (Q, n/b, n/b) and (Q, 0, 0), which
was observed in Ref. 12, is due to the dominant role of the
impurities in the formation of the gap.

3. EFFECTS OF COMMENSURABILITY AND NONLINEAR
EXCITATIONS

The existence of a Goldstone mode with a spectrum
(10) is directly connected with degeneracy of the CDW
with respect to the phase #. This degeneracy of the CDW
having a period that is commensurate with the period of
the original chain. In the commensurate case Q = 2rm*
(Ma)~!, where a is the period of the initial chain, and
m « M are integers. The CDW energy then acquires a
comensurability term!8:14s?

U oomm ~ A% cos MO, (41)

The proper Lagrangian of one chain takes the form

m')
.?=.?o+um‘%?£-{cosﬂf¢—l}, (42)
where® !
A \M-p
o} ~ M2} (E) ; (43)

In the linear approximation we can confine ourselves
to expansion of cos M® up to quadratic terms, and obtain

the spectrum of the phase oscillations in the form?
w? = v} 4 s%q?.

(44)

Thus, the commensurability effects lead to a pinning
of the CDW.

The nonlinear Lagrangian (42) leads to an equation
of motion of the sine-Gordon type

i pers wf
e T (49

for which an extensive spectrum of classical and quantum
solutions has been obtained.!” In addition to the branch
corresponding to the linear oscillations of @ near zero
(44), it is possible to excite in the system an arbitrary
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number of soliton—antisoliton pairs moving with velocity
V<s

D ()= %aro tg {exp (? (—:———'-—ﬂ'“j’)] B (46)
s

wlnll!ﬁ] (xt) = _@-&vt {x'!}‘ ‘47}

The energy of the soliton is expressed by the standard
"relativistic" formula

M 82 o
Ebol :'Wz V‘siol -+ SLP!'

lv—-";{"

(48)

where the mass Mgo| (Ago] = Mgo]s?, p is the soliton mo-
ment), in the quasiclassical (WKB) approximation (Refs.
18 and 19}3}, using the parameters of our model, is equal
to

M'U’=”m.5¥7_s=__m‘%' (49)

where y is the renormalized coupling constant, equal in
the present model to

T (50)

8

1=

In classical soliton theory we have y = M2, The pos-
sible existence of soliton excitations in CDW of the Peierls
type was considered in the classical approximation in a
recent paper.”® The form of the soliton solution as a func-
tion of x (at v = 0) is shown in Fig. 1. In a region having
linear dimensions of the order of

B (51)

(the soliton dimensions) the gradient of the phase differs
effectively from zero, i.e., in accordance with (20), there
is an excess charge density

2 e ©r
Wl =H 73 N 35 (52)

from which it is clear that the soliton carries an electric
charge

4
= M LS (53)

Antisoliton carry a charge of opposite sign. The mo-
tion of the solitons produces a current density [see (3)]

j,ﬂ{::}.e-.—%lbml (xt) = Tpyy (2) 0. (54)

Solitons and antisolitons can be produced only in
pairs and are subject to Fermi statistics,’!
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?(x)

—Zg - FIG. 1. Change of phase in the re-
s/ gion of the soliton solution.

~— &0t —

It is easily seen that the considered model is equiva-
lent to a simple generalization of a one-dimensional dis-
location after Frenkel' and Kontorova®?3, dealing with
the motion of a chain of "atoms" and mass m* in a peri-
odic field of a "substrate" produced by the commensur-
ability effects, In this sense, solitons constitute "dislo-
cations" in the CDW lattice.

In addition to solitons, the model under consideration
admits of spectrum branches corresponding to bound soli-
ton—antisoliton states, which have not been considered in
Ref, 20. Buch a "doublet" solution of (45) in the rest sys-
tem (v = 0) takes the form!8:1?

4 sin (—2:; x)
o, (zt) = 3 arc Y s —F 5 [* (55)
ch(t iy

T 5

where

wy COS 5"

Here N=1, 2,..., < 87/y (Ref. 19) number the stable
(in quantum theory) branches of the doublet spectrum.
Their masses (gaps in the spectrum) are given in the
WKB approximation by1?

1 16w N
anm‘ﬁ—rsin(l—g)z

7 3 m—rm" = sin (% " (57)

T Spp il

Taking into account the form of ¥ (52) and the fact
that only M > 3 is meaningful in the considered model
(Ref. 9),4) we verify that N= 1 for M = 3, and for M > 3
the doublet solutions are unstable.

The doublet solution is shown graphically in Fig. 2.
It is obvious that the total charge carried by the doublet
is equal to zero, i.e., their motion does not contribute to
the constant current. However, a doublet has a dipole
moment that oscillates with frequency 27 /7, and this
could manifest itself in prineciple in the dieleetric con-
stant.

We note that in Ref, 24 an attempt was made to con-
struct doublet-like solutions of an equation of the type
(45). However, the approximate formations obtained there
have nothing in common with the exact solutions (55) and
are apparently unstable. In addition, it is erroneously
stated in Ref. 24 that such solutions contribute to the de
conductivity.

We consider now the degree to which the obtained
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(1)

anN

-~ Erot—

FIG. 2. Change of phase in the re-
gion of the bound soliton—antisoliton
state.

purely one-dimensional solutions are preserved when ac-
count is taken of the Coulomb effects in a single chain,
as well as of chain-interaction effects.

The formation of a soliton is not profitable from the
point of view of Coulomb effects, since it involves an en-
ergy loss Q% %gol€p,. This energy shortage is imma-
terial if it is smaller than Mggs?, which leads to the con-
dition e®m/f pF < (1/16)€p, which can be readily satis-
fied. To take into account the interaction of CDW of
neighboring chains it is necessary to consider systems
of coupled nonlinear equations.

We present a simple qualitative analysis. The pro-
duction of a soliton—antisoliton pair on one of the chains
leads to a loss of chain-interaction energy [see (13)]

2
e

U._r-nm'.o-,._;.a{cos.-.(I—%)-i-l}. (58)

where ¢ is the soliton—antisoliton distance. The influ-
ence of this loss on the soliton mass is immaterial if
2Mgo1s? > U, , leading to the requirement

.16 (“‘r )rl .
s\, ) e (59)

i.e., the soliton and the antisoliton must be close enough,
At the same time it is necessary to have { > £, for
only then can be speak of "individual" solitons. In view
of the smallness of wT(43) relative to the parameter

(A /EF)M=-2 « 1, this condition is difficult to satisfy for
the known systems of the type KCP or TTF—TCNQ. At
the same time, w decreases exponentially with the in-
creasing distance between the chains (14) in such a way
that the situation becomes more favorable in a system of
sufficiently separated chains. Owing to (58), the solitons
and antisolitons are attracted with a force ~nm(w&/@?,
and, strictly speaking, are always bound. Let us estimate
the minimum dimension of a bound soliton—antisoliton
state in the potential well (58)

{5 )" 0

Here, too, it is necessary to stipulate £y > £441, which
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can be readily satisfied. Thus, solutions of the soliton
type are not profitable from the point of view of interac-
tion between the chains and can hardly be realized in
known systems.?) In addition, even under conditions when'
one can speak of the existence of solitons in individual
chains, they are bound into soliton—antisoliton pairs and
make no contribution to the conductivity in weak fields,ﬂ
in contradiction to the statements made in Ref. 21,

We note in conclusion that the loss of energy of the
type (58) disappears in a situation corresponding to for-
mation of solitons on all chains in a sample cross section
perpendicular to the chains. It can be proved rigorously,
however, that such soliton "planes" are not profitable
from the point of view of Coulomb effects. For lack of
space, this question is not considered here,

In coneclusion, the author is grateful to L. N. Bulaev-
skil for numerous discussions and critical remarks,

LA constant has been added here to make the ground state correspond to
2=0, thereby fixing the energy origin.

Usince the phase oscillations are in fact three-dimensional, questions con-
cerning the specific character of the action of impurities in a strictly one-
dimensional system are not raised.

31t appears that the WKB mass values used here are exact.
Yt M = 2, the phase oscillations of CDW coincide with the amplitude os-
cillations, which are not considered here.

SjIn Ref, 24, and in fact also in Ref. 20, they considered an interaction La-
grangian of the type (42) with M = 1, We do not know of any physical
mechanisms that lead to such an interaction. It appears that a nonlinear
interaction berween the chains does not lead o formation of soliton solu-
tions, since it does not ensure pinning of the CDW.

thye note, however, that the binding energies of soliton—antisoliton pairs
decrease exponentially with increasing distance between chains.

Ty sufficiently strong field E ~2 3(M/ ¥ )(e;’ri )wf:/,\u% will break the soli-
ton—antisoliton pair and their contribution to the conductivity becomes in
principle possible. The magnitude of this field also decreases exponentially
with increasing distance between chains.
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The author has made an error in Egs. (21) and (22)
in this article. The correct forms of these equations are

*e, d o, wne 0%
5 — S e e, = o} 2° . a: ' (21)
{m)
oz,

1 i ,
B ..I;?‘.L 2 [fnhb.— - ZFn + ?u—l,‘] = e _d_:l E 3, (22)

i=y, 7 ny

—g m
LT
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Wt =4s"" 4

Equation (24) then becomes

o2
P q

g b- =% e

W

cos gib — cos q¥b]

(24)

20} [2 — cos gib — cos g¥b].

Equation (25) is then valid only for £, = g,.

Translated by A. Tybulewicz
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Electron in a random field, theory of phase transitions, and

finite-action nonlinear solutions
M. V. Sadovskii

Institute of Metal Physics, Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk

(Submitted September 25, 1978)
Fiz. Tverd. Tela (Leningrad) 21, 743-751 (March 1979)

It is shown that the profile of an electron density-of-states tail in a Gaussian random field is given by the
solution of finite-action nonlinear equations for a zero-component scalar field. Ideas of the phase transition
theory and the dispersion equation for the coupling constant are used to calculate the preexponential
factor in the expression for the density-of-states tail. The applicability of a scaling theory at the mobility

edge is discussed.
PACS numbers: 71.25.Mg

1. Ideas of the modern theory of critical phenomena'’
have been used'™ to describe the behavior of electron
states near the mobility threshold of disordered systems,
A formal correspondence between the problem of an elec-
tron in a random field and a phase transition with a zero-
component order parameter (Euclidean theory of a zero-
component scalar field)®® has been used in most papers
~evoted to this subject (with the exception of Refs. 1 and
-}. However, it was pointed out In Refs. 1, 2, 4-6 that the
aforementioned correspondence is incomplete since the
coupling constant in the corresponding field theory has the
"incorrect" sign. Consequently, the standard theory of
critical phenomena’ cannot be applied and the incorrect
sign of the coupling parameter indicates that perturbation
theory fails in the range of energies of interest. ¢ The
neighborhood of the mobility edge, where the perturbation
theory fails, is analogous to the "Ginzburg" critical re-
glon in the theory of critical phenomena, 2

It is our aim to extend Ref. 2 and study in detail the
region of localized states (region of negative energies).
The present approach is a development of the method pro-
posed by Langer!” and Zittartz and Langer.!! It will be
shown that the profile of a tail in the electron density of
states in a random field is governed by the classical solu-
tions of the field theory studied in Refs. 2, 4, and 5 that
are characterized by a finite action,'®!* We also propose
& new method of caleulation of the preexponential factor
in the density-of-states tail which is based on a dispersion
equation for the coupling constant.!#!® Qur approach is
analogous to the theory of critical phenomena. Finally,
we shall discuss the validity of scaling at the mobility
edge,

2. We shall consider an electron in the field of a ran-
dom distribution of point seatterers and calculate the
Fourier transform G(Ep) of the one-electron Green's func-
uon averaged over all the configurations of scatterers. In
the limit p — e, V —0, pV?— const, where p is the den-
sity and V is the scattering potential, the problem under
study is equivalent to the motion of an electron in a Gaus-
sian random field with a "white noise" correlation func-
tion.»!! It was shown in Ref. 2 that such a Green's func-
tion can be identified with the Green's function of a scalar
field theory with the following Lagrangian (m is the elec-
tron mass and E its energy):
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1=1

where n is the number of components of the field & (n
should be set equal to zero after all the calculations have
been carried out), which eliminates the "superfluous" dia-
grams with loops that do not appear in the problem of an
electron in a random field. #%? We have studied? the range
of energies E > 0, wherethe standard perturbations theory
is applicable (the parquet approximation). The region E <
0 (the region of localized states) was discussed in Ref, 2
only qualitatively.! It is our aim to study in detail the re-
gion E < 0.

The main difficulty of the aforementioned theory is
due to negative sign of the coupling constant in Eq. (1),
which leads to an instability of the ground state in such a
field theory and to a failure of the perturbation theory to
describe the electron energies?*

1 u \i—a
E@l"—m(‘——'?_ ) » IP))
where
meat-d i
=g (3)

is the dimensionless coupling constant, ¢ is a distance re-
lated to the cutoff of divergent integrals (the shortest dis-
tance in our problem which is related to the difference be-
tween the random field correction function and the corre-
lation function of white noise), and d is the dimensionality
of the space considered,

A physically correct approach to such a problem was
proposed by Langer,!® who showed that all the correlation
functions should be calculated by an analytic continuation
with respect to the coupling constant and exhibit a cut
along the negative real axis in the complex plane of the
values of the coupling constant. Any correlation function
(Green's function) of such a theory can be represented as
the following dispersion relation for the coupling con-
stant!#!5 (g |s an arbitrary coupling constant):

m

A
amm% S d:;—%. 4
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and
1 ;
Alg) =76 (g +1r) =G (g — )] =ImG (g) (5)

is a discontinuity over the cut (nonzero for g < 0) which
can be obtained from the nonlinear solutions of the clas-
sical field theory equation (1) with a finite action.!?™!® we
shall always assume that G(g) is the one-particle Green's
function.

3. The action of the field theory defined by Eq. (1)
is given by

5[0 = S d9r 2 (r) (8)

and the Green's function is given by the following func-
tional integral; *

t L ]
Glr—rlm—25 3 | 20 @) 0, (00, () exp(—S (01,  (7)
J=1

~here
Z= | (4 (1) exp (=S (91). )

The minus sign in Eq. (7) ie chosen to yield the correct
zeroth-order electron Green's function,

The minimization 6S[®] = 0 yields the following clas-
gical field equations:

{ ) 3
5&0,:;-20_,-—5;;"'41,(2@). (9)
i=1
We shall seek the solution of the fleld equations in the

form!%13

= (10)

where u is a unit vector (u?= 1) in the "isospin" space
of the theory [0(n) symmetric] considered, Restricting
ourselves to the class of spherically symmetric solutions
(Refs. 16-18), we obtain from Eq. (9) the following result:

®, (=) u;

d—1d® 1
-TU}z_m._ 7 Vel 1)

o fara,
2m | dr? r

Equation (11) has a trivial solution #;= 0. We shall con-
sider nontrivial solutions of Eq. (11) with a finite action
[i.e., such that the integral in Eq. (6) converges]. Ford=
1, it is possible to obtain an exact solution of Eg. (11) (see
Ref. 10). Using the results of Refs. 18 and 19, we can
show that the required solution appropriate to the problem
under study exists only for d < 4. We shall discuss the
solutions qualitatively following the method of Ref. 20 (see
also Ref. 17).

Yiz) Fx

<0 FIG. 1. "Poiental energy” correspond-

ing to the equation of moton (13).
Io To
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We shall introduce new variables

o= (23" z 0,

r={2m|E|) A,

(i}

Equation (11) then assumes the following dimensionless
form:

dizr d—1dx
FTL R B Tt 13

where the upper sign corresponds to E < 0 and the lower
signto E > 0,

We can now use an obvious mechanical analogy, 1.e.,
Eq. (13) is an equation of motion for a particle with unit
mase in the following potential (Fig. 1):

e

A
U@=F3+7T 14
The particle in question moves subject to a friction force
depending on time as ~1/t. By considering the "energy”

1 fdxz\t
s=3(3) +v@. (15)
we can easily demonstrate the dissipative nature of the
motion. Using Eq. (13), we obtain

dé& dz\td —1{
7 =—(a@) <o e>1. as)

The qualitative behavior of the motion 18 shown in Fig. 2.
The motion in question gatisfies the following initial con-
ditions:

X |jg=const,
dr
=0 an

Fort > 1, we can linearize Eq. (13) near the extrema of
of U(x), i.e., near the points x = 0, x = + x; = + 1 to obizin
the asymptotic behavior of the solution defined by Eq. (13),
It is quite clear that the solutions of type 2 and 3 shown
in Fig. 2 are of no interest since the corresponding action
integral defined by Eq. (6) diverges [the field defined by
Eq. (12) tends to a constant at infinity]. The asymptotic
behavior (t > 1) of the solution of type 4 in Fig. 2 (E > 0)
is given by

co
Tty —g—

3 3 (18)

FIG. 2. Qualitative behavior of the solutlons of Eq. (13).
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[ JL,(!J are the Bessel functions| and the integral defined
2

by Eq. (6) also diverges as a function of the upper limit
for d = 2, Therefore, we are left with a unique solution
of type 1 shown in Fig. 2 (E < 0). The fact that the solu-
tion is unique follows from physical considerations., In
fact, there is a single point on the curve U(x) which has
the property that a particle starting its motion from this
point terminates its motion at the point x = 0, The asymp-
totic behavior of the aforementioned unique solution (t > 1)
is given by

const t
f'[‘]"‘ﬁ:—o"LK " {:}%‘%ﬂup(—l]; 1, -
¥ *(r') ¥

5 (19)

‘I

I:K’G") (t) s the modified Bessel function] and the corre-
sponding actior integral defined by Eg. (6) converges.
Using Eq. (12), we obtain

31@,}mj‘d‘r.?(rr¢,{rn.—_-,:,"'T;:f!s[!-m 3 (20)

The constant A, which depends on the dimensionality, ia
determined by dimensionless integrals of x(t). The calcu-
lation of Ag requires numerical integration of the equation
»f motion (13) supplemented by the initial conditions (17

4. The functional integral in Eq. (7) can be evaluated
by the steepest descent method near the classical solutions
with a finite action defined by Eq, (12) (see Refs. 10, 12-
15). For E > 0, only the trivial solution &, = 0 exists and
the steepest descent method yields the standard perturba-
tiontheory '8 which was used in Ref. 2. For E < 0, there
isanontrivial solution with a finite action defined by Egs.
(12), (17), and (19). The field &(r) can be expanded near
%y(r) as follows:

@ (F) =05 (r—Ry) +2(r). (21)

It is then possible to perform all the calculations in the
lowest order of a perturbation theory with respect to ¢(r).
All the correlation functions will contain a factor exp -
(—S[®o])which is nonanalytic inthe coupling constant and also
a preexponential factor which is obtained in the evaluation
of the Gaussian integral in the variable ¢(r). The prob-
lems related to the negative sign of the coupling constant,
to the arbitrary choice of the location of the solution &(r—
Ry) in space (arbitrary choice of Ry), and to the arbitrary
orientation of the vector u in the isotopic space intro-
duced in Eq. (10) [0(n) symmetry] require special discus-
sion. All the required calculations are analogous to the
calculations of Refs, 10, 12-15, 17. The imaginary part

of the one-electron Green's function is given by

A(E)) b{—pV?
ImG(Ep|— V) =C(E] F]“P{_-;i"‘l_)};v%'
eV T

(22)

where C(|E|, p) is a function of E and p which is indepen-
dent of the coupling constant pV?,

d
AB)=Am~n BT (23)
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the theta function in Eq. (22) indicates that the imaginary
part of the Green's functlion is nonzero only for negative
values of the coupling constant in the field theory with the
Lagrangian defined by Eq. (1). The power of the coupling
constant in the preexponential factor in Eq. (22) can be
easily understood. The translation invariance (arbitrary
choice of Ry) yields a factor!®!" (pv?~4/2 (there are d

-]
translation "zero" modes); an additional factor (V) F
is related to arbitrary orientation of the vector u (n—1
rotational "zero" modes); and the factor (pV) Y /2 ig re-
lated to the product of v fields which appears in the de-
finition of the v/2-th Green's function!® (in the case con~
sidered, v = 2). These results are independent of the ac-
tual form of the classical solutions &(r — R;) (see Refs.
15, 17); the type of solution determines C(|E|, p).

The Green's function can be calculated from Im G(Ep|-
V) (i.e., from the discontinuity across the cut in the com-
plex coupling constant plane) via the dispersion integral
().

A

t
G(Eple)=—5C(|E| P]jv e T
Yo (—g(-n?

(249

where g is an arbitrary coupling constant for an electron
in a random field g = —pV% The integral in Eq. (24) can
be easily evaluated:

GtEpIs}-m%CtIEI- pu-%ﬂw{a:m}r(d_?)r(!‘";_d' i:_ﬁ'l)’

) (25)

where (a, z)= S dte”'t™*  is the incomplete gamma func-

tion. )

The Green's function of an electron in a random field
represents the analytic continuation of Eq, (25) from the
region g > 0 to negative values g = —pV? (see Ref. 21).

It follows from Eq. (22) that our preexponential factor
in the tail of the density of states is correct, 1232 The
preexponential factor is completely determined by the
classical solutions of the field theory defined by Eq. (1)
with a finite action. The main advantage of our method is
that it yields automatically correct results and does not
introduce the additional assumptions employed in Refs, 11,
22, and 23 such as the assumption that the {irst level of
the fluctuation well is dominant. Different treatments of
the energy ranges E >0 and E < 0 are also introduced
automatically since the classical solutions with a finite
action exist only for E < 0. Nonanalytic dependences on
the coupling constant also arise quite naturally in the
present method (breakdown of the standard perturbation
theory).

The condition of validity of our results can be for-
mulated as S[®,] >> 1, i.e., our results hold when the meth-
od of steepest descent used in the evaluation of the func-
tional integral in Eq. (7) is justified. In other words, the
following condition should be satisfied:

d
AE) _ Ay 1 fIE|N i1,

V¥ I —4\'E,,
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Le.,

|E|>E,,, (25a)

which reduces to the condition obtained in Ref. 2. The
condition of validity of the "perturbation theory™ near the
classical solution with a finite action defined by Eq. (21)
is the same as the criterion of validity of the standard
perturbation theory in the energy range E 5 0, It was
noted in Ref. 2 that an interval of width 2Egc about E =0
is an analog of the "Ginzburg" critical region in the theory
of critical phenomena. However, in contrast to the theory
of eritical phenomena, perturbation theory, when ap-
plied to the case considered, fails even for space of dimen-
slonality d= 4 - ¢,

5. The preexponential factor C(|E|, p) in Eq. (22) can
be evaluated provided the classical solutions with a finite
action are known explicitly., For d > 1, such solutions
can be obtained only numerically, We shall now develop
a method of calculation of the preexponential factor based
on the analogy with the theory of phase transitions, which
makes it possible to aveid numerical calculations,

For g > 0, the Green's function defined by Eq. (25)
corresponds to the correlation function of a stable field
theory (the theory of second-order phase transitions).
Far from the critical region, the aforementioned corre-
lation function is well known,’ L.e., the correlation func-
tion is given by the standard Ornstein— Zernike expres-
slon. For |E| > Ege, we obtain

1
GEplg>0)~— ———-.

3 (28)
1Bl 45,

On the other hand, using the asymptotic expression?® 2! for
the incomplete gamma function, we find that Eq. (25) ylelds
({|IE[ > Ege; E < 0)

d+1

i d 41 ——
cEple>0~—or ()@ T eqer . (27)
Comparing Eqs. (26) and (27), we obtain
d+1 d
B (20T Z‘um(x—;)
CUEL pa—ghpem T P, -
°(7) 181+5
IE!}E.. *

The imaginary part of the electron Green's function is
then given by (|E| » Eg¢)

d+1
nd gt

| £ lmu(:-%) 1 A (E)
-

ImG (Ep|— =~ 0
mC (Ep| —pV1) i[‘(d‘—-,—:—l) |El+5 (mg v-)T
o

(29)
We can now calculate the density of electron states in the

tail region including the preexponential factor, We find
that (JE|>» Egq; E < 0)

1 (4%
N(E)=— ?j&“—]‘ Im G* (Ep | —pV?)
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1ja

2r1 ¢
Lisd (a+1)(1-52
K Al 1E] ( ') A (E) 2 {
ey @ oXp -"_‘—"Pp-:} dpp®=t 7 (30)
o(%3 : 18145

(m{pV‘)

ey

it a— 0 and Eq. (30) yields

4
where K, =201y 1 -For d = 1, we can take the lim-

-Al E E s
N(E)—I.—ﬁ*%?'—lup[-—dl;lql—r!r—’}, (51)

It follows from Ref. 11 that A =4VE/3 [Eq. (11) ford =1
can be solved exactly] and Eq. (31) reduces to the exact
result of Refs. 25 and 11 with an accuracy up to the factor
3/x%. Ford = 2, the divergent integral in Eq. (30) is cut
off at a momentum ~ 1/q, the cut-off momentum being re-
lated to the reciprocal of the range of the correlation func-
tion of random fields. Our calculations are valid for ener-
gles |[E| «E, = 1/2ma’. For |E| » E,, the tail of the den-
gity of states is governed by the quasiclassical approxi-
mation.®"® For d = 2, Eq. (30) yields (Egc « |E| «Ey)

- LE [N Es 1E|
eV{E}-hconstmluma;p{—A.Em}, (32)
for d = 3, we obtain
|E|Ef | E [h
N(E}Szcomn—'rdp—‘;"-,-'up {-—A,—';WPF—.- . (33)

For 2 < d < 4, the tail in the density of states is glven by

d+1 i:..'.
_ 4; \T _ 2m  (2mE)?
N{Eiwh(hs(g_a)) r(d+l) (d—o-ﬂ)

x(z;)

We believe that the aforementioned expressions yleld (with
an accuracy up to a constant factor) exact expressions for
the preexponential factor of the density of states in the en-
ergy range considered.

o
() [
exp |—dicpr |E] P (34

6. The energy range |E| « Egc lies outside the region

~ of validity of our theory. It follows from the theory of

critical phenomena that, for g > 0 and for energies IE| <«
Egcs the correlation function obeys the standard scaling

G(Eplg>0)=ClE[TD(p"Y); E~|E™ (35)

Here, ¥ and v are the critical indices of the susceptibility
and correlation length ¢, D(x) is a universal (independent
of the details of the interaction) function, and C Is a non-
universal factor. Since it is well known that the discon-
tinuity across the cut in the dispersion relation (4) [A(z)
in Eq. (4) is unique for arbitrary g] is universal, this
seems to indicate that the Green's function should exhibit
an analogous universal behavior for |E| « Eg. irrespec-
tive of the sign of g. Applying formally Eq. (25) to the
region |[E| «Ege and using [(¢, x) — (%) forx—0 (o =0,
-1, -2, ...), and also A(E) —0 for E— 0 and I'(1/2 +
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d2)r( 2-d/2) = = /cos (rd/2), we obtain

i'+l

! g o
=d¢ CUE| phi |E|<]E,, (36)

Cos -
z

GlEplg>0)=~—

where d = 1, 3 but the values d=2and d= 4 — ¢ are ad-
missible. Comparing Eqs. (35) and (36), we obtain

CE| p)~|E|TD(p%), @37
Equation (22) then yields
lmG (Ep|—pV!) = B| E |1 D (p%?), (38)

where B 1s a (nonuniversal) constant (independent of E
and p). It must be understood that Eqs. (36)-(38) repre-
sent an extrapolation of Eq. (25) beyond its range of va-
lidity. However, mere assumption that the discontinuity
icross the cut in the dispersion equation (4) can be fac-
iorized leads to a result similar to that defined by Eq,
(38), i.e.,

A(Ep|5)=ImG (Ep|2)=C (|E|, p)/(3) 39)

for [E| « Ege. Such a factorization holds when Eq. (25) is
applied formally to the region |E| <« Eg¢ and implies the
scaling defined by Eq. (37) irrespective of the sign of g.
unfortunately, we are unable to prove Eq. (39). However,
if we assume the validity of Eq, (39), we find that Eq. (35)
ylelds Egs, (37) and (38) and the density of states for |E|«
Ege is given by

N{E}&—Elé‘r"f[‘—"nb{ %)= p L4 |Ep—=
e e o

where a is the specific-heat critical index. Ford=4-¢
and n = 0, we obtain

a7 40, (41)
where D is a constant (independent of E). As a result, we
obtain

dN (E
d{ 1*1'5!—.‘ | E]—0. (42)

The density of states in the limit |[E| —0 exhibits a kink
and its derivative diverges as the specific heat in the
theory of critical phenomena.

Consequently, assuming the factorization defined by
Eq. (39), we obtain a scaling at the mobility edge which
holds for the average electron Green's function in a ran-
dom field, If this is the case, the well-known discrepancy
between the Anderson result that considers the "most
probable” electron Green's function' and the standard ap-
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proach due to Edwards based on the average Green's func-
tion disappears. An alternative approach is to treat the
neighborhood of the mobility edge as an analog of the
transition region in the Kondo problem, where the Ander-
son and Edwards treatments are complementary,?

The author is grateful to L, V, Keldysh for his dis-
cussions and interest in the present work and to D, V,
Shirkov for making available a preprint of Ref. 15.
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Supereonduetivity in Spin-Glasses

By
M. V. SapovskIr and Yu. N. SKRYABIN

Itis shown that spin glass ordering does not affect the superconductivity as a result of total compens
sation of the paramagnetic effect and the effect of spin-flip scattering freezing out in a spin-glass
phase.

ITokasaHo, YTO YNOpAZOYeHHe CIIHHOR {IPH Iepexole B COCTOAHHE CHHHOBOTC CTEKNA He
OKA3HBACT BAHAHEA HA CBEPXUPOBORMMOCTD, YTG ABMACTCA C/IEACTBHEM B3AHMHON KHOM-
NEeHCALMH NAPaMATHUTHOrO sdderta 1 3QibeHTa BRMODAKUBAHMA NPOIECCOB DACCEAHNA
€ NepeBOPGTOM CIIMHA.

1. Introduection

Recently there hag been a considerable growth of the literature on the coexistence of
superconductivity and magnetic ordering [I, 2], due to the experimental discovery
of such phenomena in some rare-earth compounds with regular positions of magnetic
atoms [3 to 5]. Likewise it has been known for a long time that there is some ex-
perimental-evidence of such a coexistence in dilute alloys of transition metals in
a superconducting matrix [1]. In such systems the type of magnetic ordering is
unknown in most cases. In the theory of dilute alloys of magnetic impurities the
concept of the spin-glags phase is preferred now due to the long-range and oscillating
behaviour of the indirect exchange interaction via the conduetion electrons [6, 7).
There is good experimental evidence for the coexistence of superonductivity and
spin-glass ordering in Gd,Th;_.Ru, [8] and Gd.Ce,_.Ru, [8], as well as some evidence
for it in the amorphous alloy of LagAw,, with Gd impurities |91,

The influence of magnetic impurities upon superconductivity was first considered
by Abrikesov and Gorkov {10]. Gorkov and Rusinov have considered a possibility of
coexistenee of superconductivity and ferromagnetism in such a system {11]. In the
present paper we will attempt to analyze the influence of spin-glass ordering upon
superconductivity.

2. General Formalism

To describe superconductivity in a system with some kind of magnetic ordering it
is convenient to use & four-dimensional mafrix formalism, defining the electron
operators in spinor form {1, 2]:

wir)

s — | WY Y. B () = + . .

¥iry = pi | Pr(r) = ((pf (1) pT{) 9 (1) v (1))}, (1)
plHr)

where (r) is the ordinary electron destruction operator with spin directed upwards

and so on.

1 Sverdlovsk 620 170, USSR.
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The zero-order Hamiltonian for a superconducting system takes the form

o = | dr Pr(r) hy(r) Pir), 2)
where R .

7 Hyr) Air)

holt) = (A*(r} — Hitr)
Hy(r) is the free-electron Hamiltonian, ¢; and 1; are two independent sets of Pauli
matrices, direct product of which can be used to represent any 4 X 4 matrix, 4, =
= Re 4, A, = Im A, where A is the gap function of superconductivity theory.

The electron interaction with magnetic atoms can be deseribed by the ordinary s—d

exchange model and the interaction Hamiltonian in the four-dimensional matrix
formalism takes the form [1]

) = Hy(r}) 6,15 + ogt, + u057 (3)

K=+ [ dr P @) V) P, 4
where .

V)= Jir —R)e-S,, {5}

&, = (g“ _gu). (6)

10 is the electron spin operator, J(r — Ry) is the s-d exchange integral, 8; is the
spin of the magnetic atom at the site R,.

To consider superconductivity with any kind of magnetic ordering it is useful to
isolate the mean-field effects. The Hamiltonian of electron intersction with a mean
magnetic field, following from (5} is

JENF == L dp P (r) H(r) P (7), (7)
where

o= (H((;‘} ° — f;){?‘) otr) = Hio (8)

Hir) =3 Jir — R) (S (9)

is the mean magnetic field at the point », ¢S,> the thermodynamic average of the
impurity spin. The mean field H{(»r) leads to the paramagnelic effect suppressing
superconductivity.

We must also consider a perturbation (fluetuations) over the mean-field:

Hiy = Hin, — T = [ dr #+r) T T(r — R) (i — <SPy (10)

The perturbation theory over J,,, produces the Green’s function
Dz, v’y = — (T(8H(x) — SV STy — S, (1)
where 7 i3 the Matsubara “time”.

3. Spin-Glass Ordering and Supercondnetivity

At present there is no complete spin-glass theory even in the mean field approximation.
The most popular Edwards-Anderson model of spin-glass behaviour [12, 13] is based
on the so-called replica method and the limit of replica number 7 — 0 and faces some
basic difficulties (such as negative entropy) [7). Some other models were proposed
not using the replica method [14 to 16]. All of these models try to describe the spin-
glass phase via the order-parameter ¢ = <(8;>*, [12], where <...>, denotes the con-
figurational averaging, and lead to a practically equivalent behaviour of physical
quantities, though not in complete agreement with the experiment [6]. There is even
some doubt in the existence of the spin-glass transition itself [17)].
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Gur aim is to consider the influence of the Edwards-Anderson order-parameter
upon superconductivity. The main results will be in fact independent of any specific
model of spin-glass in the mean-field approximation. Thus we consider the simplest
maodel of [14], which leads to the same main results as the Edwards-Anderson model,
but is free from the unphysical artefacts of the replica method.

In the Medvedev-Zaborov moedel and analogous models of [15, 16] it is supposed
that the chaotic orientations of impurity spins lead to a random magnetic mean field
at every site h; = h{R;). The distribution function of this field can be shown to be
Gaussian [14]:

A2
P = (3 mdg)~** exp(— ), 02)
v Ay
where ¢ is the Edwards-Anderson order-parameter defined by
¢ = [an P (7). 13)
H T
where
Y k2
Pih) = 4oh® (£ mgd) 3 exp ( — = ) (14)
T¢d

is the distribution funection for the absolute value of the mean field, bs(x) is the Brillouin
function,

A= (AR IXR) = cI?, (15)

Ty %,

where J(R} is the indirect exehange integral (for example of the RKKY type), ¢ the
concentration of magnetic atoms, v, the volume per one such an atom, T the absolute
temperature. The integration in (15) goes over the whole volume of the system except
the volume ¢, around the origin.

The solution of (18) for ¢{T) leads to dependences similar to that of the Edwards-
Anderson theory, ¢(T) =+ 0 for T' < T, where T'; is the spin-glass “freezing’ temper-
ature:

Ty=+ 88+ 1) AW = 3 8(S + 1y W# I'2, (16)
where § is the magnitude of the impurity spin.

The distribution of molecular fields is factorized over the aites:

P{) = IT P(hy) 17)
and there is no short-range magnetic order:
(hiby>, = gAdy . (18)

Following the methods of [14] it is easy to show that the mean magnetic field H{r)
acting upon a conduction electron is also Gaussian:

Pl = Gt~ exp | T, -
@) = 1 20w , ’ (20)
(Hp) Hr')y, = qAdlr — 1), 21
where
A = [ AR JYR) = cJ? (22)
o

and ¢(T) is defined by (13}.
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Now we have to consider the superconductivity of electrons under the influence of
the random magnetic field H{r) distributed according to (19} to (21). The interaction
given by {7) can be analyzed by perturbation theory, which leads to the summation
of graphs for the electrons Green’s function shown in Figure 1.

Here the continuous line represents the matrix Green’s function defined by the
equation of motion

a ~
{— 57 9% — hﬂ(fr)} golrT, ¥'7) = 3(r — ) St — 7). {23)
The dashed line describes the interaction with the random field H{r). Averaging over
(19), (20) we obtain that the second graph in Fig. 1 is equal to zero, while the
third one gives the ordinary electron self-energy in the random field (see Fig. 2a). It
is equal to

Suplr — v, 7 —7) = | {(3H(r)} P{H) Hor) H' () o, golrt, 7'7) &, =

= <§ J(r — Ry) J(r" — Ry) (S8 (8D, augn(rr s 7'7) &, (24)
or, using {21},
Zuplr — v, v — 1) = L Agd(r — ) X907 TT) &y (25)

or, in the momentum representation,

Zur(pen) = AgN, % [ déy &, Go{Pen) Ay (26)
where N is the free-electron density of states at the Fermi level. Equation (26) coin-
cides with the appropriate expression of the Abrikosov-Gorkov theory [1, 10] with
the substitution of the ordinary spin-flip scattering rate by Iy = 2aAdg(TV N, =
= 2meSq{T) Ny. Thus the paramagnetic effect {random molecular field) in spin-
glasses influences the superconductivity in the same way as magnetic impurities in
the Abrikosov-Gorkov theory.

Consider now the rest of the interaction given by the Hamiltonian (10). The simplest
self-energy corresponding to this interaction is shown in Fig. 2b:

S, v1)y = — S J(r — R) I — By) DE(z,7') o, gol17, 77 a, . (27)
L7

We use now the static approximation for D§(z, 7).

DT, v') = — (S8 + (SIS . (28)
Then

2 rty= Y Jr — R) J(¥' — Ry) (S¥8H augolre, ¥z, —

#

— H¥w) H'(#') g, ¥'T') a, . (29)
After the configurational averaging we get

Zr — v, —) = (X Jr — B) J{r' — Ry) (SIS0 apgort, ¥'7) &, —

7
— 3 Ag3(r — ¥) a7, ¥'T) o, . (30)
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In the following we use the standard assumption of the spin-glass ‘theory [7, 13],
corresponding to the absence of short-range magnetic order:

{BE8T Y, == 8,05 S(S -+ 1) . (31)
Then the total electron self-energy is equal to

r—r,t —t)=Zyp(r — v, v —7) + f{r — v, T —1) =

e {%} Jr — R)J(#" — B+ S(8 + 1) a, gyfrr, »'7) o, == (32)

~ 4 ¢S + V) a,golrT, ¥ 7Y w0, 8(r — ),

where the last equality is valid for the point-like s—d exchange. In the momentum
representation

I
Z(pes) = i’ 3 | 45 sugelpea) & s (33)

where
Iy = 2ned?8(8 4+ 1) N, (34)

is the standard electron spin-flip scattering rate (in Born approximation) coincides
with the well-known result of the Abrikosov-Gorkov theory. In the sum of (25) and
(30) the contributions dependent on the Edwards-Anderson order-parameter have
cancelled each other completely. The physical meaning of such a caucellation is ab-
solutely clear. We have seen that the paramagnetic effect in spin-glasses is equivalent
to the spin-flip scattering rate Iy = ZmeJ%q(T") N,. At the same time the “‘freezing”
of sping during the spin-glass transition “freezes” out the ordinary mechanism of
spin-flip scattering in such a way that the corresponding scattering rate becomes
equal to Iy = Iy — 2meJ2q(T) Ny = S(8 + 1) — ((8)*),. Both effects just com-
pensate each other Iy = Iy + Iy. Superconductivity in the system of magnetie
impurities is determined by the dependences of the Abrikosov-Gorkov theory despite
the spin-glass ordering,

4, IMiscussion

The cancellation of the Edwards-Anderson order parameter demonstrated for the
simplest graphs of Fig. 2 persists for all diagrams in higher orders of pertur-
bation theory. This is quite obvious for diagrams without crossing interaction lines
and also can be demonstrated directly for diagrams with erossing lines. This can-
cellation follows from the fact that the econfigurational average of the random mole-
cular field is equal to zero and the Abrikosov-Gorkov behaviour is due to equation
(31) holding both in paramagnetic and spin-glass phages. Note that we neglect the
quantum nature of impurity sping which allows us to use the standard diagram
technique.

Spin dynamics can be neglected [1] if the characteristic frequencies of spin motion
in the spin-glass phase Qy¢ <€ T, ~ 4, where T, is the temperature of superconducting
transition, and A, the superconductivity gap for T = 0. £23¢ can be a characteristic
frequency of a spin wave or the typical inverse time of change of the Edwards-Anderson
order parameter when on the average it is equal to zero due to the slow relaxation
processes [17]. Spin-glass dynamics can lead to a change in superconducting behavior
in comparison with the Abrikosov-Gorkov theory. For example it is well known,
that electron-electron interaction due to the exchange of spin-waves is repulsive,
thus lowering the superconducting 7.

Under the specific conditions [14] the system considered can undergo a transition
not to a spin-glass phase but to that of a random ferromagnet (with a non-zero
spontaneous magnetic moment). This leads to a change of the distribution function
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of the random molecular fields, particularly the average of the second graph in
Fig. 1 as well as all graphs of odd power in the random field become non-zero.
Then there is no compensation of the paramagnetic effect and spin-flip scattering
freezing out, as in the case of ordinary ferromagnets {1, 2]. It is possible that such
a situation wsas realized in the experiments with Gd La; _,Ru, [18], where two super-
conducting transition temperatures (re-entrant superconductivity) have been found
for some concentrations of Gd.

Finally, note that we have neglected the influence of the superconducting transi-
tion upon a spin-glass transition. The appropriate analysis seems difficult due to the
present status of spin-glass theory. The oscillating behaviour of the indirect exchange
interaction via the conduction electrons remains in the superconducting phase and
in faet this interaction is almost the same as in normal metals up to distances of the
order of the supercondueting coherence length [19). This interaction is effectively
cut. off at distances of the order of the electron mean-free path, thus in the case of
mean-free paths shorter than the superconducting coherence length the effective
interaction of impurity spins is unchanged in a superconducting phase. In general,
the interaction parameter (15) determining the spin-glags transition is apparently
almost the same as in the case of a normal metal.
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A one-dimensional system of electrons is considered, in a Gaussian random field with a correlator whose
form (in the momentum representation} is a Lorentzian with its center at Q =2p.. This can be

considered as a Gaussian model of the Peierls transition in the fluctuation region. An exact summation of
all Feynman diagrams is carried out, and a representation of the averaged one-glectron Green's function
as a continued fraction is obtained. A density of states with a characteristic pseudogap is found. It is
shown that when the correlation range of the short-range order is decreased there is a graduval filling in

of the pseudogap and a transition to a “metallic” state.

PACS numbers: 71.20. +c, 71.30. + h, 71.25.Cx

INTRODUCTION

There is a limited number of models of the electronic
structure of one-dimensional disordered systems that
admit of exact solution.' Interest in such models is due
both to the general problem of studying the electronic
properties of disordered systems and to questions of
the physics of quasi-one-dimensional systems, the
majority of which display some sort or other of proper-
ties associated with their disorder. In the last few
years several important new results have beenobtained,
casting considerable light on the situation of an elec-
tron in a one-dimensional random field,2~* This work
is also mostly characterized by the use of specific
methods of solution, specially adapted to the solution
of one-dimensional problems, and as a rule not capable
of further generalization because they are so cumber-
some, Only in a very few cases is it possible to obtain
an exact solution of a problem about the electron ina
one-dimensional random field by means of standard
methods of present-day many-particle theory.5

One model of this sort was proposed some time ago
by the present writer (see Ref. 8). In the framework
of this model it could be shown now the scattering of
the electron by a random field with a definite type of
short-range order leads to the formation of a peculiar
“band structure’ of the energy spectrum, which ap-
pears in the form of a characteristic pseudogap in the
density of electronic states, in the absence of any sort
of long-range order, It was alsc possible to consider
high-frequency conductivity and optical absorption in
terms of the pseudogap. This model was used to de-
scribe the fluctuation region of quasi-one-dimensional
systems that undergo a Peierls transition,” with the
result that the predictions of this model are in good
quantitative agreement with optical experiments on
KCP and TTF-TCNQ,®? at least at sufficiently high
temperatures.

A form of this model was considered in Ref. 9 as an
extension’ to the fluctuation region of a commensurable
Peierls transition. The exact solution®” was obtained
in the limit of large range of the close-order correla-
tion, and gualitative eriteria were indicated for the
applicability of this treatment for a finite correlation
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length. In the present paper an exact solution for the
one-electron Green’s function is obtained in the form
of a continued fraction, and also for the density of
electron states, for arbitrary values of the correla-
tion length for shortrange order; this permits us to
trace a smooth transition to the “metallic” state
(pseudogap filled in)} as the correlation length is de-
creased and to justify the qualitative criteria given
earlier’ for the use of the asymptotic form for large
correlation lengths.

1. FORMULATION OF THE MODEL AND ANALYSIS
OF THE FEYNMAN DIAGRAMS ’

We consider an electron in a Gaussian random field
A{x) with the correlation function

A(DA(x) r=Atexp[—|x—x'|E ]cor 2pp (2—17), 1}

where A? gives the mean square fluctuation of the field,
£ is the correlation length (close-order correlation
range), and p. in the Fermi momentum of the elee-
trons. This is precisely the correlator that is obtained
for the fluctuations of the order parameter in the one-
dimensional Ginzburg-Landau model for the Peierls
transition,'® and therefore we shall speak of it in con-
crete terms as a Pelerls system in the fluctuation reg-
ion.

It must be noted that our assumption that the random
field A(x) is Gausstan obviously does not apply to real
Peierls systems, at least for sufficiently low tem-
peratures T« 7,,, where T,; is the temperature of the
Peierls trangition in the self-consistent field approxi~
mation.'! We are considering the Gaussian model of a
Peierls system [with the exact correlator (1)] because
it admits of an exact solution, derived below, and also
because it is evidently not so very far from reality in
the region T'~ T,,.

The correlation length will be regarded as a parame-
ter of the theory, just as the quantity A% is. Finding
them requires a complete microscopic theory of the
Peierls transition. The model under consideration can
also be derived in a certain variant of the static ap-
proximation of the dynamic theory of the Peierls transi-
tion,”® (the assumptionthat thereis a clearly expressed
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central peak in the dynamic structure factor of the
lattice which is undergoing the Peierls transition). The
model can also have a bearing on the properties of
liquid semiconductors.®

The Fourier transform of (1) (the static structure
factor) is of the form

* } (2

5(@) =287 TR

M
(@—2ps} 4t
where % =£*!. The simplest proper-energy part of the
one-electron Green’s function is given by (p is the mo-
mentum of the electron}

Sleap) = A* jg.s«)} _ (3)

wn“Epw'

and is shown graphically in Fig. 1, a, where the wavy
line corresponds to the formula (2) and the solid line
is the free Green’s function of the electron. Here £,
is the energy of iree electrons, measured from the
Fermi level, and ¢, =(2n +1)7T.

We shall deal in the most detail with the case of al-
most free elect_rons:

Es=p'/2m—p=vs(| p| —ps), (4)

where m is the mass of the electron, v, is the Fermi
velocity, and u is the chemical poteniial. Further-
more 2P is in general considered to be incom-
mensurable with the period of the initial lattice,

Besides this, we shall consider the selected® case of
the spectrum in the strong coupling approximation

t——Woos s, )

where a is the initial lattice period, setting 2p, = n/a,
which corresponds to a half-filled band with doubled
period, i.e., tothe case of limiting commensurability,
when the Peierls order parameter becomes real.

~ From Egs. (2) and (3) we get (we shall consider the
initial momentum of the electron p.. +pp)

Z{e.p) =Afin HE, i) 6
WA G, (en,—Ea—itsn), (6)

where we have used the fact that for a one-dimensional
system .5,_3", =—£,. The expression (6), which corres-
-ponds to the simplest diagram, Fig. 1, a, was taken

as the basis of the analysis conducted in the paper of
Lee, Rice, and Anderson.!® In Refs. 6 and 7 all dia-
grams of the Gaussian model of the Peierls transition
were summed in the asymptotic case »— 0, which, as
can be seen from Eq. (6), is justified when the in-
equality

Upmtpk €L 20T (7}

is satisfied. This imposes a limitation on the descrip-
tion of the immedizate nelghborhood of the Fermi level.

FIG. 1.

7 gk A g8
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Qur problem is now to sum all of the graphs of the
Gaussian model for finite ».

As was stated earlier,” in each order of perturbation
theory the contribution of one order is given by dia-
grams with a sequence of successive vertices with in-
coming or outgoing interaction lines transmitting a
momentum @ ~+ 2p., Diagrams of the type of Fig. 1, b
are small of the order of the parameter £,/¢, (£, is the
Fermi energy), and can be dropped. Thereforeinorder
2n (2n is the number of vertices) we need include only
n1 diagrams. Figure 2 shows all essential diagrams
of sixth order. Let us consider the contribution of the
diagram 2, d. After elementary calculations we find
that the guantity corresponding to Fig. 2, d is

1 1 | 1
fea—Ey iBaTEptives iga—EpT2i0as feg TEy+3iven

| | 1
{e,—Ept2iven leatEptiven f2.—Fp

The contributions for the other diagrams of Fig, 2 are
entirely analogous; the numbers over the eleciron
lines in Fig. 2 indicate how many times 7vy» occurs
in the corresponding denominator. We note that the
contribution of the “crossed” diagram Fig. 2, d is
equal to that of the diagram without crossing of the
interaction lines, Fig, 2, e, We emphasize that the
simplicity of the expressions for the contributions of
the various diagrams is due to the choice of the struc-
ture factor S(@} in the Lorentzian form (2),

In eighth order there are in all 4! = 24 essential
diagrams; all of the irreducible diagrams are shown
in Fig. 3. The corresponding contributions are easily
found and are analogous in form, and the use of the
numbers over the electron lines is as in Fig. 3. Fur-
thermore, again there are guite a number of equalities
among thedizgrams: a=b=c=d; e=f=g=h;i=ji k=L

The general rules for writing out the expression cor-
responding to an arbitrary diagram are now clear. The
contribution of any diagram is determined by the ar-
rangement of the initial and final vertices (in Fig. 3
they are marked with the letters I and F). In each elec-
tron line following a vertex of type I a term fvpn is
added in the denominator, and in an electron line fol-

e e
L
N

7

FIG. 2.
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lbwing a vertex of type F, such a term is subtracted,
In this connection, the sense {direction) of the inter-
action lines i{s immaterial.

These rules hold also for the treatment of the prob-
lem with spectrum (5) in the strong-coupling approxi-
mation for the half-filled band, Here, however, we
must include also diagrams of the type of Fig. 1, b, in
which the interaction lines do not have to be arranged
in succession according to the directions of motion of
the transferred momentum, since with the spectrum
(5} the points p,p +2p,, and p = 2p, are equivalent (with
2p. =7/a)® i.e., all possible diagrams. Then in order
2n there are in all (2n ~ 1)1 = (20 -11/2""Yn - 1) dia-
grams, and also the contribution of each interaction
line is multiplied by 2.° The rule about the appearance
of terms iv,x in denominators of Green’s functions is
the same as before.

We then follow a method proposed (for a different
problem) by Elyutin,’® From the foregoing it is easy
to see that the contribution of any diagram is deter-
mined by the arrangement of initial and final vertices.
Furthermore any diagram with intersecting interaction
lines can be uniquely represented by a diagram without
any intersections, since any diagram with intersections
is equivalent to some diagram without any. The recipe
for the construction of the corresponding dizgram
without intersections {for a given arrangement of I and
F vertices) is: Counting from the left, the first final
vertex must be connected with an interaction line to the
nearest initial vertex on its left, and so on for the re-
maining vertices not 50 far connected with interaction
Yines. Thus, for example, the diagrams of Fig. 3, b,
¢, d reduce to the form of Fig. 3, a, the diagrams Fig.
3, e, f reduce to the form of Fig. 3, g, and so on. For
a fixed distribution of initial vertices in a problem with
the electron spectrum {4) the final vertices can be
chosen only from points of opposite parity, but for a
problem with the spectrum (5) the final vertices can be
chosen also from points of the same parity as the
initial ones. The numbers put with the electron lines
in Figs. 2 and 3 can be transferred to the vertices, by
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assigning to a vertex the number of terms fu,» in the
denominator corresponding to the line proceeding after
that vertex. The general rule is'®: To an initial vertex
is assigned the number N, =N,_, +1, where N, _, is the
number assigned to the nearest vertex on the left. To
a final vertex is assigned the number N,-1. Also
Ny=0, and » is the order number of a vertex,

Let us introdace

(k+1)/2 F=2m+1 (8)
0= &
/2 =2m
for a problem with the spectrum (4) and
b (k) =k 9)

for a problem with the spectrum (5). Then it can be
verified that the number of irreducible seli-energy
diagrams which are equal to a given diagram without
intersections of interaction lines is equal to the product
of the quantities »{¥,) for all initial vertices of that
diagram.” Accordingly, we can conduct all further
arguments in terms of diagrams without intersections
of interaction lines by applying to all initial vertices
the appropriate factors v(¥,,),

2. THE ONE-ELECTRON GREEN'S FUNCTION

Any diagram for an irreducible proper-energy part,
when restructured according to the rules that have been
formulated here, contains an all-surrounding inter-
action line, i.e., reduces to the form shown in Fig. 4,

a. This enables us to derive recurrence formulas for
determining a proper-energy part, which aré the basis
of Elyutin's method.'* By the definition of a proper-
energy part, we have the Dyson equation for the Green's
function;

G (enks) =G (Bakn) —Eileaks), {10)
where (see Fi:g. 4, a)

K ——.i__ AT -2 )
B (o) = e T (680) = %G e, —Ey i) B ek

()
and for = ,{c,£,) we have the expansion of Fig. 4, b in
terms of diagrams without intersections of interaction
lines, with the factors »{N,) applied to their vertices.
This expansion can be expressed in the standard way

in terms of the corresponding irreducible graphs:

B, (2aks) =0y~ (£n) —Bp—itrx) (i~ (€0, —E—ilpx)—Ey(eals} ), (12)

where Z,(¢,£,) can be expressed as a sum of the ir-

®_ = 'r;_arl‘ feri=ominex) + Q
b /_/-4—"-\.\_\
AT ¥ e W Y S
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reducible graphs of Fig. 4, ¢:
Zi(£aks) =A%G (£, §p—2ivrk) Exlents) {13)
Zalenke) =Ga*(£a, Ep— 20w} (G (£ny Ep—200rx) —Li(eals)} (14)

and so on. We have finally:

u(a8s) =AW (en, (~ 1) Emikuyx)U(R)E(eaEs),  (15)
ylealp) =G (£a, (—1)"Ep—ikvpn} {Gy' (g, (—1)"E,—ikven}
—Zun{eaEs)}, (16)
B A% (k)
A = e D e ey U7

This is the fundamental recurrence formula. The
Green's function is accordingly expressible in the form
of a continued fraction:

G (eatp)
1
= at
uu_gﬂ" - A
ian‘i‘%p"l“'vp”__ - DAL
ity — b+ divy Tt E, T Siv— -
_fo 1 —ar — At (k)
=[ "ey—Bp" ien Byt ivex '”"ia,‘-(—i)"gp+skuFu’"']'
(18)

For » =0 we can use the well known representation of
the incomplete I function as a continued fraction'*:

e
T+ ‘l—iu
14
T4+

(g, 2) = Sd!e"t"“ = , (19)

2—a

14-.-

and also the relation T'(0, x}= ~ Ei(~x) to verify that
e+, e’ =8y ., f ks’

e (- ) B(55)

Glelp) e =

eti,

T (20)

- r . _' e+t
njldte £ ;‘ldWPn(W}e

W
where the usual analytie continuation ic, = £ib is to be
understood., Here
' 2w Ww*

P~ =rex (- 5)
is the Rayleigh distribution”® which deseribes the uni-
form fluctuations of a semiconducting slit over all
space. The Rayleigh distribution arises because in this
case we have to do with a complex Gaussian field of

“fluctuations.'® Accordingly, for n =0 we get the result
of Ref. 6. In the general case (w#0) we cannot put the
expression (18) in any closed form, but the continued-
fraction representation is convenient for numerical
computation.

(21}

For the problem with the spectrum (5) and 2p,=n/a
(limiting commensurable case, doubled period} we get
in a similar way the recurrence relation {17) with
v(k) given by Eq. (9), so that

G (ea8p)
{

2A¢

e, —E, —
e Ep 3. 9A%

i by -t — i

ia,,—&,,—kzivpx—
_fo. 1 — 2A%
T fen—Ee T ien o+ B gk

— k- 27
ey —(— 1) Ep+ kg ]
(22)
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!e“+§p—!—3ivsx—---

Here A? has a coefficient 2 owing to the necessity of in-
eluding the two directions of interaction lines, as ex-
plained earlier.

For » =0 we can again use Eq. (1), and after simple
calculations we get

Glebphoms — _j_(em, ) " o (_ e=—a,.') r(‘_ N e*-g;)

AN Ep—e 4n? 27 4Al
- _1_ N _E ett, -~ n etE,
- ;[ & exp( . )'_“““—e‘—af-r;*a* = :[udWPG(W)————-—Bz_E’:__W.
where (23)
t we
P =gz o (g ) 24)

which agrees with the result obtained in Ref. 9. The
appearance of the Gaussian distribution here is due to
the fact that in this case we are dealing with a real
Gaussian field of fluctuations, In the general case,

# #0, we are also obliged to use the continued-fraction
representation (22) for the Green's function.

3. THE DENSITY OF STATES

Let us proceed to the caleculation of the density of
electron states corresponding to the Green's functions
(17) and (22). For the problem with the spectrum (4)
{incommensurable transition) we have

N 1y
= f atImorets)
_”l c Im Z,{et,)
e R SR EaE @)

where N, is the density of states of free electrons at
the Fermi level. From the fundamental recurrence
relation (17) we have:

Atw (k) [e—{—1)" §—Re Zisu(eky) )
[e—{—1)* Es—Re Ly (eky) 1*+{kvex—Im Dieilets) 1 ’

26)
— Ak} [kvpxe—Tm Ty, {ets) |

[e— (—1)"Es—Re Ty, (e8s) '+ [ kvre—Tm Iy, (66,0 I

Calculations of the density of states were made with
a BESM-6 computer; the convergence of the iteration
procedure (26} was found to be very good. The results
are shown in Fig. 5, where the different curves of the
density of states correspond to different values of the
dimensionless parameter I"=ppn/A=v £~ /4. The
curve with I'=0 corresponds to the case in which the
density of states can be found analytically.” It can be
seen that as the correlation length £ decreases there is
a gradual filling up of the pseudogap, i.e., a transition
to a “metallic” state, For v, £~'< A the approximation
» =0 works very well everywhere except in the range

Re Z.(ekp) =

Im i {ekp) =

FIG. §.
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of energies ~p.£~"' around the Fermi level, which con-
firms the gualitative conclusions of previous papers,®?
For large values I' = 2 the difference between the re-
sults of Lee, Rice, and Anderson,!® based on the use of
only the one diagram of Fig. 1, a, and those of the
present calculation done by including all graphs be-
comes inappreciable. The main difference appears
for small T', when the approach of Ref. 10 predicts a
transition to a density of states of the BCS type for T~ 0.
Figure 8 shows the dependence of the density of
states on the Fermi level (which governs, for example,
the Pauli paramagnetic susceptibility) as a function of
T'. Curve 1is our result, and curve 2 is the result of
Ref. 10 (adjusted to our notation). It can be seen that
the filling in of the pseudogap oceurs n.ore rapidly in
our model; for I' <1,5 curve 1 can be approximated
with the formula N(0)/N,= (0,541 0,013)T" 2.

In attempts to compare our results with experiments
on the Peierls transition in KCP or TTF-TCNQ it must
be kept in mind that we have neglected all nongaussian
fluctuations, which may be important for T < T,
This Gaussian model can be applied for T= T, or for
KCP and TTF-TCNQ for 7= 200 K at any rate, From
neutron diffraction and x-ray data it follows*®'!” that at
these temperatures in KCP £ > 10%: {« is the lattice
constant), i.e., T <epa/A£<0.1, which may explain the
good agreement of the results obtained in Refs. 6 and 7
for the optical absorption by the pseudogap with experi-
ments on KCP (Ref, 18, see also Ref. 8). There is no
generally accepted theory of the correlation length for
the Peierls transition. The experimental data do not
contradict the results of Blunck,'® which indicate that
E(300 K) = 10%a, £(200 K)= 10%, t.e., T'(300 K)<0.1,
I'{200 K)< 0.01, The nongaussian character of the fluc-
tuations for T« T, evidently leads to a more sharply
expressed pseudogap in the density of states,'’ which
can also be seen in the optical experiment.!® We note,
however, that in the range of temperatures when a
sharper gap is observed experimentally, evidently
three-dimensional ordering effects are already im-
portant.

For the extreme case of commensurability [the spec-
trum (5)] we have
N(e, W) 17 dt, Im I, (e&p)

N, z_?_{ru—g;mn)'b [e—t,—Re &, (efy) |“HIm? 5, (eE,)

(27)

The iteration procedure is given by the formulas (26)
with the substitntion ¥~ 2k, Figure 7 shows the results
of calculations of the density of states for the case
W = {infinitely broad band) which is most simply

LIt A

FIG. 6.

I
J
I

993 Sov. Phys, JETP 5045], Nov. 1979

LR

zé e L8 I e 22
£/

compared with the free electron case which we have
considered. For finite values of W there is a charac-
teristic peak of the density of states at € =W,° owing to
the smearing out of the singularity at the edge of the
band of the one-dimensional metal, Furthermore, in
the case W A the form of the density of states for

£% A is practically not different from that obtained in
the limit W ~ -2, and this is precisely the region of most
interest to us. Again it can be seen that as ¢ decreases
there is a smooth transition to a metallic state. The
density of states at the Fermi level as a functionof T
is shown for this problem as curve 3 in Fig. 6.

Again it is easy to trace the transition to the case 0,
for which the problem can be solved analytically®; this
approximation works well when the inequalities (7) are
satisfied. For I"<3 curve 3 is approximated by the
formula (0.546 = 0.016)T'®. There is a curious colnci-
dence in the values of the constants in the expressions
for the density of states at the Fermi level as function
of the parameter I in the two different problems. In
the case now being congidered (commensurable) the,
pseudogap in the density of states is less sharply ex-
pressed, and it is filled in much more rapidly as £
decreases, than in the incommensurable case pre-
viously considered, and the criterion for the applica-
bility of the approximation I' =0 is more strictly quan-
titative in this case, although qualitatively it is again
expressed by the inequalities (7).

In conclusion the writer expresses his deep gratitude
to B. M. Letfulov for carrying out the numerical calcu-
lations. He is also grateful to 8, A, Brazovskil and
L. V. Keldysh for discussions and for their interest in
this work.
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Electron localization with disorder in the phases of the transport integrals is considered in the Anderson
model. It is shown with the aid of Anderson’s method that a disorder of this type leads in the general case to
an effective decrease of the lattice connectivity constant, and contributes to the localization. Total localization
of the band on account of the phase disorder alane, however, is impossible. The influence of an external
magnetic field and the positions of the mobility edge is considered {neglecting the spin effects). [t is shown that
the result of the action of the magnetic field is determined by the distribution function of the areas of the seli-
avoiding walks on the lattice. In the genreal case, the magnetic field contributes to the localization, and its
action is similar to the effect of random phases of the transport integrals. The results are valid in the region of
sufficiently strong fields, in which the effects connected with the Langer-Neal diagrams are suppressed.

PACS numbers: 71.50, 4+t

INTRODUCTION

Interest in the localization of electrons in disordered
systems has increased lately.!”® This is due both to
the importance of this phenomenon to the theory of dis-
ordered systems, and to the reports of new experi-
ments in which the localization manifests itself in
wnusual manner.® At the same time, the level of the
theoretical understanding of the localization is still
too low; this is manifest, in particular, inthe fact that
the roles of different external fields {primarily mag-
netic) and of different types of disorder have not yet
been investigated, Until recently most papers were
devoted to the study of localization in the Anderson
model**® with diagonal {site) disorder of the electron
in the lattice. What was mainly discussed was the
critical disorder that leads to complete localization
of all states in a band. Only recently has serious in-
terest been evinced in the role of off-diagonal dis~
order {transport integrals), and this led immediately
to conclusions concerning the unasual role of this dis-
order in the phenomenon considered, especially to the
conclusion that complete localization in a band on
account of only a disorder of this type is impossible.®
Finally, a paper by Abrahams ef al.” increased sharply
the interest in the critical behavior at the mobility edge
and in the interesting predictions made concerning
localization in two-dimensional systems™ ' (see the
review?’),

In this paper we consider the localization phenomenon
in a specific model of off-diagonal disorder {the random-
phase model), whose interesting distinguishing feature
is the presence of local gauge invariance. Generaliza-
tion of the results obtained with this model make it
possible to examine the effect of an external magnetic
field in the positions of the mobility edges interms of its
influence on the orbital motion (neglecting spin effects).
The analysis is carried oul within the framework of
Anderson’s standard approach.*™® The relation between
our results and those obtained within the framework of
another approach®® will be discussed in the Conclusion,
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1. LOCAL GAUGE INVARIANCE IN THE
ANDERSON MODEL

We consider the Hamiltonian of the Anderson model

H—ZIJi,a‘*aj+E Eu*ta;, (1)

i ]
where g and g, are the electron creation and annihila-
tion operatorsonthei-thand j-thlattice sites. The ener-
gies E, at the sites are assumed to be random, and
their distribution is specified in the usual form

P{E{}=H PLE),

(2}
-1, LB <W

P(El)'={0' ? \EJ>W

The transport integrals J;;, which are assumed do differ

from zero only between nearest neighbors, also take on
random values. .

We consider a specific disorder model, in which the
random quantity is the phase rather than the modulus of
the transport integral, as considered by Antoniou.and
Economou.® We thus assume ( the random-phase model)

Fy=JF exp (i@} m U,
Jy=dy, Py=—0y

where $, is a random quantity whose distribution in
the lattice is assumed to be factorizable in the bonds:

re=[] 2@, (@)

i
and we consider for P(&,,) different cases:

{3

1 0.} (%)
Pe=—F50 “"{_ 207 } )
0_1, |0\;|“<° (6

P{m“)={ 0, 10.4>0
P{hy) =cb(Dg—n)+{(1—c) B(D,), 0<ec<t, (M

ete. Case (T) corresponds to random introduction {(with
density ¢) of “antiferromagnetic” bonds:

JH=JA63 (3)

¢ Ay=—1
Pldw)= { tec, Ag=+1" (9)
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It is easily seen that the Anderson Hamiltonian (1} has
local gauge symmetry. It is invariant to a transforma-
tion of the type
[ . + g —
{G}: at—+exp(id)a, g;~exp{—i®)a, (10)
Fy—~exp(—il)J; exp(i®,).
This the analog of the local gauge transformation in
the Yang-Mills theory on a lattice, a transformation
actively used of late in the theory of random spin sys-
tems (spin glasses),!'*? This invariance is known to
lead to a number of nontrivial conclusions for magnetic
systems,'!"? some of which can be directly crossed over
also to the model considered. In particular, if in (3)

‘Dfi=l11+a’4, . (11)

where o, and o, are random quantities, then this dis-
order is trivial and can be eliminated by a suitable local
gauge transformation. This crosses over to the case (8)
if A,=ce,, where ¢;=z1 in random fashion {the analog
of the Mattis model in spin-glass theory). Interest
attaches to the nontrivial {gauge-invarient} disorder
determined’’# by distribution of the frustrations on the
considered lattice, The definition of the frustration!!
(or of the frustration angle’®) can be formulated in the
considered electronic model in complete analogy with
the definitions in the theory of random spin systems.
The frustration distributions investigated in spin lat-
tices™®+'® can turn out to be useful also in localization
theory,

Proceeding to consideration of the electron Green’'s
function in the Anderson lattice, we note that the single-
electron Green’s function

G"'(E)B(iIEiﬂ|j>=<0|aiEjHa’+l0) (12)

is not gauge-invariant;

{6} Gy(E)+G{E)expli(®—0,)]. (13)

The only gauge invariant element in this function is
G;(E}, which is diagonal in the sites and is cus-
tomarily used in the study of localization in the stan-
dard Anderson approach.*™® It is obvious from the fore-
‘going that in the random-phase model the averaged
single-electron Green's function is diagonal in the

site indices:

(G4(E)>=G(E)S,, (14}

a reflection of the vanishing of the gauge-noninvariant
off-diagonal elements upen averaging over the gauge-
invariant distribution of the frustrations. It is there-
fore meaningless to use (14) for the investigation of

the localization. For the averaged two-particle Green’s
function we have

$GAE) GulE'Yy~Bybus Bubii Bubin. {15)

A similar situation (in another model) was dealt with in
Refs. 14 and 15,

We can introduce the gauge-invariant electron Green’s
functions

gﬂr{E) -=(0Ta,

i
o] V10 (16)

where MU, determines the product of the elements
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U, from (3) for A,, from (9)] along an arbitrary walk

T that connects the sites { and j of the lattice, EXpres-
gion (16) is obviously gauge invariant, and {14) does not
hold for it. Correlators of the type (16) are therefore
capable of containing definite information on the local-
ization, but they have an explicit dependence on the
walk T', and their behavior after the averaging has not
been investigated.

At the same time, as noted above, Anderson’s stan-
dard approach*™® is perfectly suited for the analysis of
problems of this type, in view of the local gauge in-
variance of G;(E).

2. LOCALIZATICN IN THE RANDOM PHASE MODEL

Following Anderson’s method, we investigate the
convergence of the renormalized perturbation-theory
series for the self-energy part A (E} that enters in the
matrix element, diagonal in the sites, of the non-
averaged Green’s function;

1

Gii[ﬁ'):———-ﬁl_ﬁ‘_a‘(ﬁ,} H (17)
1
(E)= Jo—m0————=—Ju
84(£) g E-E,—A(E)
1 1 (18}
7] 1a wt
+a¢2hlﬁ:!‘ E-E,—AME) ! E—E,—AME) ¢

where a}/*--+(E} is determined by a series such as {18),
but corresponding to the Hamiltonian (1), in which we
put E,=E,=E,;=...==." We have excluded from (18} the
repeated indices of the sites, ie., in (¥ +1)-st order in
Jy; the summation proceeds along a self-avoiding walk
T’y consisting of N steps on the lattice, starting with the
i-th site and returning to the i-th site [Fig. 1{a}]. Multi-
ple scattering processes {Fig. 1(b)] with return are
implicitly taken into account here by introducing

A%<+ (E) in the denominators of {18),*% and it is this
which allows us to consider self-avoiding walks on the
lattice. The representation (8) is exact. An electron of
energy E is localized if the series A {E) converges in
the sense of convergence with respect to probability.*-*

To investigate the convergence of the series (18), we
consider the modulus of the term of (¥ +1)-st order in
gyt

o @ |= | S @], (19)

where 7, denotes summation over self-avoiding walks
consisting of N steps starting and ending at the site 1,
and T ,(E) isthe contribution of one such walk. Accord-
ing to Economou and Cohen,® it can be shown that

|80 (&) =L (E)

(20}
- | Y 7exp (0, (B exp (D) BME) . T exp (10,) | ,

g (E)m( In (21)

1
e )
where the angle brackets denote averaging cver the dia-
gonal disorder (2). The quantity L¥(E) is obviously
gauge-invariant, since the walks 'y on the lattice are
closed, Then L{E}< 1 is the condition for the conver-
gence of the series (18) (Ref, 5) and can be regarded as
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FIG. 1.

a criterion of the localization. The delocalized states
correspond to the condition L{F)> 1.

Expression (21) is too complicated for actual calcula-
tions, owing to the need for taking the contribution
AL+ +}{E)} into account, There are several ways of
getting around this difficulty,*™® but we shall use the
simplest one—we neglect completely the contributions
of these quantities®-%;

Glu_..t (E) = oxp {_([nlE—Enl)} (22)

This approximation facilitates all the calculations, and
its result for the positions of the mobility edges and

for the critical disorder do not differ greatly from those
of the more accurate analysis,***" It is therefore
usually assumed that a more consistent account of

Al - ¥E) in (21) leads simply to a quantitative refine-
ment of the localization condition® (see, however, the
discussion in the Conclusion),

We then have

L (E) s ¥+ Zexp(i@;,) exp{-N{nlE-E,|}}, 23)
where
QIN-wu"‘On‘I‘. . ,+q)u (24)

is the phase advance along the walk I'y. Equation (24)
has only N terms, Tr contains ~K" terms, where X is
the so-called lattice connectivity constant 18:

1
In K= lim Tv—ln Zy,

where Z, is the total number of seli-avoiding walks of
N steps.

We consider now

XN=2°IP (torﬁ). (25)

If all the phase shifts in (24) are zero (or fixed), then
obviously | X,]~K" and we obtain correspondingly the
usual answer®''®

LY (E)=J"F KN gxp(—Nn |E~E, |},

L(E)=ak exp ¥ (E, W{J}, {26)
wy t°f J
& (E'T)=W -‘[f‘e* in '.E—E. ]
- (27

1 2K W E 2F W E
== (e 7 [ (- ) 57| )
Here o = Z/K (Z is the number of nearest neighbors)
is a correction factor® that makes it possible to des-
eribe correctly the limit of the regular lattice. The
condition L{0) =1 then yields for the critical disorder
need for complete localization
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(W) =2¢Z. (28)

In the random phase model, |X,| is the lengih of the
walk on a plane as a result of random K* steps of unit
length. The most substantial effect is reached for fully
random phases, when &,, have a distribution (6), with
& =21 (n=1,2 ...). We are then dealing with Brownian
motion on a plane, and | X, | has the Rayleigh distribu-
tionlo 20

PIX,l)e 2';:' exp{ - 'ﬁﬁ' 3 (29)
GXx|Py=H". {30)

The most probable value is | X, |~ {| Xy |D? ~K"?, Then
L¥(E) =" KN pxp (—NCIn [E—Ey |2},

L{EY=aK" exp F (E, Wi}, S

The stochastization of the phases leads thus to a de-
crease of the effective connectivity constant of the lattice
The condition for complete localization when the phases
are completely random takes then the form

(W) ™= 2ok " me ZK-" (32)
It is obvious that
(Wi =¥ < (W],

i.e,, the localization condition i3 less stringent,

In the absence of diagonal disorder, E,=E; for all
k. Then, if nondiagonal disorder is also absent, we
have®

7 7
LB ~aK =2y (33)
and when the phases are completely randomized
7 Z F
LiE)=gR" o =0 7T
B =l T T E (34)

Then at L{E)>1 we obtain the width of the band of
extended states in the model of completely random
phases:

B':;”-K"“B, (35)

where B=2ZJ is the usual width of the band in the
regular case,

Thus, in the absence of diagonal disorder complete
localization in the enitre band is impossible, and a
region of extended states, of widths B®'", always re-
mains around the center of the band. Table I shows the
values of K and K~ for different lattices,'® It is seen
that the phase disorder can localize in all cages ap-

proximately % to % of the initial band.

In the general case, obviously, K** < |X,|sK"
The problem of calculating the statistical distribution
of sums of the type {25) was investigated in detail in
connection with various problems of statistical radio
engineering,’®®? This distribution is relatively easy
to obtain when the distribution of the ¢ is such that
the central limit theorem is satisfied.?*“® In particular,

!XNIS-S =
P Xylym ¥ | () td o (P} i ({Q-R) %)
(313:)}' ; (36)
X COB [2marctg—H ]
e
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TABLET.

Lattice z x x4 nX
Triangular 6 41545 0.4908 14235
Quadratic 4 2.63%0 0.6458 0.9704
Diamand 4 2878 0.5896 1.0571
PC 6 4.6826 04624 15428
BOC 8 £.5288 03914 1.8762
FCC 12 16.035 0.3157 2.53061

the so-called Nakagami distribution.* Here ] {x) is a

modified Bessel function of order m, g,=1, and £,,=2
at m=0,
8.‘!‘53 '
8= ot ——
45; IX"I + 23, + 23:
P XX 0= 2o, R=ix. P
4 28 5y £
a=2]d®rﬂP(®rm)cos¢’rH=2 or,, (37)
Ty I'x
B= Y [ d0r, P(@: )sin 0r = 35,
Tw Ty
§y- EIdGFNP(QrN)cos’QrN—Z a;m
I'n Tx
(38)

se= ¥ f a0r, 2(0r dsin 0n, - 3 5
O I'm

where P(cIJF ) is the distribation function of ‘i'r . Itis
easily seen here that?! 22

U X | 2> =gty T2+, (39)

i.e., it is determined completely by the mean values o
and g and by the variances s, and s, from (38). The
Rayleigh distribution (29) is obtained from (36) at a =g
=0 and s, =5, =K /2.

We consider now several examples. We begin with
the Gaussian case {§). It is then easily seen that

PO =y P {_ ﬁ;) o
=D+ D3y =ND?, (41)
From (38) and (39) we easily obtain
¢ Xn| B> =K exp(—N®*)+E" (1—exp(~ND?) ). (42)
In the general case we get from (23) I
L(E)=aX exp F(E, Wi}, (43)

where the effective connectivity constant % is defined
as

K= lim (X, [0,

o (1l (44)
For the case (40}-(42} it is correspondingly easy to
show that
Kexp(~0%2), @®*<lnk

x {'K"-. ok (45)
The “effective connectivity” of the lattice as a function
of the phase disorder is shown in Fig, 2, % first increa-
ses with increasing ¢, and at 4> InK the phases be-
come completely randomized and % takes the asymp-
totic form K72,
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We consider now the case of the distribation (6) with
¢ +#2gn (n=1,2,...). Then, obviously,

UN®, |®py | < ND
P@="0"" oS e (46)
We then obtain
\ sin® ¥ sin® N® N
e L Nl el w o aw -
.1‘5‘1{"7 oy HE (1 mor )| -F @D

Thus, inthis case there is not even partial randomiza-
tion of the phases, A nondiagonal disorder of this type
does not influence the localization. It is seen from {47)
that at & =sn (¥ =1,2,...) we returnto the full stochas-
tization considered above,

The cases (7)~(9) can be treated similarly. Let n be
the number of negative bonds along a given walk Ty,
The probability of realization of such a bond distribution
is given by the binomial distribution

N-!l]'!N
) .

(48)

Using the limiting behavior of (48) as N— = and the fact
that in this case ¢ =inp 7, we obtain directly

Py (pry) = Cn V& (1 —¢

P(mrn)=—21-[2n’1\’r:(1—-':)]""'{exp[—('Dr,—an)‘szc(iﬂc)u’]
49
+ exp[—{@r +eaN)*/2Ne(1—c)n*]}). (49)

The appearance of two terms in (49) is due to the fact
that the walk Ty can follow two circuit directions, and
the phase advance is +np 7 by virtue of &,,=-&, (3).
From (49) we get

K {Kexp[ c{l—c)n¥/2), e<e, ero={1—-¢"),

e, (50)

where c¢f; is obtained by solving the equation ¢{1 - o)
=1nkK,

Thus, the inclusion of a sufficient number of anti-
ferromagnetic bonds (with ¢ > ¢}) leads to complete
stochastization of the phases and brings # to the level
K'?. The values of ¢}, for different lattices are given
in Table II. We note that the critical concentrations
obtained in this manner are very close to the critical
antiferromagnetic-bond concentrations at which ferro-
magnetism vanishes in the corresponding Ising lat-
tices,® 24

TABLE II.
Lattice | Triangul Quad i | »BC BCC FCC
o* 0.1748 01106 (4230 0.1944 0.2445 03722
cg* 0,8252 0.88%4 08780 (.8059 07455 0.6278
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3. LOCALIZATION IN AMAGNETIC FIELD

Application of a constant external magnetic field H
adds, as is well known, an additional phase factor inthe
transport integral J;, (the Peierls factor)*2*

J =exp{—i0,) Jisr

1 e {5 1
¢'1P'.—2-EH[R; X Ry,
where R, is the radius vector that determines the posi-
tion of the {-th site in the lattice. The main property of
these factors is?? that the sum along a closed walk r,
on the lattice is gauge-invariant and is equal to the flux
of the magnetic field H through the area 5. éenclosed by
the contour Ty measured in units of the magnetic-flux
quantum &, =%c/e:

‘Dr,“@u"’@jf" arn +CDN=€D¢“'HS.-,. (52,
The result (51) is valid in not too strong fields, for
which one can neglect the deformation of the atomic
wave functions in the magnetic field {this changes alsc
the modulus J,,).

We see now that the influence of the magnetic field on
the localization is similar to the influence, considered
above, of the random phases J;;. It is determined com-
pletely by the statistics of the area sl"y of the self-
avoiding walks on the lattice. To my knowledge, the
problem of the distribution of the areas of the self-
avoiding paths has not been considered before. It ap-
pears that reliable results can be obtained here only by
computer simulation. Nonetheless, regardless of the
statistics of S;-N, it is clear from the foregoing that the
appearance of the phase factors &, {52) in (23) can
only improve the convergence of the Anderson series
{or at least have no effect on it), and decrease effective-
ly the connectivity constant of the lattice. Therefore,
neglecting spin effects (their influence on the hopping
conductivity was considered recently by Fukuyama and
Yosida®*?), the magnetic field can only promote localiza-
tion in this approximation, We present below a simple
qualitative analysis aimed at revealing the principal
relations and estimating the scale of the phenomena,

It is known from the scaling theory of self-avoiding

walks®®#? that the mean squared dimension of & is
R~V (53).

where ¢ is the lattice constant and v is the critical ex-
ponent of the correlation length, For a qualitative treat-
ment we can therefore assume

{8y | > ~me R ~ g N® {54)

as an estimate of the average area of T,

In the two-dimensional case, with the magnetic field
perpendicular to the plane of the system, it is clear
that the values of ¢ (52} are distributed about

+F mt H([S, |} ~nN"Hab,
(The two signs are again connected with the two pos-

sible circuit directions of & ). The distribution func-
tion ‘br" can then be simulated by two Gaussian peaks;
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P (@)= 3-1712?.: {exp {“E.r”z;;._ﬂ] + exp [_ "(_'I’I*;T-:S-'ﬂ'v]}'
(55}

where
ont~f (N} Hia D42 (56)

is the variance of this distribution, It is difficult at
present to draw any definite conclusions concerning the
behavior of f({N), other than it apparently increases like
a certain power of N. In addition, we assume that the
distributions of the areas (i.e,, and of & ) of the
different T’y are independent, an assumption that is of
courge rather doubtful when the statistics of self-
avoiding walks is considered.

From the foregoing analysis of the random-phase
model we then obtain directly for the effective connec-
tivity constant in a magnetic field the expression

o= lim (Ko~ cos® F KX [1—e™ cos® F ]}

N=rm

I K; BN"‘*‘N'_“H:G‘/@J, {5 7)
- { Kb o ~N“ D} 60
Only in the case 0% ~NH*a'/&% do we obtain
X - { K exp(—const fa'/D,"); const e/ < InK
K% const B'a/ P>l K (58)

i.e., a behavior of the type shown in Fig. 2. At Ha?
~d,, the phases are thus completely randomized. The
behavior (57a), i.e., the absence of an influence of the
field on the localization, is also perfectly feasible. The
case (57b) has low probability,

We note that in the case (58) the effect saturates in
fields Ha*~ ®,,i.e., H~ 10°Gat ¢ ~ 3 A_ Inthe limit Ha®
<« §, it follows from (58) that

Ha W
L®)~ak{1 —const-a-F-}exp 78 7). (59)
i.e., the mobility thresholds are shifted inside the band
in proportion to the square of the field.

In the three-dimensional case we again assume fac-
torization of the distribution function 8 with respect
to various T'y. In addition we assume also complete
randomization of the orientations of 8. in space, so
that

D (Sen) =P (S0} P {52} P (Sra).
Simulating each of the factors in (60} by a simple
Gaussian distribution {with zero mean value}, we obtain
for the distribution function of the flux through the con-
tour Ty

1 Oty
P(%N)=Wexp (-— Zo, )'

where for o, we again assume a behavior of the type
{56). In the three-dimensional case we then obtain the
results (57)=(59).

Another possible approximation for P(CDI-N) is obtained
if the variance of Brx is neglected. It canthen be as-
sumed that g1l the T'y have a fixed area of the order of
(54), but the directions of Sy are random inspace, We
obtain readily

{60)

{61)

O 208,12 @, b<HSe, >

PO, ) =] )
0; (@, 1>H S, 1> (62)
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and for the effective connectivity we get a result of the
type of (47), ie., the magnetic field does not affect the
localization, It seems to me that the most probable is

a behavior of the type {58}, (59), but the final solution of
the problem depends on the behavior of the variance oy
(56).

CONCLUSION

In conclusion, we discuss the relation between the
results above and the deductions of the scaling theory
of localization®*" and the predictions concerning the
influence of the magnetic field.®*'® It was shown in Ref.
7 that in two-dimensional systems an arbitrarily small
disorder suffices for complete localization of all the
states in a band. Although this conclusion met with cer-
tain objections (see the review’), it is confirmed by
simple perturbation-theory calculations in the limit of
weak disorder,®® when !> g, where [ is the mean free
path due to elastic scattering, Analogous calcula-
tions?+!® have demonstrated the strong influence of a
magnetic field on two-dimensional localization, viz.,

a negative magnetoresistance sets in, i.e,, the field
destroys the localization. These results raise the
question of the physical meaning of the two dimensional
mobility edges obtained in Anderson’s standard ap-
proach,** as well as of the meaning of the conclusion
arrived at above, that the magnetic field can only
promote localization (or, in the extreme case, have no
influence on it).

We note first that despite the complete localization,
two-dimensional thresholds retain according to Ref, T a
certain definite physical meaning of the threshold ener-
gies that separate the quasimetallic energy region in
two-dimensional systems from the dielectric region,
When the Fermi energy passes through these threshold,
a rather abrupt transition should take from quasimetal-
lic to hopping conductivity.® The localization effects in
the “quasimetallic” region are connected”*® with the
singular behavior of a special class of per-
turbation-theory diagrams (the Langer-Neal graphs, ),
In the standard Anderson approach*'® the analog of such
processes are apparently multiple scattering with re-
turn [Fig. 1(b}], which contribute to the seli-energy
parts Al'-+«(E), Neglect of such contribution or in-
sufficient allowance for them in the usual approach®*
does not lead to weak (logarithmic} effects of complete
localization in the quasimetallic region of a two-dimen-
sional system.

At the same time, the coniribution of the Langer-
Neal graphs i5 quite sensitive to the magnetic field
(and also to scattering by magnetic impurities),®-?°
A rather weak field suffices to exclude such scattering
processes, Le., to destroy the localization in the quasi-
metallic region, and it is this which leads®+'® to the
effect of negative magnetoresistance. However, even
if the Langer-Neal processes are completely neglected,
the ordinary Anderson localization, which sets in at
[~gq, is possible when the disorder increases in the
system. In a two-dimensional zone of a system located
in a magnetic field, at sofficiently strong disorder (and
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field), there exist ordinary mobility edges, whose
behavior was in fact congidered above,

It is clear from the foregoing that the results of Reis.
9 and 10 and of the present study pertain to different
ranges of magnetic-field variation. In particular, if
the critical-field estimates of Refs. 3-10 are rewritten
in our notation, we find that the negative-magnetoresis-
tance effect saturates (~In¥) in fields He# /&, ~{a/IF at
T=0, or infields Hd/&,~d /11, at T+0, where [, is
the mean free path for inelastic-scattering processes.
By virtue of the condition a<<l« [, (T~ 0) used in Refs,
9 and 10, it is seenthat H& <« &, Typical values of the
critical field in Refs. 9 and 10 are of the order of 10—
100 G, At the same time, the effects discussed above
have a characteristic scale He® = ¢, and saturate at
Hd ~®,, i.e., they refer to fields H~10-10° G, where
they should lead to positive magnetoresistance [this
can occeur earlier in the case of the behavior (57Tb)]. We
note that positive-magnetoresistance effects are im-
plicitly contained in Refs. 9 and 10 via the magnetic-
field dependence of the classical diffusion coefficient.

In conclusion, the author is deeply grateful to M. V.
Medvedev and D. E. Khmel’nitskii for valuable discus-
sions, and B. I. Shklovskii for interest in the work.
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Localization of one-particle spin excitations in a ferromagnet with a

random easy-axis anisotropy
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Spin wave excitations in a ferromagnet with a random easy-axis anisotropy are studied. It is shown that
anomalous damping of magnons near the edge of the spin wave band takes place and this damping is
attributed to the localization of magnons. It is shown that the problem of localization of magnons is
equivalent to the localization of electrons in the Anderson model with a diagonal disorder. The position of the

mobility edge is calculated.

PACS numbers: 75.30.Ds, 75.30.Gw

1. The effect of fluctuations of the uniaxial anisotropy
parameter on the spectrum of spin waves of an amorphous
ferromagnet was studied in Ref. 1 on the basis of the
phenomenological Landau— Lifshitz equation. It was sug-
gested in Rel. 1 that the spin wave spectroscopy methods
could be used to detect the resulting modification in the
dispersion law of spin waves and thus estimate the {luc-
tuations in the anisotropy parameter at different sites and
determine their spatial correlation. It is of interest to in-
vestigate this problem within a lattice model of an amor-
phous ferromagnet and compare the spin wave spectrum
calculated by a perturbation theory method with the re-
sults on the position of the mobility edge of spin wave ex-
citations (in the spirit of the Anderson theory of localiza-
tion of electrons?),

We shall, therefore, consider a model of a uniaxial
Heisenberg ferromagnet in which only the anisotropy pa-
rameter K(n) = 0 characterizing an easy-axis anisotropy
1s a random quantity and all the other parameters are reg-
ular
N x \

H=-%,-J EES'S"“_EKM”'\:F' )
=1 =1 n=1

m=l

Here, J > 0; Z is the number of nearest neighbors, and we
ccaine that the uniaxial properties of a crystul manifest
themselves only by a uniaxial single-ion anisotropy but do
not influence the lattice parameters or the exchange inter-
action. It follows that the magnetic lattice can be well ap-
proximated by a cubie lattice. The condition K(n) = 0 in-
dicutes that the ordering of all the spins in the ground
state |¥,) is ferromagnetic and the energy of the ground
state is given by

=
Ey=— = INZST_ 52 2‘ K (n).
n

We shall now write the Schridinger equation for a
state | ) corresponding toa single spin deviation (the
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total z component of the spin moment of Lhe crystal is given
by S§ym =NS—1)

MWD =E | ¥, (2)
The wave function |¥;) can be expanded In terms of the
basis of one-particle spin deviations localized at the lattice
sites

N i
=Y co|ny; |a)=(28)"h 57|00,
=z : @)
As a result, we obtain either homogeneous equations for
the coefficients
' z
{ﬁ—.rsz—(zs_u.*f(nnc“_-r.rsEam=o ()

=1

or inhomogeneous equations for the corresponding Green's
function

-

[\/i\‘

(E 52— (28— 1)K (n)) Gpp+- IS X G,y , =1, (5)

'

(the energy E =E{ —E, is measured from the ground state
energy). Here, Gpp(E + 10" is the Fourier transform of
the retarded Green's function

Gpp (1) = — 18 {2} (28)71 W | 5 (0) S5 (0] W

We can calculate the self-energy corrections to the
spectrum of spin waves a& in the mean-field approximation

= (25 —1) K (n) 4 .'S(z-—}_:ciq!) ©)

using the Edwards—Jones method,’ which yields the fol-
lowing dispersion law in the Born approximation:

- . 2N — 1N D[R R 28 —1\*D (K}
xqz[ﬁﬂ—l]ﬁ[i—(T)#{] -|-J.\u'q7L'|.—(_2‘3-—) T_,‘]'

K
. (7
The damping of spin waves is given by
© 1982 American Institute of Physics 1135



DK
Ty = (25 — 1) D (K) 5go () = (25 — 1) -;,(_,—} ag

(8)
in the long~wavelength limit aqg «< 1 (g is the lattice pa-
rameter and g, is the spin wave denslity of statgs In a crys=
tal in the mean-field approximation).

We have used In the derivation of Egs. (7) and (8) the
assumption that the fluctuations of the anisotropy param-
eter at different lattice sites are statistically independent,
i.e., that the averaging over the disorder is performed as
follows:

K a1 K () = [KE (n) — (K)2] bp 4 (K)2= D (K3, + (RON (9)

where D(K) is the dispersion of the anisotropy parameter.
The approximation which neglects all spatial correlations

of the fluctuations of the anisotropy is not necessary but

it is convenient for our comparison with the theory of local-
ization. The numerical cocfficients ¢ and 7 in Eq. (7) are
given by

1 W 2 R : 2
Luﬁl'}a;—_ﬁrmﬂ.ul for simple lattice,
. &

4 .
+ = 0.00 for cubic Iamce..‘

Jm%z@:g—_g—)—

Since the ratlo (28 — 1)/28 isof the order of unity, the
requirement that corrections to the mean-field theory
should be small assumes the form D{K} /KJ « 1 and
D{K}n/J* « 1. It can be seen that the fluctuations of the
anisotropy parameter reduce the gap in the spin wave
spectrum and the spin wave stiffness. It should be noted
that the gap in the spin wave spectrum is defined as eq=¢
rather than the actual gap in the density of states of sin-
gle-particle spin excitations corresponding to the lowest
Lifshitz boundary of the one-particle spectrum for emin =
(28 — 1)min{K(n)}. The density of states of one-particle
excitations increases rapidly at energies ~gg =g-

The most interesting physical result which can be
deduced from Eqs, (7) and (8) can be formulated as fol-
lows. The dispersion curve near £g=g Is not well defined
due to damping I'q ~ « and the change in the excitation
snergy near the gap is given by €q — £q=0 ~ a’q®. It fol-
lows that the dispersion curve of spin waves in the long-
wavelength limit is well defined only if the condition

s { 28 —INED(K) L
"—-—"‘“(T) 75 ag §!

(10)
is satisfied, i.e., for D{K}/J* « aq < 1. It appears that
this important result was first noted by Korenblit and
Shender® for an asperomagnet with a random distribution
of the easy-magnetization axes.

1t should be noted that the Goldstone gapless mode does
not appear in our model, The existence of such a mode is
due to continuous degeneracy of the ground state which
does not occur in systems with an easy-axis anisotropy.
However, the situation is quite different for systems with
an eusy-plane anisotropy [K(n) < 0 in Eqg. (1)] where the
ground state is invariant with respect to rotations in the
plane of the easy magnetization.

2. Since there is a region in which the perturbation
theory breaks down near the energies corresponding to the
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bottom of the spin wave band calculated in the mean field
approximation, spin wave excitations can become localized
near the bottom of the band.

Introducing the notation

= (28— 1)K (n) 4 152, V=18, (11)

we can see that Eqs, (4) and (5) demonstrate that the pres-
ent modél is equivalent to the Anderson model with diag=
onal disorder.®®7 The quantity €, plays the role of a
random electron energy at the n-th site and V is the am-
plitude of the electron hopping between sites. Conse-
quently, we can apply to our model the criteria developed
for the mobility edge of electrons. We shall not require

a great numerical accuracy in the caleulation of the mobil-
ity edge and restrict ourselves Lo a qualitative analysis.
Consequently, we can use the Ziman criterion of localiza-
tion of excitations®

JS

—I1SZ — (25— 1)K (n) (12)

Jost.

We shall consider a uniform distribution of the an-
isotropy parameter in the interval

Zexp {In \ y5

w W
K-—*T<K(n)<3+-2—. W< 2K. (13)
Performing the averaging in Eq. (12), we find that the one-
particle spin excitations become localized provided the
condition

[z — 2"

ity

ol | <1

Tty

Ze

(14)

is satisfied, where x = [E — JSZ — (25 — 1)K]/JS is the
dimensionless energy and y = (28 — 1)W/2JS is the dimen-
sionless scatter of the random values of the anisofropy
parameter.

The equality in Eq. (14) yields an equation for the cal-
culation of the mobility edge of spin excitations. Since Eq.
(14) is invariant under the substitution x ——x, it follows
that the mobility edges are symmetrically localized with
respect to the point x =0 [or with respect to E = (25— 1)K+
Js2, which represents the center of the spin wave band in
the mean field approximation]. Setting x =0, we find U!
following condition for the scatter in the anisotropy which
is required for the localization in the whole band:

225 — 1 K
21y

25— w
2l

> Ze. (15)

However, the case when the dispersion D{K} = W¥/12
is small compared with KJ and J? is more interesting.

Equation (14) ylelds x = £+ Z for y — 0. For y/x=~ y/2 <1,
we then obtain

=2 b (2]
which has the following solution:
e sa[i (3],

The lowest value of the mobility edge £]o¢ I8 then given by

(16)

(17)

M. V. Medvedev and M. V. Sadovskii 1136



e 125-1})?[1 1('25—1)0{.&'}]

) o n T PO Gy T\ T

373 TS
teo /28— i)D{x}
=375 L(_i.s_) (C'”i' 77

where we have used, for comparison, the energy of the gap
tq=o glven by Eq. (7) and [ —1/Z =~ 0.34 for a simple
cublc lattice.

(18)

The method of Ref. 9 yields analogous results with a
dlfferent numerical factor

O R T
Us=" s [“K, i g;i]

teo (251N 2y D (K}
=+ () (- ) (19)
where K, is the lattice connectivity constant!® and ¢ —
2/Ke =~ 0.08 for a simple cubic lattice.

we find that, when the dispersion of the anisotropy
D{K}/J? « 1 is small compared with the exchange in-
teraction, the region in which the spin waves are not well
defined extends approximately up to energies ~D*{K}/J
from the bottom of the spin wave band of the unperturbed
"average" crystal, and the lowest value of the mobility edge
lies at a distance ~D{K }/T below the gap in the spin wave
spectrum of the unperturbed crystal (however, it lies above
the gap £q=9 calculated in the perturbation theory). An
estimate based on the Ziman theory® yields a somewhat
higher position of the mobility edge than the estimate due
to Abou-Chacra and Thouless.?

It follows that fluctuations of the anisotropy param-
eter of a crystal with an easy-axis anisotropy lead to a
rapid increase in the damping near the bottom of the spin
wave band and to a localization of magnons in the region of
anomalous damping. Unfortunately, the region in question
cannot be studied by the rescnance method because of a
sharp increase in the darping (for example, by the spin
wave resonance). However, we may assume that the ex-
istence of localized spin excitations should manifest it-
self in the transport effects (for example, it should in-
flucnce the magnitude of the magnon contribution to the
thermal conductivity, etc.).
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The appearance of a region of anomalous damping
Iq ~ «q near the bottom of the spin wave band is typical
of disordered magnetic materials with an easy-axis an-
isotropy and, in particular, it manifests itself in aspero-
magnels with randomly oriented axesof the casy mag-
netization® and in ferromagnets with a regular easy-axis
anisotropy but with a random distribution of exchunge in-
tegrals of different signs.! Consequently, the relationship
between the anomalous behavior of the damping of mag-=
nons and their localization which was demonstrated in the
present problem indicates that the localization of mugnons
near the bottom of the one-particle spin excitations should
occur in all such cases. Such localization should be most
important for the thermodynumic und transport properties
of magnetic materials, For disordered mugnetic materi-
als with an isotropic exchange interaction or with an easy-
plane anisotropy, spin excitations should become local-
ized in the upper part of the energy band. This was re-
cently demonstrated for an isotropic Heisenberg spin glass
(Ref. 12). It appears that the problem of localization of
magnons near the bottom of the energy band requires sep-
arate discussion for each model system because of the
possible appearance of a low-lying impurity band of local
spin excitations with their polarization opposite to the
polarization of the spin excitalions ol the matrix of the
unperturbed magnetic crystal.
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Random Bond Ising Model
in Self-Avoiding Walk Approximation

By
M. V. Mepvepev and M. V. Sapovsgno

Free encrgy of random bond [sing model is analysed by high-temperature expansion in self.
avoiding walk approximation. Conditions of instability of the paramagnetic state are determined
through the convergence criterion of the random high-temperature series. Critical concentrations
for the loss of the long-range magnetic order are determined for different 2d and 34 lattices.

MeToTaMH BRICOKOTEMIIEPATYPHBIX padilosked it B npubinenuy nyTelt Gea nepecedeHIH
HegieyerTca croGonHaA AHePrAA Mogean MaKAra co crydaltHbiMH 0GMEHHBIME CBAIAMH.
Fla onmpefeiesud MOpores CXOZMMOCTH CAYYAHHBIX BHCOKOTEMOEPATYPUBX PHIOB
HAliJeNH YCIOBMA NEeYyCTONUMBOCTH NAPAMATHHTHOTO COCTOAHHA. JIAA DasIMIHLIX
ABYMEDHLIX M TPeXMEpPHHWX PeleTOR olpeTesIeHEl KPHTHYMEeCKHe HOHLENTDAUHH, (IPH
ROTOPBIX TPOACXOTHUT DAIPYILEHIE TATBHET0 MATHUTHOrG MOPAINR,

1. Introduection

In recent years there has been considerable interest in the properties of disordered
magnetic systems [1], and in particular the random bond Tsing model was actively
studied [2 to 10]. We have the situation in mind of the Ising lattice with antiferro-
magnetic bonds distributed with concentration ¢, and ferromagnetic honds — with
concentration 1 — o, In this model the important concept of frustration has heen
formulated for the first time [2, 5, 7, 9]. One of the basic (and not yer completely
solved) problems in this model is the structure of its phase diagram [3 to 6, 8 to 10]
and, especially, the value of the critical concentration ¢} of the antiferromagnetic
bonds, at which ferromagnetism in the system disappears. These problems have been
analysed by different methods, from numerical simulation [3 to 5] and renormalization
group [4, 8] to relatively simple variants of molecular-field approximation for dis-
ordered systems (8, 10].

In this paper these problems are studied by a simple method based upon the con-
vergence criterion of the high-temperature expansion for the Ising model in the self-
avoiding walk approximation, used previously for regular systems by Domb [11}.
Our approach is based in part on the previous work by one of the anthors [12], where
the convergence of a similar random series had been considered related to the problem
of electron localization in disordered systems. The main attractive feature of our
method s its simplicity, as well as the similarity of the obtained results, to those of
more refined approaches. This leads us to helieve in a rather high accuracy of these
results. At the same time we are able to analyse some of more general cases than
those considered before by different authors.

1} 8. Kovalevskii str. 18, GSF-170, Sverdlovsk 620219, TSSR.
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2. High-Temperature Expansion for the Free Energy
in the Self-Avoiding Walk Appreximation

Consider an Ising lattice described by the Hamiltonian
H=— Z J-;jG'g{Tj » (1)
{8y
where the exchange interaction J; of the nearest peighbours takes random values,

oy = +1 is an lIsing spin. The distribution function of exchange interactions is
factorized over the bonds on the lattice,

P{Jy} —‘—'(I_g P(dy), (2)
where ’
Pl =¢8(Jy — Jp) + {1 —)8(Jy — J4). (3)

Here J4 > 0 is the “ferromagnetic” exchange mtegral, Jy < 0 is the “antiferromag-
nietic”” exchange integral, 0 << ¢ < 1 is the concentration of antiferromagnetic bonds.

The partition function of the system can be represented as usual in the following
form [13]:

Z{gy = [exp Z Kijo:00] =

= Zl (11 (cosh Ky) {1 + wyoa9)], (4)
{o} &>

where wy; = tanh Ky, Kq.;i = BJy, B=1/T, T is the temperature. High-temperature
expansion is the expansion in powers of Wiy The coefficient of the N-th power of Wi

consists of all possible products of N pairs of 0,6;. Because of E oi=0; Yof=
fa}
= Z 1 =1, this coefficient can be represented by a closed polygon on the lattice

[13} Flg. 1}, Every bond on the graph represents a factor tanh K;; and each bond
appears only once. At each vertex of the graph only an even number of bonds can
meet.

The expansion of Z{8} consists of all possible polygons (including unconnected
ones) constructed on the lattice by these rules. In the lowest orders in ¥ most of these
graphs are just self-avoiding walks (SAW) on the lattice. (Cf. Fig. 1a to ¢ for ¥ = 8.)

The logarithm of the partition sum (4),

InZ{f} = T Incosh K;; + In 3 [T (1 + wyouw)) s {5)
Ry e} f)
can also be expressed as an expansion in powers of w;; [11]. This expansion consists

only of connected graphs, which can be represented by the closed paths on the lattice,
starting and ending in the given lattice site. However, in this case the graphs are not

[ ]

- a b < d

Hig. 1. Examples of graphs in the expansion of Z{f} for ¥ =8
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so simple as in the case of the partition function. In particular, every bond can appear
several times, though again only an even number of bonds can meet at each vertex.
This graphs can be classified over the so-called cyclomatic number ¢ =1 — p 41
[11], where { is the number of the lines in the graph (multiple bonds are caleulated as
one}, p is the number of vertices. The class corresponding to ' = 1 consists of graphs
topologically equivalent to the closed SAW’s (which can be traced several times,
however). Examples of such graphs are given in Fig. 2 a to ¢. In Fig. 2d we show the
graph with ' = 2 {the go-called 6-topology [11]). Gur approximation neglects all the
graphs with ' > 1, thus we take into account only the graphs topologically equivalent
to the closed SAW’s.
Then we get

InZ{f} = lnZ{#) — I Incosh K;; ==
(G

‘—“222 7 Wik e Wi —
N:p

1 ., 1 3
—5Z I 3Z wg o wk+ 5 2 D8 el vl
253 % Pw-z ¥ 4,

(6)

Here the products of wy;, w3, ... ete, are taken along all possible SAW’s Tiof N steps,
T2 of N/2 steps (but with two bonds on each step) ete., starting and ending in the
1-th site. The atrueture of the expansion (6} is clear from (8) and the expansion of
In(1+ )= — 1/222 4 1/32® — 1/da* + ... The extra combinatorial factors 1N
for the contribution of I'y, 2/¥ for the contmbutmn of I‘Mg, etc. are due to the fact
that the initial vertex i of J'% can be chosen arbitrarily among N vertices of Ik,
among N/2 vertices for FN;g, etc.

The instability of the paramagnetic phase is determined by the convergence cri-
terion of the high-temperature expansion (6) [11, 12]. In the regular cage wy = 1wy =
= ... =w = tanh 8J and the problem reduces to the convergence criterion of the
series [11],

InZ{f} ~ 3 axw¥ | (T}
N
where
tty == p(N) — + p(N[2) + F p(Nf3) + ..., (8)
PN =5 Vs,

and Uy is the number of the closed SAW’s of V steps on the 'latt,ice, associated with
the given site. It iz known [11, 14] that for ¥ 3 1 Uy =~ N—2u¥ (k> 0}, where p is

.t 1] b ¢ —e

Fig. 2, Examples of graphs in the expansion of In Z{#}

Fe
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the so-called connectivity constant of the lattice. Then it is obvious that for ¥ -1
only the first term in (8) is relevant (because of g > u!/® > u'/® ..) and the series in
{7) diverges if yw = p tanh 8J = 1. The equality determines the critical temperature
[11]. The error of the SAW-approximation in regular cage is = 3%, for the 3d lattices,
and == 109, for the 2d lattices [11].

3. Convergence Criterion of the Random High-Temperature Series

In a disordered system the high-temperature expansion {(6) is & random series and its
convergence must be treated statistically. It is generally accepted [1] that this ex-
pansion must be averaged over (2) and (3) and considered as representing the ob-
servable free-energy of the system, However, first of all we shall consider the conver-
gence of the series (6) in the sense of convergence in probability, as it is done in
localization theory [15, 16). Qur analysis will be similar to that used in [12].

First of all let us consider qualitatively the case of J, == —J, and ¢ = 1/2 in (3).
Now only the terms with odd powers of wy; on the bonds in (6) are random (in sign ).
Consider the first series in (6). In the N-th order in wy; it consists of terms ~ u¥, cor-
responding to the number of SAW’s I'y, and the sign of each of them is absolutely
random for ¢ = 1{2 {positive and negative bonds are equally probable}. Then from
the obvious analogy with the one-dimensional Brownian metion it is clear, that the
modulus of this term for N 3 1 is of the order of u¥/*w¥, where w = tanh §J, =
= tanh # |J4|. The limis of convergence of the series is then determined by u'?w = 1,
and this coincides by the way with the limit of convergence of the second (ron-random)
series in {6): there are terms ~ u?/2, each contributing a factor of w¥, Only the first
two terms in (6) are relevant due to u > pl2 > ul/®, ete. Note, that the average of
the first term in {6) is exactly equal to zero for ¢ == 1/2, J, = |J4!, and the conver-
gence of the averaged high-temperature series is determined by the second term in
(6). We shall demonstrate that this is the general property of the high-temperature
geries for the random bond Ising model. The possibility of a singularity in the high-
temperature expansion for this model at u!/®w = 1 for ¢ = 1/2, J, = —Jy was first
noted by Domb [17] (see, however, [19]).

Consider now the general case of distribution (2) and (3), Let us analyse the modulus
of the N-th order term in the first series in (8). Obvicusly we have

ln ZNBY =15, wd —ral—wp) 3 = W] [T (—a" = wi X, ()

N i
where 11, is the number of negative bondson the path I'y, @ = wgfw,, w, = tanh §J,,
wyp == tanh f {Jy|. The probability of ny, is given by the binomial distribution

NI N~
. [P P LY o — e\t T Iy
Py(nry) T — i ¢ rr(l — ¢) . (10

Then it is easy to find
A=) = (1 —¢—ca)¥,
{=)" 5y = (1 — ¢ + ca®)" (11)

and the dispersion of an isolated term in {$) is equal to

L—a)™ sy — ((—a)"T¥)t = (1 — ¢ + ca?)¥ — (1 — o — ca)?¥ . (12)
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Let us estimate the most probable value of {Xy| by (X532 The dispersion of the
sum of independent random variables equals the sum of dispersions of isolated terms
in the sum, Thus, suppesing independence {(for N 3= 1) of terms ~ p¥ in X¥ we get

(X3 — (Xt = p¥ (1 — ¢ + ca®)¥ — (1 — ¢ — ca)2¥]. (13)
Use now

(Xw> = p¥{(—a)"T%) = p¥(1 — ¢ — ca}¥ (14)
to get

(X3 = p {1 — ¢ + ca?)™ — (1 — 0 — ca)®5] 4 p?¥(1 — ¢ — ca)?¥ . (13)

Independence of contributions from the different paths I'y is crueial for our analysis,
Obvionsly some of ~ p¥ paths have some parts in common. We suppose, that this
leads to correlations negligible in the limit of N — co,

The convergence condition for the first series in (6) is given now by

wy lm X3V 1 (16)

Newatr

and the critical temperature is determined by the equation

N - 4
wy lim [p”(l—-c-—o:’ﬁ) +ui“'[(1—c+c?—§) —

Nt A Wi
2N 12N
—(1-—6—621—3-) ]} =1, (17)
Wy
In particular, for @ = wgfw, = 1, Le. |Jg| = J4 = J, we have
w Hm {!"_24’\?{1 — 26)2.\7 + p*"[l —_ (1 — 26]2.\(]}1!25 =1, (1%)
N

From (18) we get

(g = 1 {19)
or ¢f < ¢ < c¥ and
pwll — 2 =1 {20y

fore < ef, ¢ >> ¢¥, where the critical concentrations c}‘,g are determined by the equation
u(l — 2¢)2 =1 and are

1 1
e =5 F —= (21)
2yp
Tablel
latsice  squure honeycomb $.c. b.c.c.
» 2.6390 1.3484 4.6826 8.5288
; 2.4142 1.7321 4.5840 6.4032
¥ 0.1782 01201 0.2665 0.3024

c¥ 0.5218 0.8799 0.7335 0.6976
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i Fig. 3. Phase diagram for the case of J, = |Jg/,
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Note, that the result (19) simply means that in the concentration interval cf <{e < ¢}
all terms = u¥ in Xy are random in sign (with equal probability!).

For the numerical estimates we use the constant u which is not the connectivity
constant of the lattice, as it should be done in the SAW approximation [11, 14], but
instead we use an “Ising constant” u, which determines the exact critical tempera-
ture for the regular case by the relation yw = 1 {11]. This assures the matching with
the regular case for ¢ = 0;1, and we hope that such an approximation takes into
account qualitatively the role of graphs with cyclomatic number ¢ >> 1, neglected
above. As was noted before (it can be seen also from Table 1, where i denctes now the
connectivity constant), this leads to a rather small change of the results, diminishing
slightly the critical temperature, Critical concentrations ¢f; determined for different
lattices are given in Table 1. We assume, that these concentrations correspond to the
Inss of the long-range ferromagnetic and antiferromagnetic order in the system. The
phase diagram is shown in Fig. 3.

In the general case of w, == wpy we obtain from (17)

pUR(1 — ¢) wk + cwh} =1 (22)
for e} < ¢ < ¢, and
pi{l —c)wy — cwpl =1 (23)

for ¢ < ¢f and ¢ >> ¢}, where the critical concentrations ¢f; are determined by the
roots of the equation

| E"i — Wy z
1 cj—cwia-p(l e ch). (24)
In Table 2 we give critical concentrations cfy for different lattices and ratios w, fwy.
In Fig. 4 the phase diagram of the system for w, =F wg is shown.

Consider finally the case of wy — 0, w, == 0, i.e. the percolation limit. In this case
we obtain from (17)

1l —ejwy =1 _ (25)
for ¢ < ¢*, where
F=1—pl=1—0¢*, {26)

For ¢ >> c* the critical temperature is zero, thus * = 1/u is the critical concentration
of the percolation transition, i.e. the critical concentration of the ferromagnetic bonds
for the appearance of the long-range ferromagnetic order, In Table 3 we give the
values of ¢* for the different lattices according to (26), as well as the exact critical
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Table 2

lattice squure honeycomb s.c. b.e. e
wyitey =16 of 0.1234 0.0810 0.1920 0.2214
o1 0.7595 0.8344 0.6517 0.6093

wyiwy =20 o 0.0912 0.0587 0.1465 0.1713
h 0.7135 0.8004 0.5928 0.5476

wgfwy =25 ¢ 0.0703 0.0446 0.1163 0.1375
ox 0.6785 0.7743 0.5485 0.5008

wgfwy, = 3.0  of 0.0562 0.0350 0.09850 0.1135
¥ 0.6508 0.7536 0.5138 0.4646

concentrations for the bond percolation [14]. From these results one may estimate the
accuracy of our approach, but one must also remember that classical percolation is
relevant for T = 0, i.e. strictly speaking it carnot be analysed on the basis of high-
temperature expansions.

Our results up to now were obtained from the comvergence in probability criterion
for the first series in (6) {which consists of terms of random signs). Now we show that
the same resnlts follow also from the analysis of the convergence of the seriea for the

average of In Z{B},

1
(I Z{BYy = 2 ;Ef@‘-’iﬂvﬂ---w&)p&—
1 2 o i |
—3 5L N<waj'wjx - Widryje + ... (27)
¥ % T

The averaging can be performed directly with the help of (10] Analogously to (11)
we get

wy N{z
Wi o Wi pi, = WY (1 —~c— G'Z) , (28)
Nig.
2.2 2 wg
{w.,-jw;g ver w;,:)rjvm = 'H?“Li (1 - + 01;2—) .
A

Then the limit of convergence for the first series in (27) is

u {1 — ) w, — cwy =1 ' {29)

: _ Fig, 4.-Phase diagram for the case of J, < |/l

P 557 T Notatiosn are the same ag in Fig. 3. Ljw,, , =
| '
g i

=(1/2} (Vapa 4 (1 — 6% = {1 —a)]l;a =wpjw,
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Table 3

lattice square honeycomb 2.0 b.e.c.
e* = 1fu 0.4142 0.5773 0.2181 0.1561
o* [14) 0.5000 0.6527 0.2470 0.1780

and for the second series it is given by
(1 — ) wi + owh} =1. (30)

These coincide with {23) and (22), respectively. The econvergence of the whole series
for (In Z{B}> is determined by (29} for ¢ <  cf, ¢ > ¢, and by (30) for ¢f < ¢ < ¢},
where ¢f; are determined from the condition of equivalence of (29) and (30), which
coincides with (24). It is easy to see that the neglected terms of (27) {with triple and
other multiple bonds) are irrelevant, because the corresponding series converge if
(29} and (30) are satisfied.

Thus the convergence criterion for the averaged high-temperature expansion leads
to exactly the same results as the convergence in the probability eriterion, During the
averaging we were not using the assumption of statistical independence of different
paths I'y (for N 3 1), and the result obtained confirms the use of this assumption
in the analysis of the convergence in probability. The equivalence of both approaches
is based in fact on the following theorem [19]: a random seriea {with independent
terms) converges with probability equal to unity, if both the averaged series con-
verge, and the series the termas of which are equal to the dispersions of the terms of the
initial sertes.

4. Diseussion

Consider now the physical meaning of the results obtained. Our analysis of the con-
vergence in probability allows one to give a very simple interpretation of these results
in terms of distribution of frustrations. It is well known [2, 5, 7, 9] that the model
under consideration possesses a local gauge invariance and the statistical mechanics
of the model should be expressed in terms of gauge invariant quantities. In our ap-
proach this is assured by the closed character of the paths I'y on the lattice. Cons:der
for simplicity the case of Jy = |J sl on the square lattice. Then the product of wy's
along the path Iy (in the first series in (6)} is equal to

Wity ... Wy = w¥ gn Jngjk e Jg,' = w¥ H @p , (31}
]
where {2, 7]
©, = sgn JyJpIuln (32}

is the produet of Jy's around the elementary plaquette (@, = +1}. The product of
@,’s in (31) is taken over all the plaquettes inside the contour of Iy, Thus, its sign is
positive or negative depending on whether there is an even or odd number of frustrated
(®, = —1) plaquettes inside /y. As was noted above, for high enough concentration
of negative (positive) bonds, greater than ¢f(c}), the value of [I @, in (31) is equal to

+1 WIth the same probability. This means that in the concentratlon interval ¢f <
< ¢ < ¢% an odd or an even number of frustrated plaquettes belong to the interior of
an arhitrary SAW Iy (¥ 3> 1) with the same probability. It is natural to assume that
in such a situation there is no long-range ferromagnetic or antiferromagnetic order,
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whieh leads to the interpretation of ¢}s given above. In the previous considerations
[2, 3, 7, 9] different aspects of frustration distributions with the variance of ¢ had
been discussed, but the interpretation of the instability of long-range order hased
upon a stochastic parity of frustrated plaquettes inside a closed SAW on the lattice
has not been, apparently, given before.

On the basis of our results it seems possible to assume the existence of a spin-glass
state in the concentration region ¢f < ¢ < ¢¥, but in fact our approximations are too
crude to solve this problem. The SAW-approximation has a tendency to overestimate
the critical temperature of the phase transition [11], and also the role of neglected
graphs is not very clear in this region (cf. [18]). Our method is based upon the high-
temperature expansion and is inapplicable for the discussion of the nature of con-
densed phases (below the phase-transition line in Fig, 3, 4),

The critical concentrations ¢}z found above are in good agreement with the results
of other authors [3 to 6, 8]. Note, however, that in most of these papers only the
case of J, = Jp was considered for the simplest lattices. Our results coincide with
the results of molecular field approximation for the critical temperatures {6] if we
replace there the number of nearest neighbours z by the connectivity constant u and
the ratio J/T by tanh J{T, which is typical also for the regular Ising model [11].
However, our resuits are ohtained without any assumptions about the nature of
condensed phases, such as an introduction of the Edwards-Anderson order parameter.
Note, that the critical concentrations determined above are related to the line of the
instability of the paramagnetic state (see Fig. 3, 4), they are naturally different from
the similar concentrations for 7' = 0 [6], which cannot be found from the high-tem-
perature expansion, We hope that the accuracy of our results is approximately the
same- 33 for the-SAW approximation in the regular case {11].
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This paper is devoted to a study of the general localization criterion in the field theory of an
electron in a random field. We show the equivalence of the Economou-Cohen and the Berezinskii-
Gor’kov localization criteria. The general localization criterion is formulated as the requirement
of the existence of a pole contribution in the two-particle Green function with a factorizable
residue (in momentum space). We search for a solution of this kind on the basis of a study of the
homogeneous Bethe-Salpeter equation and in the framework of the instanton approach. We show
that the Bethe-Salpeter equation determines the point where the “normal” (metallic) phase be-
comes unstable. The instanton approach describes the energy region corresponding to the local-
ized phase. In both approaches the critical energy for which the transition occurs (mobility
threshold} falls in the “Ginzburg critical region” which goes substantially beyond the framework
of the approximations used. Both approaches follow naturally from an effective action formalism,

but they reflect different mechanisms for the instability of the normal phase.

PACS numbers: 11.10.8t

1. INTRODUCTION

The obvious analogy which exists between the pheno-
menon of the localization of electrons in disordered systems
{Anderson transition) and the usual phase transitions has led
to many attempts to construct a field theory for an electron
in a random field (see the review' and Refs. 2 to 5). The
results of these papers are rather contradictory and the gen-
eral picture of the transition is still not at all clear. In particu-
lar, this is true of the problem of the possibility of describing
the localization on the basis of some kind of order-parameter
representation.

The problem of how the localization manifests itself in
the basic quantities with which the theory operates, such as
the Green function, has also not been studied sufficiently.
This makes the final solution of the problem much more
difficult. It is, for example, clear that the problem of the
realization of the localization effect itself is, in general, dif-
ferent from the problem of the behavior of the conductivity
near the mobility threshold, the solution of which may turn
out ot be much more complex. The present paper is devoted
to an analysis of the general criterion for localization and to
some attempts to look for the corresponding selutions from
the basic equations of the theory of an electron in a random
field.

2. EQUIVALENCE OF 'ECONOMOU-COHEN AND
BEREZINSKII-GOR’KOV LOCALIZATION CRITERIA

We consider noninteracting electrons moving in the
field of impurities which are randomly distributed (in a J-
dimensional space). Following Berezinskii and Gor’kov® we
define the spectral density:

1 r r
gpg(l‘}ngn (xVd= W( ;"3\-. (!‘){p‘,' (ﬂ@v" (r )‘Pv(‘-‘ )

Xﬁ(E—s,)ﬁ(EvLm—s,.')) \ {n

B16 Sov. Phys. JETP 56 (4), October 1882

N(E)= < Y ouiner@sE-20) 2)

is the electron density of states averaged over the configura-
tions of the random potential: ¢, (r) and ¢, are the exact
wavefunctions and energy levels of the electron in the field of
the impurities, v is a set of quantum numbers characterizing
these states, E is the energy of the electron, and w is an arbi-
trary frequency.

According to the localization criterion proposed in Ref.
6 there arises in the range of energies £ corresponding to
localized states a contribution which has a 5-shape:

Cpe(r) pesu (P) 2=Az(r—r ) (w) +p 5 (r—1, @), (3)
or, in the momentum representation,
Epeperoda=Az{q)0{w) +p.5(qu). (4)

The second term in (3) or (4] is regular in w. In the region of
delocalized states A (r — ') = A {g) = 0.

As the quantities A - (q) or Ag(r — ¢') signal the appear-
ance of localized states it is useful to change to their defini-
tion in the standard formalism (Green functions). Introduc-
ing retarded and advanced averaged Green functions for the
electron

GraGrE)= Y (@(r)g. 1)/ (F—e.xit)) (5)
and using the definition (1} we get immediately

Cpe(r) peyulr’) b= {Im G**(rt' E+0) Im G** (r'tE) >

1
N (E)

1 .3 ; A ’
L%_ZNFE_)RB“G (rr'E+a)GA(r'1E)

—~{GRA(rr Etw) GR4(r'eE) 2}, (6)
or, in momenturn space,
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{pspesoty = Im{2**(Eaq}— 2" (Eoq}}, {7)

1
2N (E)
where, for simplicity, we have introduced the notation’

1
L2 =——§: ® ‘E+e)GA(p-p-E)>, (B
@** (Eoq) o (G*(p.p. E+a)GA(p-"p-E) (8)
PP

where p, =p+4q/2. The quantities @°*(Ewg) or
@4 (Ewq) are defined similarly. One sees easily™® that as
q—0, »—0 the quantities P** and &4 behave regularly. It
is clear that the singular contribution to (4) corresponding to
the appearance of localized states can arise only from the
first term in (8). One sees easily that

— I: 1 RA :
Az(gq}= I:f:mﬁ Im $R4(Ew+ibq) | omq

i
=——-1I/ ] X A , .
SN (E) ELT‘SZ Re<G*(p,p, E-+i8) GA(p_'p_E lw(;]

or, in the coordinate representation,

’ — 1 r F n z
Ax(l"—l' )-—-m}ilfl 6<IG(1'1' E+£6)i ?. {10}

It is useful to introduce the quantity

g As(q) -

“(2m)*

1
= ’ 1 H '
2N (E !moG(FG(rr E+id) [ cmr, ()

Az=Ag (l'—l") fe—er =

which is proportional to the averaged probability that an
electron returns to the initial point in coordinate space after
infinite time.® Hence it is clear that the general Berezinskii-
Gor’kov localization criterion® is equivalent to the general-
ized Economou-Cohen localization criterion.’

3. LOCALIZATION FROM THE BETHE-SALPETER EQUATION

We consider the two-particle Green function
1
D (Eqo) = = 5 (G (PP EF @) G2 (p-Tp-EDD. (12)

It is well known that in the framework of perturbation the-
ory it is determined by the Bethe-Salpeter integral equa-
tion™*

1
Py (Eq) =G (E+0ps) G (Ep-) { — 55 (p—F)

+ ¥ Ui (@0) pyv (B0 }, (13)

where G®4(Ep} is the complete averaged retarded (ad-
vanced) single-electron Green function, while the irreduci-
ble vertex part U, (gw) is determined by the sum of all
graphs which cannot be cut along two lines—an advanced
and a retarded cone (see Fig. 1, where the dashed line indi-
cates the “interaction” sz, where p is the density of the
impurities and ¥ the Fourier transform of the potential of a
single impurity, which for the sake of simplicity we assume
to be a point impurity).

We consider the problem of whether the solution of Eq.
(13) can lead to a two-particle Green function containing
singularities corresponding to localization. Starting from

a17 Sov. Phys. JETP 56 {4}, October 1982

T \\‘_i// ~
Ylgew) = lo-0'+ | + :x/\ +
r“L} ! |' L
a2 i i
FiG. 1.

the results of the preceding section we assume that in the
range of energies E where there exist localized states in the
system, &, (Eqew) has the form with a pole
P (E) g% (E)
Ppp (o) =— TS

PP’

+ Ebpp' {Eqo), {14}

where @*(Eqe) is the regular part while the factorization of
the residue at the pole (in momentum space) is assumed by
analogy with the problem of bound states. We give a certain
justification for this assumption in that follows.

From (8) and (13) we get at once

n ) TV E) Yo
B4 (Equ) =— = +2 Bu (Eqo),  (15)
xe(B)= Y 0 (E). (16}
It then follows from (9) that
A (g) =y (B (E
AEG—N—(ETM Yoo (E). {17)

One sees easily that y, (E) =y (E]). From the general
property that® 4-(q =0} = 1 there follows the normaliza-
tion condition y,{€) = N '"*(E). For the return probability
Ag [Eq. {11}] we get

1
A,=ng. (E) %o (E). (18)

The basic advantage of the localization criterion {14)
formulated here is that when we substitude {14] into (13} the
pole term dominates (as w—0) and we get the homogeneous
Bethe-Salpeter equation for ¢3{E}:

0" (E)=G"Ep,)G* (Ep-) ), Upy (qo=0) gy *(E).  (19)

It appears that a study of such an equation is appreciably
simpler than the solution of the general Eq. (13). Localiza-
tion would correspond to the appearance of a nontrivial so-
lution ¢2(E )50 of Eq. (19) which would remain nonvanish-
ing in the whole energy range E<E, where £ is th mobility
threshold. However, it may turn out (and we show in what
follows that this is, apparently, the case) that Eq. (19) only
gives the threshold £, itself but does not describe the region
E < E.. We assume therefore that Eq. (19) gives a relatively
simple method for finding the instability threshold of the
“normal” {metallic) state.

It is obvious that an analysis of Eq. {19) in its general
form is impossible. It is clear after the appearance of Refs.
10, 11 that at least in the “quasi-metallic” range of two-
dimensional systems localization effects are connected with
the contribution of the “maximally interesting™ graphs for
UE  (qw) (Fig. 2):
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FIG. 2.
Un (qo) =27(E)pV*/ (D:* (p+p')*—ia), (20)
where D & = E /mdy|E) is the classical diffusion coefficient,

YE )is the classical diffusion coefficient, {E ) = wpV N (E).
In the metallic range Eq. {19) then takes the form

.[E—J‘(P*'%Q).Hw(ﬁ:)]

[E__l,_(p_%q) —iy(E) | (E)
d’p’ "Pn (E)

=ME )j ) (p+p)?

21)

where A (E) = 2dmy*(E JoV */E. After changing to dimen-
sionless variables p—p/(2mZE)'/? we write Eq. (19) in the
symmetrized from

- (B) =2s § &0 K" (. D)0 (B, (22)
where
P-s*(E) =R *(p)p-*(E),
Rq(p)=[1— (p—"/.q)"+i1/E] * [1— (p+*/q)*—iy/E] ™",
As=4(2n)'m* (2mE)***\ (E),
(23)

while

_ 1
K& (p. 0 )=Ry" () Ry" (—p"} oo (24)
PP

] I 2
is a positive-type'? symmetric (Hermitean) kernel satisfying
the inequality

K& (p, p)<EIy |p—p[*. (25)

Hence it is clear that for 2 < d < 4 the equation considered is
an integral equation with a kernel with a weak singularity'?
and certainly possesses a finite {or denumerable) eigenvalue
spectrum lying on a section of the real axis with a length
determined by the norm of the integral operator. From Enz’s
theorem’? it follows that the first eigenvalue of this kernel is
positive and simple while the corresponding eigenfunction is
everywhere positive definite. Using the boundedness of the
integral operator one checks easily that the equation consid-
ered does not have any trivial solutions when

e U3 . -1
;,E<{.f"_1_b‘_} , (26)
rd/2) d-2 7*
i.e., when
Ad ZAe—d)
-
E>(2%) B, @7

where 4, = 2' ~ 427~ 9"%d /T (d /2} and where we have in-
troduced the characteristic energy

E“=mdﬂ'¢—dl {pVZ)Z.I’(i—d). [28]
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Hence it is clear that for 4 = 3 the corresponding threshold
energy fallsin the “‘strong coupling” region £, = m*(pV?),
where the selection we made of diagrams is, generally speak-
ing, invalid"'* and one needs to take all diagrams of the per-
turbation theory into account. As d—2 the range of energies
for which there is no solution “takes off” to infinity which
means that in that case the mobility threshold E, — . In
our opinion this result is a rather exact proof of the ideas of a
total localization when d = 2 (Ref. 10). At the same time one
sees easily that inequality (27) gives the analogue of the
“Ginzburg critical region”"'* in which higher orders of the
perturbation theory are important. Therefore, as d—2 sim-
ple peturbaion theory becomes inapplicable for all energies.

4. LOCALIZATION AND INSTANTONS

In view of the fact that when we describe the region of
the localized states itself the approach given above, which is
based upon the homogeneous Bethe-Salpeter equation, is,
apparently, insufficient, we turn to an alternative approach
which enables us to obtain a two-particle Green function of
the form (14) in the whole energy range. It is well
known''*'* that the localization phenomenon is closely
connected with the appearnace (in the appropriate energy
range) of nonlinear solutions with a finite action {instantons)
of the classical equations of an effective field theory which is
associated with the problem of an electron in a random
field.! We consider in detail the contribution of such solu-
tions to the two-particle Green function.

To evaluate the two-particle electron Green function in
a random field we can introduce' the following effective La-
grangian:

@ (1) = —-Z { o (V8= (Etati) 7 }

1 ¢ 1
—_— —_— 2_ _ 3 2
-I—2 2 {2m (Vo)) '~ (E—id)} }

b (£ (Se) SR8 oo

=1 frai

J==1 ‘el

where at the end of the calculations one understands that one
must take the limit #—0, m—0. Using the qualitative analy-
sis of the classical field equations following from a Lagran-
gian'*'® one can check that when E<0, E + »> 0 these
equations have a spherically symmetric instanton solution of
the form

@ (r) =gu{r)e, & (r)=0, (30}

21EI\ .
qa,:(r>=(p—w—) galt), r=(2mlEl)~", (31)
wherey,(¢) < 1" ~9"? exp{ — t)whenr<1, ¥} (0) = 0.In(30)

e, is the unit (m-component} isotopic vector of the field .

Considering in the corresponding functional integral
contribution connected with the Gaussian fluctuations
around classical solution (30) we get
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(G*(rr'; E+o+i8) G*(r'r; E—~i8) > ~ exp{—S[q.]}
X1 ol 577 (gal [ dR, | dege (' —Ro)
xpoi(1=R) [ D@ [ Doo,(r) o, Yexp{=S:[ 9,01}, (32

where § (@ Jocm ~4?|E|*?/pV? is the classical action
on the instaton,

Llgal=§ &r(Vau)?~ms-| |-/,
33
Ilgul= [drgutt) ~migys-anrs O

is the Jacobian of the change to integration over the collec-
tive variables R, (center of the instanton) and e [direction in
isotopic space), So[&, @ ] is the action describing the Gaus-
sian fluctuations in the vicinity of the instanton solution {@
denotes now the deviation from @)

Sul 8, 01=| dH{Zu(B) +Z0 (@)}, (34)
Qyn (CP) = jref (MT"I'IG) (6.‘5—3"8‘;) q33+ q)[(MLJf'EG) £;25,
Z‘:a ; (35)
go(¢)=2¢t(ﬂr—(ﬂ—i6)ﬁﬂ¢h (36)
13
where
Mo { t_ ___3_ Lo 2
M, = E;;V E 3 pViq.s,
R i . 2
Mr=—ﬂv —E—wé-qu:ci. {37)

The tilde above the symbol for the functional integration
over ¢ indicates that the zero eigenvalues of the operators
M, and M, ( the “zero modes™) which are taken into ac-
count through the integration over the collective variables

R, and e must be excluded.
Introducing the eigenfunctions and eigenvalues

ML‘P:.L=}-¢LW»L; Mr‘Fkrm’thq'kr: (38]

we get easily

_[ Do ®,(r) @,(r Yexp {—S.{ &, 91}

¥, (T—Ru) v (l'f"‘Rn]
w+id

\Y ¥, (r—Ro) ¥\ (r'—R,)

f (Rhl"_m_iﬁ)l-i'm’! —

+2 (39)

RED

where the normalized eigenfunction of the lowest level of the
operator M,(1 ] =0, the “rotatonal” zero mode'*'?) has

the form

W (r—Ry) =Jr [0} Pes (F—Ry). (40)

As a result we get the singular contribution to the two-parti-
cle Green function:
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(G rr’; E+otib)GA (v, E—if))

—~

H dre
Py ar JL i
perer el A It ) (@]

X Jr"%[ @] (Det’ Mol)~(Det’ M )™
X { d'Bopet (r—Ry) o (1 —R,). (41)

Here Det’ M, and Det” M, do not contain contributions
from the zero eigenvalues of the operators M, and M.
Cardy'* was the first to give an expression equivalent to (41)
{for w = 0). Taking into account the sketchy nature of that
paper we decided to perform rather detailed calculations.
We note that the singular contribution turns out to be con-
nected with the existence of a “zero” rotational mode, i.e., in
fact with the symmetry of the system. One may thus expect
that this contribution does not vanish even when we take
into corrections to the Gaussian approximation.

Taking now the explicit form of the density of states
into account which in the energy range considered is deter-
mined by a similar instanton contribution'*'? we get at once
from (10}, (11), and (41)

42—~ | R e-R @'~ R [ [ i)
42)

which is valid up to dimensionless constants. For the return
probability we get from this: A o« |E |97
Changing to the momentum representation by using

to= [ dire=vq. (), (43)
we pet
Ax(9) ~Fal—s (44)

which repreduces {17}. Introducing the Fourier transform of
the instanton

pyci= J{f"re'fﬂ’qsc, (r), {45)
we see that

~ ddl’ e el

o = j W Po* ' Pa—pr (46)
and comparing this with (16) we get

9" (B) ~5* (B) @asp (£). (47)

The consideration given heris thusin fact a validation, in the
framework of the instanton approach, of the above in (14),
assumed form of the singular contribution to the two-parti-
cle Green function corresponding to localization. The resi-
due in the pole is then expressed in terms of instantons. The
region of applicability of the instanton approach is roughly
determined by the condition™'*"* § [ @, ] » 1 which leads to
the requirement |E |»E, where E_ is defined in (28} {the
necessary refinements will be given in what follows),

5. EFFECTIWE-ACTION FORMALISM

There arises the problem of the relation between the two
approaches discussed above for finding the singular part of
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the two-particle Green function. We show below that both

It is convenient to use a matrix notation

description methods naturally arise as a manifestation of, in ?® _
general, different instabilities of the system in the framework @ = ( ) v Or=(2¢). (49)
of the effective action formalism for the component fields.'® Cor G
For the system considered of the fields (2 and ¢ the effective G = [ C *e C m] v Gav=0Gre. (50)
action is'® a functional I” of the *“‘classical’” (average) values w
of the fields &, and g and of the corresponding Green Ty 1 gorangian (29) can be rewritten in compact form:
functions which satisfies the variational principle: )
s8I sr ér ' 4
=0 = —_— =, (48) Z(r}=",8p |d'r'O*G,~ O~/ ,pV*(Sp * D)2, 51
5% () Ser (0 5G0r,7) J O Sp@Ta Y
I
1 :
(= V=~ E+o+m)s, 0
P 2m
o ()= L X 8{t—r'). (52)
0 {-—%V’-—(E—ib)}ﬁu

According to Ref. 16 with an obvious generalization to the
case of two fields we have

I‘ (meh G) =S(0cl) '_‘/zTr II].G-I
=, Tr {G-1G—-1}+F (Do, &), (53)
where Tr and In are understood in the functional sense, ®i.e.,

in particular Tr includes all necessary integrations while
InG=InDetG,G ~'isthe reciprocal of the Green function
matrix in the classical field:

g eer=[2 7] s, (54)
cd
where
] 1
a= { L Vi (Etat+id) - —oV (Pt @) }
2m 2
X G;j—pvzﬁéni (:b:! ¥
b=—pVi@u, Qu, c=—pVpu P,
. i N 1 2 z 2
d= {-— — Vi- (E'—lé) _——— pV (¢=1 +CPcI )1
2m 2
X 8i—pV per, Pet 3
2 ¢'cl 2 (P“ Z(PCI
Jum iml
The functional # (& & } satisfies the conditions
&5 /66="1/.% (55)
such that the equation
SE/8G="1G—"—"/,G~'+/,5=0 (56)

is simply the Dyson equation while the matrix X consists of
the irreducible self-energy parts with dressed internal lines.
One can get the formal scheme for calculation & (®,,G)
easily by an appropriate generalization of the prescriptions
of Ref. 16.
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We first consider the “normal” phase in which @,
= @ = 0 and only the Green functions Gy and G, are
nonvanishing. In that case (53} simplifies

T'(G)y=%(&)-*/.Trln G-'—"/,Tr {G,~'G—1}. (57)

The matrix (54) reduces to {52). A stable system must satisfy
the condition 8 2" O for any variations in @, and G. We
consgider the stability against arbitrary variations of the
Green functions in the “normal” phase. We show graphical-
ly in Fig. 3 examples of variations of the self-energy parts
when the Green functions are varied. Hence one finds, m
particular, easily that

OT 1 6Ges™
0GaBGpe 2 8Gge

)P
3G 00

1
2

i 1
= Gopp™'Ge™ + Upgpe »

(58)
etc., where Ug ., is the irreducible vertex part in appropri-
ate two-particle channel. The problem of the instability of
the system with respect to variations G, is of interest to us.
In a stable system

&T (59)
————— G 4o=20.
8Cecbls
Using8G, = Goaior G {see Fig. 3)in {59}and (58) we see
that the stability threshold of the “normal’”” phase is given by

Tt 6G o

@ ¥ @A P
¢ 7 ¥
8L, = i + g =
? 7 @ 7 ¥ @;3 Pp’ '
F1G. 3.
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~@( v }:'@'ﬁ Y =B g

the condition threshold for the stability of the “normal” phase where we
TE Gorte G U pano G PrgGon— T ooy beGrpp 0, :'e talking. about stability‘ with respect to varia_tions 5Gy,

(60) n expanswn‘oftl'.ne fur_lctgonal (G} from (57) in powers of

8Gg, = Yz, gives in principle a method to consider the cor-

which is graphically represented in Fig. 4a. It is fairly ob-  responding “condensed" phase while in that case ¥, plays

vious that when there appears a nontrivial solution of the the role of the order parameter.

homogeneous Bethe-Salpeter Eq. (19} the stability of the sys- The first two Eqs. (48) are in fact a generalization of the
tem is violated (Fig. 4b. classical field equations following from the Lagrangian (29),
The analysis given here shows that the appearance of a  (51). The case when they acquire nontrivial solutions of the
nontrivial solution of Eq. {19) gives in the general case the  kind (30} is important for us. The matrix (54) then reduces to

|

iy [ (Me—a-i6) 8 0 o
G rr’) [ 0 (M,,+£'6)e.-e_;+(MT+£G}(aij—eie,)] §{r=r), (61)

and the simplest approximation for r{%{& ) reduces to  The “Ginzburg criterion” follows'® from the requirement
neglecting in (53) the contribution % {@,,G}. In that case  that the simplest formula ExE, — E,, be valid which

(53] gives means the equation for the renormalized electron “mass”
T (@) =S{@u) —/2 Tr1n Ggg ="/ TrlnGw™ energy reckoned from the shifted band edge. This is just the
meaning of the variable E in that paper and in Refs. 1, 14, 15.
=S {gper) Tk Par). {62) 1t is clear that the equation is satisfied when
and the equation 8I" /8¢, = 0 reduces to B, 2/ (5t
iy CEea— L v+ 8T (ger) _ 0 63 Bl ( [sin (red/2) | ) B, Z<d<d, 67
om P LGP 3 eV Qe _6([).;1 ) {63)

where B; =2~ 927" ~?2/I"(d /2) while E,_ is defined in
{28). This inequality which determines the condition for the
applicability of our approximation is equivalent, in particu-
lar, to the inequality (27) obtained earlier. In the negative
energy range it delimits the region beyond which the instan-

which is the generalized equation for instantons leading to
the solution (30). Here I'|(@,,) is the result of summing the
single-loop corrections to the classical action. Considering
in it the term of ﬁrst orderin pV g2 we get

1
i . .
(pe)=— _sz v, (r) d —_— ton approach is valid.
j ". (2n)* p/em—k From the effective action formalism there follows thus
=—-—-6EI doepa{x) {64)  in a natural manner both the instability of the “normal”
' {metallic) phase which is connected with the appearance of a

where 6E gives the single-lqop “mass” renormalization in  pontrivial solution of the homogeneous Bethe-Salpeter Eq.
the original Lagrangian. Taking for £ the already renormal-  (19) and the instability of that phase connected with the ap-
ized “mass” we shall assume that the “critical point” corre-  pearance of instanton solutions. In the framework of the ap-

sponds to E—0 so that in terms of the **bare mass” proximations used these two instabilities remain indepen-
. p 1 . 3t dent which may, in principle, indicate the existence of two
EFE_GE: Eq==pV j(_"gu)d pe/2m =—eV 2”‘5&&:‘5‘: kinds of electron localization. At the same time it is clear

that the complete solution of the problem of the relation
between the two instabilities requires one to go beyond the
framework of the approximations used and to penetrate real-
1y the “strong coupling” region. The effective action formal-
ism gives, at least in principle, a convenient apparatus for a
joint consideration of these instabilities.

‘ (65)
which determines the (in the single-loop approximation)
shifted band edge. Here p, is the cut-off momentum, §,

=2""9-"g—42/Pid /2). Our definition of the shifted
band edge differs from the one assumed in Ref. 17. For E we
get the equation
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self-consistent theory of localization in 2 <d < 4 dimensions

A. V. Myasnikov and M. V. Sadovskir
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The self-consistent theory of electron localization in disordered systems proposed by Vollhardt and Wélfle
[Phys. Rev. B 22, 4666 (1980]] is generalized to 2<d <4 dimensions. The mobility edge position is

determined and the critical behavior of various physical quantities in the vicinity of the mobility edge is
discussed. It is shown that the description of the vicinity of the mobility edge in a self-consistent theory is
outside the range of validity of perturbation theory and, therefore, the results obtained by perturbation theory
are only qualitative. The case of d >4 is briefly discussed and the frequency dependence of the electrical

conductivity for d = 2 is also considered.

PACS numbers: 71.55.Jv, 71.10. 4+ x

1, It is well known that there are fundamental diffi-
ulties in the consistent description of localization of
dectrons in disordered systems.! In particular, it has
Wl been possible to describe the localization effect it-
ielf within the standard formalism based on averaged
Green functions., The only exception is the one~dimen~
“lona] case, In higher dimensions, it has been necessary
O resort to nonstandard methods based con the original
\nderson paper,? However, it is practically impossible
“caleulate various physical quantities within the Ander-
“n method,! We believe that the recent self-consistent
“proach to the localization theory developed in Ref, 3
presents an important step toward the solution of the
“alization problem, The main advantage of this method
“lts simplicity and standard formulation which make it
“ssible to generalize such a theory to include new scat-
“ring mechanisms and the effects of applied fields (see,
rexample, Refs. 4 and 5). Reference 3 is mainly con-
*ted with the two-dimensional case which is of par-
“Ular interest in the context of the present theory,! The
"roach of Ref, 3 is particularly suitable in the two-

®nsional case since it is based on the summation of a

Sov. Phys. Solid State 24(12), December 1982
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special class of diagrams®®" which dominate the per-
turbation series for d = 2. However, the aforementioned
method can be easily generalized to dimensions d > 2,

It will be shown that such a generalization yields reason-
able and qualitively correct results for all the principal
physical quantities of interest near the mobility edge,
The position of the mobility edge is also obtained within
such theory. After the completion of the present work,
Ref. 8 appeared and some of our results are quoted in
Ref, 8 (without derivation and discussion), Our aim is

to address ourselves to a number of questions which have
not been answered satisfactorily in Refs, 3-5 and 8, In
particular, we shall demonstrate explicitly that the de-
scription of the mobility edge 2 < d < 4 in dimensions,
obtained in the self-consistent theory of localization, is
outside the range of validity of the self-consistent theory,
We shall also discuss some special features of conduction
in two-dimensional systems, The behavior of the theory
for d = 4 is also briefly discussed,

2. The self-consistent theory of Ref, 3 is based on
the two-electron Green function averaged over the dis-
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tribution of impurities and on the related quantity

1 o
7' (v, 9)=— 37 Z 6% (py pli E-Fw) 6 (pl, pl; B, o0
Pp

where GR and GA are the one-electron Green functions
before averaging; E is the electron energy (Fermi ener-
gy); w is the frequency; p, = p+(1/2)q; and the angular
brackets indicate averaging over impurities, The quantity
w%A(w, q) determines the density—density response func-
tion and, therefore, the conductivity of the system,

The function (y%A{w, q) can be obtained as the solu-
tion of an approximate "transport equation” in the follow-
ing form (m is the electron mass);

0+ Mp(q. )
5! (o, q)=—N (E) TR (2
wt oMy (q, o) — =g

where Mg (q, w) is the so-called "relaxation kernel,"? In.
general, the relaxation kernel is determined by the sum
of diagrams for the irreducible vertex part in the two-
particle (R—A) channel and N(E) is the one-electron den-
sity of states,

By considering a self-consistent generalization of
the summation of Langer—Neal®' diagrams which yields
the dominant contribution for d = 2, Vollhardt and Wolfle®
derived the following self-consistent equation for ME(q =
0, W)z
3 — b (3)

fl<tky @ -______““s . @)

i
Mp (0, w) = e V2

where 1/7 = 2rp VN(E) is the Born rate of the scattering
electrons from impurities which are assumed to be ran-
domly distributed in space with a concentration p; V is
the Fourier transform of the impurity potential which is
assumed to be completely localized; and D, = 2E7/md is
the classical diffusion coefficient, The choice of the cut-
off momentum ly in Eq. (3) is discussed below,

The frequency-dependent electrical conductivity of
the system is given by’

net i
= S Mg (0, e ¢ (9

It can be seen that Re Mg(0, w = 0) = 0 holds in the metal-
lic region,

In the energy range corresponding to localized states,
we obtain o g(w —0) — 0 and the quantity

1 :
Ap (@) =5z gy lim E <GR(p,, py E+18) GA(p, pi E—ib)p
PP

A

1 - wh g (g, )
== N5 mm-‘as e (5)

(w, q)=Ilim

werl M i 2
wMplq, w) -2 ¢

which determines the "localization probability" becomes
nonzero,%? For q —0, we obtain'?
Agig) =1 —g*Rj, (E), (6)

where the localization radius Rjgc(E) is given by
28
RZ {E):m; ‘.,3:._&:% wMg{0, w) >0, (7
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It follows that the localization is related in the preg,
formalism to the divergence of the relaxation kerne;
w) for w—0 (see Ref, 3),

|
MEin

The self-consistent equation (3) was studied i Ref ¢
only for d = 2. However, it can be easily generalizeq
arbitrary dimensions d, It is clear that the COrTespony;,.
results can describe localization only qualitatively Sin:-:
Eq. (3) is based completely on the summation of La-nge.ru
Neal diagrams which are important only for d = g, Never
theless, such calculations are interesting since they y;|
a simple description of localization in arbitrary dimey_
sion and, undoubtedly, describe correctly some feapype,
of the localization, The validity of such calculations will
be discussed later.

3. Introducing in Eq. (3) 2 dimensionless integratiop
variable, we can write this equation in the following forp,
which is more suitable for our further calculations:

1
M _L Lo diad M| d d—l—l,. ™
E(w}._.__ + dizf M g lw) yy K Mg (w)wd * (%)
[}

P DT Ti{mER

C =
2 K

._-..—Pr!‘

2
p(;) {9)

where X is a dimensionless coupling constant and x, =
ky/VEZmE. Careful examination of the equations of Ref, 3
[prior to the introduction of Mp(q, @) in Eq. (27) of Ref, 3
indicates that k; ~pg ~ V2mE (py is the Fermi momen-
tum). Such a choice of the cutoff momentum was used in
Ref, 3 although the authors of Reif, 3 do not discuss in
detail their choice of k; (see Ref. 8, where the momentum
ky in Ref, 4 was chosen differently). We believe that the
choice of the cutoff momentum ky ~pp ~ V2mE is unique
and very important for the subsequent estimates. For
such a choice, it is clear that x, = const ~1,

B 1 m
hEmE = ( 2?)

Setting w = 0 in Eq. (8) and considering the metallic
regime Re M (0, w = Q) = 0, we find that

.

; d . : (10}
I;::(I —ma\a‘-ﬂ 3).
Equations (4) and (13) yield
i—d
2 A Ta
“stm=0?=n:: "{i_(%)l}; 2Ld A, an
where
i e
i LAY wr
E¢=ld52_{ﬂT(2ﬂ"‘g} Ey.. {12}
21‘(‘2‘)
4 2 (13)

E,o—=mi— (y¥2ia,
It can be seen that Ec plays the role of a mobility edge
2 s—a\ E—E,
e~ (S50) (P ) 2<a<s (14
for E 5 Ec. Our result (12) is practically identical Wit

the estimate of E¢ obtained by another method in Ref. 9
For d = 3, the mobility edge E; lies in the "strong co~

4
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pling" region Esc = m*(p V%)? where the set of diagrams
used in the calculation of this quantity is no longer dom-
jnant??? and all the diagrams of perturbation theory should
pe included. In fact, it follows from Eq, (9) that the con-
dition £ *Esc is equivalent to the requirement A < 1,
.., it represents the simplest condition of validity of
perzurbation theory, For d —2, we obtain E, — «, which
corresponds to the currently accepted view that there is
complete localization in two dimensions.!s"® Moreover,
as shown in Ref, 9, it is more important that Eq. (12) de-
fines essentially the dimensions of the "Ginzburg critical
region"i'a where higher orders of perturbation é;heory are
important since the geometrie factor (d— 2)3/( ~4) ap-
pears in the theory, It follows that, in spite of the fact that
the inequality E¢ »Ege (A < 1) is satisfied, the mobility
edge defined by Eq. (12) falls even for d —2 in an energy
range where perturbation theory (and the corresponding
choice of diagrams used in the present self-consistent
theory) is not valid, Nevertheless, it is reasonable to
assume that Eq, (12) yields a correct order-of-magnitude
estimate of the mobility edge. At the same time, the re-
sult (14) implying that the conductivity tends {o zero lin-
early in the limit E — E¢ cannot be regarded as proved,

We shall now discuss the region of localized states
(E < Eg). We shall set [see Eq. (7)] Im Mg(0, w) =0
and ReMp (0, @) =—w? A4v, and multiply Eq. (8) by w,
which yields in the limit w— ¢ the following equation for
ug:
1

C oyt du
t=dgt |y g s =g @s)
v

The integral in Eq, (15) can be expressed in terms of the
hypergeometric function and Eq, (15) then assumes the
form

1
1=ug—=zl,f,(|, L1145 -3) (16)

When the mobility edge is approached from below (E £
Ec), we can expand Eq. (16) in powers of z (small w}),
Simple transformations yield

5

A= Tarl- (@) 2cecnan

It follows from Eq, (7) that the localization radius is
given by

A
a-z

1 d=o
B (5 — L [p () p (=g LA oy — BN
'”{E’_r{,am—g{r(z)f( 2 )} “'(E‘) o )(18]
EgE,; 2<a<y
Where the critical index of the localization radius is
— (19)

d—2

Equations (19) and (14) indicate that Wegner's scaling
Telation g = (d — 2)v is satisfied for the critical conduc-
livity index,! The corresponding values of the critical
Indices describing the behavior of physical quantities
fear the mobility edge agree with the results obtained in
the principal approximation in the € = d — 2 expansion
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obtained by the field-theoretic method based on nonlinear
o models (see, for example, Refs, 11-13) and also on the
basis of the £ expansion in the qualitative scaling theory,!¢
We believe that these results should not be taken too
seriously since they were obtained by extrapolations out-
side the range of validity of perturbation theory and are
based on an inconsistent self-consistency procedure,
Nevertheless, the self-consistent theory of localization
of Ref, 3 is a powerful method since it yields quite simple
results that are equivalent to the results obtained by more
complex methods, 171

4, We shall now discuss the results of the present
self-consistent theory for d = 4, It follows from kg. (1m
that

The solution defined by Eq, (20) for d > 4 is clearly not
physical since the region of localized states and the me
lic region are interchanged, For d = 4, we obtain meta/
conduction and m? V? is the dimensionless coupling cor
stant of the four-dimensional theory of Ref. 15, Our tm
ment is clearly meaningful for m? V< 1, [It follows
from Eq. (15) that @ < o], This result also follows sin
the quantity Egp defined by Eq, (13) tends to zero for d
4 (from below) for m? V2<< 1, The interchange of the
metallic region and of the region of localized states for
d > 4 is a natural consequence of the following fact note
already in Refs, 15 and 16: the perturbation expansion
in the present theory is in powers of the parametfer

(E/ Egc){'1_d)/ ? and such an expansion for d < 4 diverges
in the limit E —0; for d > 4, it diverges for E —«, Nc
physical behavior of the model for d > 4 indicates that:
model based on a point interaction (correlation of a ran
dom potential of "white noise® type) is not adequate for
d > 4 (see Ref, 17), The situation changes completely if
we assume that the cutoff parameter k; in Eq. (3) is dete
mined by the range of the potential (pair correlation functio
of random potential) rather than by the Fermi momentun
i.e., by Rint, which implies k; -»B{ét <« py (long-range
interactions), For d < 4, we obtain the same results as
before but the mobility edge is now given by

d m a4 E.’!_Z—I o : kﬁ

Es=—d_z(§:) T #h Be=gy (2

I‘(‘:E

For d = 4, we obtain

2 E—F, ~
200 "n‘! = E>E, (2
4 d—4% E E
“’3”?7_—2([—1:)- (2

It follows that the critical index of the localization radiue
is v =1/2 ford > 4. In this sense, we can regard d = 4
as the upper bound on the dimension of space in which
localization effect can occur,! However, we would like
to point out that a choice of k; independent of py does not
follow from the model under study which is applicable

to d < 4, This important factor has not been discussed
in Ref, 8,

A. V. Myasnikov and M. V. Sadovskii 2035



5, Finally, we shall quote (in more detail than in
Ref. 3) our results on the frequency dependence of the
conductivity in the self-consistent theory applying to d =
2, A somewhatlengthybut straightforwrad analysis of
Eq. (3) for d = 2indicates that there are several frequency
intervals with different behavior of the conductivity. At
very low frequencies w < {1/ Aye-1/21/7), we obtain

ne? 1 oA

ag (w) "{—-;;TWN’- (24)

i,e., we obtain insulating behavior.® At somewhat higher
frequencies

net P12 (25)

splw) = T(nER™

"Quasimetallic" behavior with logarithmic corrections
first derived in Ref, 7 is obtained at frequencies satis-
fying (1 /A)et A /7)< w< A¥1), Le.,
T 1
3 {w):%- :(i — L lu_-u;). (26)

Finally, for A?/7 «<w< 1/, the seli-consistent theory
yields

net E.
:E(m)::T'-(i— 5 ) (27)
where
E‘.t-r::lg‘i"" In 3'20'—. (28)

The last result is especially interesting since the conduc-

2036  Sov. Phys. Solid State 24(12), December 1982

tivity in this frequency range is essentially constant
dependent of w) and cor_}‘espond to metallic conduct
with the mobility edge Ec defined by Eq. (28). Itis
sible that this result explains the well-known discre
between various numerical approaches to the calcul
of the two-dimensional conductivity's logarithmic ¢
tions and insulating behavior manifest themselves ¢
at extremely low frequencies and, at the same time
is an interval of frequencies (since A is small) inw
the system is characterized by a finite mobility ed;
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The self-consistent theory of electron localization in a random system in the form pro-
posed by Vollhardt and Wolfle is generalized for the analysis of localization in the
Anderson model. We derive the general equations appropriate for the system with rath-
er general form of the electronic spectrum. Explicit calculations are restricted to the
lattices of cubic symmetry and use the effective mass approximation to obtain the final
results. Anderson’s critical ratio for the localization of all the electronic states in the
tight-binding band is evaluated and found to be in surprisingly good agreement with
the results of numerical analysis of localization in the Anderson model.

1. Introduction

The phenomenon of electron localization in disor-
dered systems, which is actively studied in recent
years [17], usually is described within the framework
of the well-known Anderson model [2, 3]. In most
of the papers published up to now, either quite non-
traditional methods, originating from the classic pa-
per by Anderson [2], or numerical analysis were
used. But the few attempts to derive localization via
more or less standard formalism of the modern ma-
ny-particle theory, involving the averaged Green
functions, were mostly unsuccesful. Because of this
situation we believe, that the development of the
socalled self-consistent theory of localization, in the
form proposed by Vollhardt and Wolile [4], de-
serves a great attention. This approach allows to get
rather reasonable description of localization of elec-
tronic states in a two-dimensional system {d=2), and
also at least qualitatively describes the Anderson
transition for d>2 [5, 6], in close correspondence
with the scaling picture of this transition, proposed
in the famous paper by Abrahams, Anderson, Lic-
ciardelle and Ramakrishnan [7]. In papers [4-6]
the model of electrons scattered by the randomly
distributed point-like scatterers was considered.
Thus, due to the existence of rather large number of

*  Permanent address; Insiitute for Meial Physics, Ural Scientific
Research Center, USSR Academy of Sciences, Sverdlovsk,
620219, USSR

references, devoted to the study of localization in the
Andersen model (cf. the reviews [1, §]), it seems to
be inieresting to generalize the self-consistent theory
for the description of localization in this model. The
first attempt of this kind was undertaken by Prelov-
ek [9]. in the framework of self-consistent approach
proposed by Gotze [10]. In this paper we shall con-
centrate on the study of localization in the Anderson
model within the theory of Vollhardt and Wélfle
[4].

2. General Equations

The Hamiltonian of the Anderson model in a re-
gular lattice has the form:

H=Y Eaf a;+} V, a} a, (N
E L

where a; and a; are the usual destruction and crea-

tion operators of the electron at a site j. The energy

levels E; are considered to be independently distrib-

uted on different sites of the lattice. The distribution

at the given site is usually defined as [2]:

W; |Eji<%w

PE){o, |Ej>iw 2)
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corresponding to the homogeneous distribution of
energies in the energy interval of the width W. But
in the main part of this work we shall assume the
Gaussian distribution

P(E)=

1 E_f
which considerably simplifies the corresponding dia-
gram (echnique. The transfer integral V;; is assumed
to be different from zero and equal to a constant V
only for the transitions between the sites which are
nearest neighbours in the lattice.

After the Fourier transformation (1) can be written
as;

H= zs(p)a a +Z g1qfy )
where
s(p)=V§e“’" (5

is the standard electronic spectrum in a tight-bind-
ing approximation [11], and the vector h;;=R;—R,
defines the positions of the neighboring sites in the
lattice (the summation in (5) is assumed over the
nearest neighbours). The Gaussian random field U,
entering the second term in (4) (N - is the number
of sites n lattice):

1 R
lumg T B ©

has in the momentum space the correlation function
of the following form:

Fr2

<Uq Uq’> ZF 511, _

o =WQ6, o {7
correspending to the assumed form of correlation of
energy levels E; in the lattice:

(E;E»=W?33§,,. (8)

In (7) £, is just the volume per single site of the
lattice. In the following we are considering the lat-
tices of cubic symmetry and put the total volume of
the system equal to unity, which gives 1/N=4, (the
volume of primitive cell of ihe crystal). The higher-
order correlation functions in case of the Gaussian
random field are factorizable in terms of the pair
correlators (7), (8), so that the form of diagram tech-
nique for the calculation of the averaged Green
functions, corresponding to the Hamiltonian (4), is
quite obvious [12].

The derivation of the main equations of the self-con-
sistent theory follows the main steps of [4]. The

only complication is connected with the necessity to
take rather general form of the electronic spectrum
(3) into account. The formalism is based upon the
Bethe-Salpeter equation for the averaged two-par-
ticle Green function ¢F#(Ewq), which is used to de-
fine the function

Pelwq)= 3, 32 (Ewg)
- [ 13

1
=—3 Z(G"(m p.E+w)GAp

P _P+z‘l 9

Cp_Ep

The Bethe-Salpeter equation takes the form (for
small g}

(E—l—w)—i—E" (E)} (,b (Eawq)

2 o 40) O (qu)} (10)

{o—q-v,—

=AG {
where v, =3d¢(p)/@p is the group velocity of the elec-
tron, and

4G, =GHE+wp,)-G*Ep_) (11)

while the averaged one-electron Green functions are
taken in the standard form:

1

1
GRAEp)= ~
En) E—¢(p)~Z5E)  E—s(p)iy(E)

{12)

where the last expression in (12) is obtained through
the ordinary summation of simplest diagrams [12]
(without intersecting interaction lines) and

HE)=aW?Q, N(E) (13)

is just the scattering rate of the electron on the ran-
dom levels and N(E) - is the one-electron density of
states. In Eq.(10) Ufp.(qw) is the irreducible {(in two-
particle R— A channel} vertex.

summing both sides of {10) over p and p’ and using
the Ward identity derived in [4], we get the equa-
tion for ¢gleq):

w glwrq)—q i (wg)=— N(E) (14)

where we have introduced the function:
dHwa)=3 (v,-§) dfAEwe) (13)
rp

where § is the unit vector in the direction of q. To
obtain the equation for (,bf(wq) we maultiply (10) by
v, 4 and sum again over p and p’. Then to “close up”
the system of equations in terms of the functions
Pelwq) and ¢F(wq) we use the following approxi-
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mate relation:*

Zdv.‘f;t(ﬁwmz ~[2ziN(E)]~" 4G,

5 () g "
P e vE(q)
where

2a I .
vE(d) = ‘“m g("p“ﬂzﬂ Gy (17)

Is just the “averaged in the vicinity of the isoener-
getic surface e(p)=E" square of the projection of the
velocity v, on the direction of §. In the lattices of
cubic symmetry (which are the only lattices consid-
ered below), due to the isotropy of their physical
properties we have:

1 1

=g 0r= 5 e E"z‘ﬂ(’

. 1 2 —

>N B ;"p H(E~—&(p) (18)

where the last equality is approximately valid in the
limit of small disorder.
Then for ¢%(wq) we get the following equation:

[
{o+Mggo)} f.bf(wtﬂ—a v5q” de(wrg)=0 {19)

where the so called
takes the form:

“relaxation kernel” Milqw)

I — 2AG
zN(E)vi-%"

- [Zy, (Etw)-Z5 (B)]

d «
: X0, 946, UL, @0} 4G, (v, §)

T IRIN(E)L &
» d £ E
~ 2 y(E)—m g (v, 4 4G, U, (qo)

4G, (V- §) (20)

Meqo)=

where the last equality is valid in the limit of small q
and ¢, taking (12) into account.
Solving the system of (14) and (19) we obtain:

$p(00) = — N(B) —— 2T Msl42) 21

w? + o Mg(qow) —% vig?

so that the corresponding density-density response
function {cf. Ref. 4) is given by:

*  This relation is the patural generalization of (25) in [4] for the
case of electrons with the arbitrary specirum s(p)

xelqo)=wdplwq)+N(E)

1
EN(EJ v3q’
=- o 22)
o’ +oMgqo) - viq?

Neglecting the w? term in the denominator of (22)
we can rewrite xg{gw) in the form:

() iDglquw)q’

xe(qeo)=N(E 1D, Qo) (23)

where we have introduced the generalized diffusion
coefficient:

i vi
Dglqw)=~ ———. 24
£ d Mglqo) 9
The electrical conductivity is given by (cf. Ref. 4):
i
gg{w)=e* lim (——U;) ¥elqo)
q=0
N E)E—— 25
=— 0g————————.
d Ew+M s0w) (23)

The locahzation is signalled by the appearance (in
the corresponding energy range) of the finite limit
for the following expression [3, 6, 13]:

Aglq)

1 R A
ZnN(E) llmZ(G (P, P, E+i)GYp_p_E—id)

4 -1
N(E) -0 s dME{qw)m} '

(26)

L bmwéywq=lim {1 -

For g—0 we have [14]:
Ap{@=1~q*R{ (E) 27)

where the localization length is defined by:

2

R: (B)=—E_

loc( ) Q{E)

WH(E)= — lim oM {0 w) > 0. (28)
w—10

It can be seen, that in this formalism the localization
phenomenon is connected to the divergence of the
“relaxation kernel” M (0w) for @—0. which leads
to the appearance of the non-zero limit for w3>0 in
(28).

In the self-consistent theory of Vollhardt and Walfle
the irreducible kernel Uy, {(gw) is taken as a sum of
the se called Langer-Neal (or maximally crossed) di-
agrams [15], which for the model under conside-
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ration reduces to:

29(E) W2 Q,
—iw+ DE(p+p)?

Ufp, Q)= (29)

1 2
where DE= s

d y(E)
ficient, and we assume that |p+p’| is small with re-
spect to the characteristic sizes of the Fermi surface.
The main idea of the self-consistent approach of the
Ref. 4 was the substitution of DE in (29) by the “re-
normalized” diffusion coefficient defined according
to (24). Then Eq. (20) defines the self-consistent equa-
tion for My(Ow), which after some transformations
can be written as:

is the classical diffusion coef-

_i spn
MO0 == 2W el ) b, 0w: OO
where
Bp= 2o "Zv [Im G, (E))? 31)

and we have denoted 2y(E)=1/1. Equation (30} ge-
neralizes {42} of [4] for the case of general electronic
spectium z(p) in the lattices of cubic symmetry. It is
not difficult to write the similar expressions for the
lattices of some general symmetry, when the depen-
dence on the direction of the vector q appears ex-
plicitly {cf. {16}, (17)).

For =0 we get from (25) and (30):

2

aE(O)=—3— N(Ey}~ 200)
e , 2dW20,
=< N(E)vfr{ i) kz} ¢2)

defining mobility edge by the relation o (0)=0 we
get the equation determining its position E,:

24dWQ 1
l=—3—0% 15 (33)
E, k

In the energy range corresponding to localized states
we have [4, 6]: lnn o ImM0w)=0, ReM_ (0w)=

~wi(E)w, so that from (28) and (30) we can easily
find the following eguation for w3(E):

- 1
1=2W2 0005y —————. (34)

. wﬁ(E}—i—%vékz

For wi(E=E_)=0 it obviously reduces to (33).
Remembering that the expression (29) is valid for
rather small values of |p+p’j, we see that the sum-

mation over k in (30), {32)-(34) should be restricted
to the values of k lying inside of some isoenergetic
surface in the momentum space with the characteristic
dimensions of the order of “doubled” Fermi surface.
In fact it follows automatically from (20), because of
two factors of 4G, and 4G, under the sum over p
and p’ in it, because these factors are rather sharply
peaked in the vicinity of the Fermi surface.

3. The Effective Mass Approximation

The above relations are rather general and are valid
for the arbitrary electronic spectrum &(p), with the
only limitation to the lattices of cubic symmetry,
which allows not to deal with the anisotropy of
physical properties. The actval calculations will be
performed with the use of the effective mass approxi-
mation, which allows to evaluate all the integrals in
momentum space by elementary means. Near the
“left” band-edge we have from (5):
pZ

ep)x —ZV 45 -

(35)

where Z is the number of nearest neighbours, and
the effective mass can be easily evaluated from the
known expressions [11] for the electronic tight-bind-
ing spectra to be m*=1/2Va® for SC, BCC and
FCC lattices (@ ~ is the lattice constant}. Using (35)
it is shown by direct calculation that 6. defined in
(31) is equal to umity in this approximation. We
choose the upper cut-off for the momentum space
integration in (30), (32)-(34) equal to k,=x,p;,
where pr=¥2m*s (e=E+ZV is the energy distance
from the band edge) is the Fermi momentum, x,~1
~+2 {(cf. the discussion of the cut-off in Ref, 6). Then,
evaluating the integral in (32) for the d-dimensional
space we obtain:

e’ d _
G’E(O}=?N(S] vit l—m Axi-2

et v} d
= I— Lxd72 2<d<d
3nd WZQO{ d—3 "% } ==
where
1 ®y di2 P2 d-4
- =(m_) 8 55* (37)
2ret  \2nm F{d/2)

is the dimensionless
theory [6], vp=pg/m*.
Similarly from (33) we get:

i
Wiz d—2 _ gdy m*\"7 x2-¢ 2=
(?) e "”(5) (5»;) Vg, (38)

“coupling constant™ of this
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For the fixed disorder W/V this equation defines &
=¢, - the position of the mobility edge inside the
band. For the fixed & (Fermi energy ) (38) defines the
critical ratio {W/V),, sufficient to localize all the
electronic states on the Fermi surface. For the half-
filled band ¢=ZV (ie. E=0, corresponding to the
standard problem of the localization of the whole
band in the Anderson model [2, 3]), and we get:

d
Wiz d—2 _ fdy pm*V\ 2z x}i"¢ 44
Yy === 2
(V)c dr(z)(zﬂ) o, (39)

For W/V<(W/V), we obtain the following ex-
pression for the mobility edge

2
d x"ﬂ'2 N b
=y 0 2 E
where
d 2 4 E i
E, = (mi-3(Qg) -3 V3i-d (ﬂ;)““’
W i
4-d
)

is the energy defining the strong-coupling region [1,
6, 13] for the problem under consideration. When
the Fermi energy lowers in the band below this en-
ergy, we get A~ 1, and the perturbation theory clear-
ly breaks down.

While comparing our result with the literature on
the Anderson model it should be taken into account,
that our parameter W? is just the dispersion of the
Gaussian distribution {3). For the homogeneous law
(2) dispersion is equal to W?/12. Thus, for the
“Anderson’s critical ratio” we obtain*: (W/V)?
=12(W/")2 In Table 1 we give the numerical values
of the critical disorder for the localization of the
whole band calculated from (39) for the different
three-dimensional cubic lattices, for two different
values of the dimensionless cut-off. Despite the ob-
vious crudeness of the theory we get the amazingly
good correspondence of these vajues with the results
of numerical caleulation for the SC lattice:
(W/V). =15 [16], (W/V),=19105 [17], (W/V), =16
+0.5 [18], for the “Anderson’s type of disorder”,
and also with the results of the most accurate analy-
gis of localization within the Anderson approach
given by Licciardello and Economou: (W/V),~ 145
[19]. Also quite reasonable is the agreement with
the only known to us result of numerical analysis of

* [t is certain, that such 2 procedure gives only the approximate
description of the Anderson's type of disorder {2), because we ac-
tually negiect all the perturbation theory diagrams connected with
the higher-order cumulants of the random field E, which are
clearly not equal to zero for the distribution law (2)

Table 1. Critical disorder, corresponding to the localization of the
whole band for the Gaussian distribution of energy levels (W/F),
and for the Anderson’s type of distribution of levels (W/¥)},, for
the lattices of cubic symmetry

Lattice Z £, (Wi, [W,-"V]t (W), (W/V),
xg=1 x,=2 xo=1 Xo=
SC 6 at 3.67 4401 19.67 1391
BCC 8 a*2 B.63 6.10 29.88 21.13
FCC 12 a4 1350 9.55 46.78 33.08

the Gaussian disorder: (W/ V). =7 [20]. We are not
aware of any numerical calculations for the BCC
and FCC lattices.

In the following we quote onily the results for the d-
dimensional hypercubic lattices. In particular, for the
static conductivity in the half-filled band case we get
from (36) (2<d<4):

(W)V)-(W)V),
A U1 N

Wy W2 d—2  d\x3? Al
- —_] = — - - 2
PG @
where we have introduced:

47 2 jV\2
w7 (i), *)

which practically coincides with the Motts “mini-
mal metallic conductivity” [20]. For d=3 and the
Anderson’s type of disorder we get:

2
[
0013 }15—‘12102!2‘1 em~!  for a=3A4°
It is curious to note that for d—-2 g,
et 1

.Na"—‘zﬂ—-} o0, because of (W/V), -0 (39), which

reflects the crossover to the complete localization
of the band by the infinitesimal disorder in the two-
dimensional system [1, 4-7].

Similarly, for the vicinity of some mobility edge in-
side the band we obtain:

o=, 4—;—d (SZSC); e, (44)
where

e*v} ne’
00=—d—N(s)1:=mTr {45}

is the ordinary Drude-like conductivity of a metal (n
- is the tota] electron density). This result coincides
with that obtained in Ref. 6.

Let us now consider the results, following from (34),
limiting ourselves only to the case of the half-filled
band and (W/V)z(W/V),, which corresponds to the
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localized phase*. In dimensionless variables this
equation takes the form (use also (35)):
-1 __da}(E)

1
] -2 Y 2 “olH
1=did dy 2= el

m : (46)

All the calculations are similar to that done in
Ref. 6, so that using ¢=ZV, m*=(2Va®)~! and v2
=4ZVa?, we obtain: (2<d<4)

wi{e=ZV}

2
4(d N
_ar 4 nfe e ZrY2,2
d{d—zr(z)r(z 2)} *o

vy =
vy

_2

il Ol
(W/V}—(W,-’V)c}a_fi
(WiV), ’

From (28) and {47) we get the following expression
for the localization length in the center of the band:

(47)

L Z2V2xY {2

(W/V)—(W/V}c}”d—_z )

(Wi,

so that the critical exponent for the localization
length in the self-consistent theory is:

1
v—d_2 (49)
also for the Anderson transition in the center of the
band {Cf. Refs. 5, 6). From (49} and (42) it is seen
that Wegner’s scaling law s=(d —2)v for the conduc-
tivity exponent is also satisfied.
Thus, the critical behaviour at the mobility edge in
the self-consistent approach to the Anderson model
is the same, as in the model of free electrons, scat-
tered by the random impurities [6]. Also valid are all
the remarks concerning the inapplicability of pertur-
bation theory in the vicinity of the mobility edge
made in Ref. 6. Thus, the results obtained may give
at best only the qualitative description of the Ander-
son transition (this is especially so for the critical
exponents).
Finally, let us briefly analyze the two-dimensional
case, when there is a total localization of the band,
even for small disorder [1, 4-7]. Dealing again only
with the localization in the middle of the band
(= Z ¥V} and solving the {46}, we find:

R (e=ZV}=a {2

* TFor e2¢,, ie in the vicinity of some mobility edge inside the
band (34} essentially gives the same results, as obtained in [&],
because of effective mass approximation (35)

w

so that for the localization length in the center of
the band of a square {Z =4) lattice we get:

R, (e=ZV)=aVV2Z w5 (:=ZV)

=2ixoexp {4 (%)2} (51

De-Broglie wave length for the electron in this case
is ~a/f2 and from (51) it is clearly seen, that R
grows exponentially, starting with the value of /2
with W/V diminishing from (W/V)2=4/Inx,, which
gives (W/V),~2.40 for x,=2. Note, that the value of
(W/V), defined in this way is rather sensitive to the
change of x, in the interval 1 $x,52. It is probable,
that such a behaviour “explains™ the results of most
numerical calculations, giving for d=2 the finite val-
ue of Anderson’s critical ratio (W/¥),~6 [16, 22-24]
for the square Anderson lattice {Cf. the similar be-
haviour of the frequency dependent conductivity,
discussed in [6], and giving a kind of a “quasitran-
sition™ at a finite “mobility edge™).

mﬁ(s=ZV}=ZZzV2x§exp{—2Z (L)z} (50)

The authers appreciate the vseful discussions with AV, Myas-
nikov at the initial stages of this work. One of the authors
(M.V.5.) expresses his deep gratitude to Prof. W. Wonneberger for
the hospiiality, extended to him during his stay at the University
of Ulm, where this paper has been completed.

Appendix

The above discussion is slightly inprecise. The rea-
son for this is that the parameter E in the second
equality in (12) is, in fact, a “renormalized™ energy,
which includes ReX® 4(E), defined in the simplest
approximation, taking into account the diagrams
with no intersecting interaction lines [12]. This leads
to the shift of the band edge, due to the interaction
with radom field. We have:

- & 1
PNy O
where E, denotes the “bare” energy. Defining:
E(Eg)=E,—Re Z%(E,)
we can rewrite (52) in the form:
E,—E(E,)+ilmIRAE,)

—wg, P ! (53)

(2m)* E(Eo)—s(p)—1Im Z%4Ey)’

In terms of the “bare” energy the band edge E,_ is
defined from the obvious condition of the vanishing
density of states:

d
Li 2P ymorag,p—— 0

NE)=TF [ o —

T
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Fig. 1. “Mobility edge trajectory”. Broken line shows the position
of the band edge

which for our model is equivalent to the condition:

E(E)) o> —ZV:  ImEZR4E=E,)=0. (54)

We consider here the “left” edge of the band. Then,
from (53) and (54) we obtain the equation defining
Ey.:

1
Ey,= - ZV-Wa,[22

{21:)“ ZV+e(p)
Analogous treatment for the free-electron case was

given in [13]. In the simplest approximation (35) we
get:

(55)

1
=_—7V— 2
Boo==2V=W20 “I(zﬁ)‘ p*/2m*
. 2m* pé? w2 s,
=_ZV—W? A _ZV-—
= —ZV=W2208,~— 2 ZV— 5125 (56)

where we have introduced the upper cut-off p,=1/q,
and the last equality in (56} s written for hypercubic
lattice, so that Q,=d’, m*=(2Va*)~* and S,
=2-W=Lg=d2ir(df2),

Remember now, that the parameter ¢, entering (38)
is actually the distance from the physical band edge:
e=E,—E,.. Then, from (38) and (40) we obtain the
equation, defining the mobility edge position Ef in
terms of the “bare” energy. For hypercubic lattice
we get:

2 4
d X Na=d , (Wya—d

By~ v (__) 7
and for d=3, using (56) we find:

Ej 1 (W 3x321(ﬁf)4

— =l — ) == 58
zZv ! 2n22(V)+(4ﬂl)Z 14 (58
defining the “mobility edge trajectory”, shown in
Fig. | (the picture is just the same near the “right”
band edge), which is similar to that obtained in the
Anderson’s approach to localization [3, 22]. If we
let E°=0 in (58), we get a biquadratic equation, de-
termining the critical ratio (W/V), for the complete
localization of the band, taking the shift of the band

edge into account. The elementary solution, for x,
=2 and Z=6 (sc lattice) gives (W/V),~4.15. Com-
paring this with the corresponding value in Table |
shows that the influence of the shift of the band edge
is rather small, which justifies the simple approach,
used in the main part of this paper.
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The Hartree-Fock corrections to the density of states and to the thermodynamic quantities near
the mobility threshold, necessitated by the interaction between the electrons, are calculated with-
in the framework of the formalism of exact eigenfunctions. Principal attention is paid to the
region of localized states. The “localization’ corrections directly connected with the electron-
return probability are found. Using a self-consistent localization theory, the known results of
Aronov and Altshuler are generalized to include the case of an insulator. The localization contri-
bution to the polarization operator, corresponding to a non-ergodic behavior of the system and
leading to a difference between the isothermal and adiabatic resposes, is considered. It is shown
that the static isothermal dielectric constant has a metallic behavior and corresponds to a finite
screening radius also in the dielectric “phase,” whereas both the high-frequency and the adiabatic
responses are described by expressions that are typical for dielectrics.

1. INTRODUCTION

In the theoretical study of electron localization in disor-
dered systems, which is attracting so much attention of late,
interelectron-interaction effects are usually disregarded.!
Yet it is known that an important role is played by these
effects both in metals with small impurity density,>* and for
electrons in strongly localized states.** In a number of re-
cent approaches®'! to metal-insulator transitions in disor-
dered systems attempts are made to take the influence of
interelectron interaction into account. All these studies deal
only with the metallic (or quasimetallic in the case of two-
dimensional systems) “*phase™ in the vicinity of the Ander-
son {or Mott] transition, and the insulator phase is disregard-
ed. The role of interelectron interactions for localized
electrons was considered, besides the already mentioned
Refs. 4 and 5, only in various attempts to develop a theory
for Fermi glasses.'>"* All these studies demonstrate the im-
portant, if not decisive, role of correlations in the description
of metal-insulator transitions in disordered systems. At the
same time, the results of these studies are highly contradic-
tory and the problem is still far from completely solved.
There is even no clear answer to such a fundamental ques-
tion as the possible existence of localization itself in systems
with interaction. The situation is aggravated by the known
difficulties' that arise in the theoretical description of the
Anderson transition even in the one-electron application.

This being the situation, it makes sense to analyze first
the case of weak interaction for strong disorder, as an at-
tempt to determine which physical processes are particular-
ly strongly influenced by the correlation. The present paper
is devoted to the first-order perturbation-theory corrections
to the density of states and to certain other characteristics of
the system in the vicinity of the Anderson transition; princi-
pal attention will be paid to the region of localized state. In
this sense, an attempt is made here to extend and generalize
the known results of Aronov and Al'tshuler? for the metallic
phase to include also the insulator state. We shall employ
mainly the method proposed in Ref. 14 to derive the main
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results of Ref. 2. We shall regard the Anderson single-elec-
tron problem as solved, and for many actual calculations we
shall use the self-consistent localization theory in the variant
proposed by Vollhardt and Wlfle,' which comprises appar-
ently a qualitatively correct interpolation analysis scheme
that permits a description of the entire region of the transi-
tion from a metallic into a localized phase.'*'®

2. GENERAL RELATIONS

Regarding the single-electron problem as solved, we in-
troduce a complete orthonormalized system of exact wave
functions @, ir} and the corresponding eigenvalues of the
electron energy in the random field of a disordered system.
These functions and energies can correspond to both local-
ized and delocalized states. We consider the single-electron
causal Green’s function in the representation of these exact
eigenfuctions, particularly its diagonal matrix element

Goo(e) =C¢| (e—H+ib sign e} ~t|v), (1)
where H is the total Hamiltonian that takes the interelectron
interaction into account and £ is the energy reckoned from
the Fermi level. The influence of the interaction is taken into
account by introducing a corresponding self-energy part
Z,(€) (Refs. 12-14),
Gwley=fe—e,—Z,(e}] ",

Following the standard procedure we introduced
the renormalized energy £, as the solution of the equation

{e)=A,(e) +il {e)signe. (2)

14,19

g—e—A () =0, {3)
and represent (2) at £ =&, in the form
va(a)=z"‘ [8_€V+iT“ Sign E’]_’.'! [4]
where
_ Ay {e) 11 _ .
Zv—v [1_T]E=§v' ?v——Z\,Tv(E——B\r). {5]

We introduce 14 the self-energy part SE{E) averaged
over some equal-energy surface £ = £, and over the config-
uration of the disordered-system random field that defines

© 1985 American Institute of Physics 300




the single-electron problem:
Sa(e)=Be(e) s (e) =No (B) { Y 6 (E-e)le) )
(6)
where the angle brackets denote the aforementioned config-
uration averaging and Ny(E ) is the single-electron (averaged)
density of states.
We shall be interested in the single-electron density of

states with account taken of the interaction; we define this
state in the usual fashion

N(E)=—n" <Z Im G2 (E) > . (7

Assuming the corrections for the interaction to be small,
¥. €€, ~E,, it is easy to verify that in first-order approxima-
tion

SN(E) _ N(E)—N,(B)  08A:(z) + 88z (2,)

= 8
N (E) No(E) AE 98, ®)
For reasons explained below we shall call the quantity
GN(E) - aﬁﬁ(ﬁv) {9)
N.(E) IE

the correction to the thermodynamic density of states. This
density of states was first introduced in Ref. 14 (see also Ref.
8).

3. CORRECTIONS FOR INTERACTION: CONTRIBUTION
FROM LOCALIZATION

We shall consider hereafter a model problem in which
theinterelectron interaction is described by a static repelling
potential with a finite effective radius:

Hin= j— j drj dr’

MG RUEICE STROTNILSERIRZRN

v [10}

An examination of the Hartree and Fock diagrams (Fig. 1}
yields then

5= fdr farve-r) Y fes (e e e),

B\ = I drj ar’ v(r—r') Z, fop (0" (0) gu(r) 9. ('),
v (11}

where f, = fie,}is the Fermi distribution function. We have
accordingly from the definition (6)

4
¥
”._$ U z":-i—@—i—
PR oy g
a b
FIG. 1
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£ = I do f(E+wm) I drj dr’ v (e—rt") €pe(r) puye (r') 277,

(12}
where we have introduced the following spectral densities:

i
Cpa(r) Prae ()" = { ¥ 6(B-e)8(Eto—e)

X g’ (1) (1) " (1) o () ) , (13a)
1
Con(0)prau () = s (Z 8(E—e,) 6(E+o—¢.)

X0 () D) 9 (D () )

The spectral density {13b) was first considered by Berzinskii
and Gor’kov?" in connection with a general localization cri-
terion formulated in it. The gist of this criterion is that at
energies E < E, (where E_ is the mobility threshold}, i.e., in
the region of the localized states, these spectral densities ac-
quire a contribution that is a & function of &

pelt)pera{t’) 22 =Ap(r—1")8(0) tp (0, T—1'),
Lpz(P)pe.u(r’} 20 =4 (1—1}6 (0) +p: (@, r—r’};,
where the quantity

.45:(1'_1") = N :E) <Z|6 (E—E,.) !q:lp(l‘) |=|(Pnl(r’) |2>

+0, E<E, (15)

(13b)

{14a)
{14b)

is connected?! with the probability of the electron returning
to the initial point, so that the Berezinskii-Gor’kov localiza-
tion criterion is equivalent to the known Economou—Cohen
criterion.?? The validity of (14a) can be verified directly by
repeating the arguments of Ref, 20,

Substituting {14) in {12} we obtain the following contri-
butions to 3 ., which is due to the onset of localized states in
the system:

Eﬁ’fic=ﬁ£‘ia=if(E)j drj dr'v{z—1') Ag{r—1")

1 (8) [ v A (@), (16

where we have transformed in the last equation to the Four-
ier representation {d is the dimensionality of space). For a
point interaction v{r — r’') = v8{r — r') we have

_HF

dd
Sp =B} E:—)d—zls(q)ﬁif(E) veds, (17}
where A, is proportional?! to the total probability of the
electron returning to the initial point after an infinite time.

We note that for a point interaction, by virtue of a property
obvious from (13)

pe(F)pgr (1) 22 ={pg(r}pp- (r) >OF (18]

the “regular” contributions to X ¥ and 3 § due to p"in (14)
are equal (and of opposite sign).

For zero-spin fermions, the Hartree and the Fock con-
tributions (17) cancel each other. It can be easily seen from
{16) this cancellation does not depend on the interaction ra-
dius. When the spin is taken into account the Hartree contri-

M. |. Katsnel'son and M. V. Sadovskir 301



bution acquires an “extra” factor 2 connected with the sum-
mation over the spin in the electron loop of Fig. 1a. This

results in a nonzero localization contribution:
H4F L H4F

B tee=0x toc=] (E)ved s {19)

We write down for the sake of argument the equations for the
point interaction. We recognize that the main energy depen-
dence in (19] is determined by a Fermi function that varies
strongly near the Fermi energy E.. The quantity Ag at
E =~ E; can be regarded as a constant {a smooth function of
E). This assumption can, generally speaking, turn out to be
correct near the mobility threshold, when 4 vanishes, The
corresponding “critical exponent” is not known exactly, but
it can be concluded from the available estimates®' that A4 /
JE—0 also as E—E,. We then obtain from (9) and (19)

(@), 7z 85 mote, (- 255).

The singular {localization) contribution {20] is cancelled in
the total density of states defined in {7) by the second term of

(8):
1 3A)" (8) i}
N.(B) <Z| 3t E 6(E_E”)>

& H+F
1 ,
T N.(E) <2I d"j dr

Eg" B loc =
e [6: 1) 170 0") [7) v, T2

{20)

Gf(E}
IE

{21)
We shall see nevertheless that the thermodynamic density of
states (9) governs the behavior of a number of thermodynam-
ic quantities, and retains the localization contribution (20).

To understand better the physical meaning of the local-
jzation contribution to 2 Z* %, we note that in fact we are
dealing here with allowance for the interaction of electrons
that are in one and the same quantum state v. It can be seen
that in the case of diagrams ¢ and & of Fig. 1 the contribu-
tions from the interaction of electrons with equal spin pro-
jections {shown by arrows in Fig. 1) cancel out completely,
and 4 1 * Fis determined by the interaction of two electrons
with opposite spins, which are in a state v, i.e., by an effective
interaction of the Hubbard type:

Hop= -;—2 j dr j dr'v(r—r") oo ir) |2l oo {r') | *rwattes
(22)

where n,, is the operator of the number of electrons in a state
v and with a spin . Using the simplest estimate of A (Ref.
21} we have (Ex < E.)

HiF ~{ UnRr-:: (E)« E<E;

e 23
£ 0, E=E;’ (23)

where R (E) is the localization radius of the electronic
states with energy E. Comparing the results with Mott’s
known qualitative reasoning,” we see that 4 £ *  coincides
with the width of the narrow band of *‘singly occupied” elec-
tronic states produced below the Fermi level in the localiza-
tion region.
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O—0 <>

Considering the Hartree—Fock corrections to the ther-
modynamic potential, which are determined by the plots of
Fig. 2, we obtain by direct calculation

(BQ p> = J‘ AEF(E)N(E)SE*. (24)

After integrating by parts we have

H4F

BQ=(B8Q>+ (80, = T_f dEN, (E)(—w-zx )ln“ﬂ_m).

(25)

Comparision of (25) and of the known expression for the
thermodynamic potential of free fermions:

Q=T {dEN(E)n(+e™) (26)

-

explains the use of the term “thermodynamic density of
states” in connection with the definition (9). The singular
{localization) part of the thermodynamic potential is given
by

59,°,=J‘ drj dr'v(r*—r’)J. Az (t—¥ YNo(E) FE)dE -

_ 2 S
—_jde f Ty CVADNAE) P (). ”

The corresponding contributions to the entropy and to the
heat capacity are

Sioc= aagmcz—jdENn(E)af (E) UUAE_'UnNu(EF)ABFs
aT Tr0
- (28)
aS!nc nz
D-:_T B ——— F/— Nﬂ Er AE ; 29
CromT 2t = 2 Ty (No(Br) A, )i (29

C\.. 1s connected with asmall { ~dA ¢ /dE ) correction to the
thermodynamic potential. The corresponding correction to
the density of states in (20) was neglected. The localization
correction to the correlation contribution to the compress-
ibility is also small:

2

P!
Sitioe=— 7 6Qm——vo _[ dEAENo(E)

—

F(E}

(Es) 45}

Thus, the singular contribution {20) to the thermody-
namic density of states does not lead to any contradiction
whatever with the third law of thermodynamics. The finite
contribution to the entropy as 7—0 (28) is obviously due to
the existence of “free” spins in the Mott strip.

(30}

4, REGULAR CONTRIBUTIONS

Up to now our analysis was quite general. We must now
assume a certain specific one-electron model for the Ander-
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son transition. We are principally interested in the contribu-
tions made to the density of states by the “regular®’ terms in
the spectral densities {14). We confine ourselves only to the
Fock contribution to (12) since, as noted in Refs. 3, 14, and
24, the Hartree contribution is small in terms of the param-
eter

F— JdQv(q—-Zp;smw—) / | aaw(0),

where p is the Fermi momentum and the integration is over
a solid angle on the Fermi surface. It is easily seen that F < |
if the interaction potential decreases over a length exceeding
the reciprocal Fermi momentum. It can be verified that the
estimate (31) remains in force also for the regular contribu-
tion to (12} in the localized phase. For a peint interaction, as
is clear from (18), the Hartree contribution is double (when
the spin is taken into account) the Fock contribution, so that
the results that follow must simply be taken with the sign
reversed.

As shown in Ref. 21, the connection between the Four-
ier transform of the spectral density {14b) and the two-parti-
cle Green’s function of the one-electron problem is

Im {®**{Ewq) —D**(Ewg)},

$31)

(32)

nN,(E)

Cpepaiody

where
i . p
0%4i5 (Eaq) =—— Y (G*(p,ps E+0) G*® (p_'p-E)),
2mi
e

q

P.=p+ 5 {33)
A similar representation can also be written for {14a). At
small ® and q, the function @*%(Ewgq), in contrast to
&* [Ewq), is regular.'* We shall therefore neglect its contri-
bution to the spectral density and assume it does not lead to a
substantial renormalization of the density of states. As the
one-electron model of the Anderson transition we employ
the self-consistent localization theory in the form proposed
by Vollhardt and Wélfle.'*"!® In this theory

D4 (Eroq) = —No(Er) [0TMep(qo)] [0*toMe(qu)
—2Eq*dm] -, (34)

and the relaxation kernel M is determined as ¢ — O by the
following self-consistent equation

i 1 d'q ) 27-1
M,,(m)-;{i-l-_ﬂNn(E’) oyt [i0+De, (@) }
(35)
where :
2B, i
_t 36
Ds, (@)= —>— o) (36)

is a generalized diffusion coefficient, 7, is the Born free-path

time, and 1 is the electron mass. The solution of (35} is
. 2 E
My, (©)=— &m')_ ,

Te

{37)
where

@ (Ery=—lim oM _(0)>0

]

for E;z < E_, 1.e., below the mobility threshold whose loca-
tion is defined by the equation eg(E,) = 0. From (32) and
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(34) we easily obtain
1 D qus

ECEa it

(PEpEHn}lIF ==
(38)
(PEPE+m>qF = AEF (Q) & ({0)

i I)E-'Fq2

MERTER TP T
EF <Ec»
where
w2 (Ep) T
Agg(g) = - (1 + RL.(Ex) ¢y

@o® (Er) 1pp + Drpd

(39)
2E - /dma} is the square of the localiza-
= (2E/dm)rg_is the renormalized dif-

where R (Er) =
tion radius and Dz
fusion coefficient. From (12) and {38) we obtain for the regu-
lar contribuiton 3 £ at 7= 0:

L]

1 .0 dé
b34 reg = — -~ S dE S (23.[()1(1 v{q)
Dquz
(B"— £)* 4 [0o® (E¥) Tep + Dged'F 7

For the correction to the density of states we obtain corre-
spondingly

x (40)

NE) g
NolEr) —  9F 25
1 dd DEFq
- S ()q_}d v (q} E* 1 [0g (bF)IEF'l‘DE TF " (41)

Assumning now for simplicity the point-interaction model
and recalling that up to now the energy E was reckoned from
the Fermi energy £, we getfor 2 <d « 4

ollp
IE—E;I:s’(ﬂuz(Er)TxF.
(42)
?vN((g))”%dez D5 =0y (B iy 1 —E-nr,
LRSSy 3 o

IE—EFl €' (Ey) Teg

where S, =[29"'#72I(ds2))"'. The characteristic
energy E is connected here with the choice of the cutoff pa-
rameter on the upper limit of the integral with respect to g in
{41). This cutoff is necessary because the “diffusion” approx-
imation is not valid for the integrand and at large momenta,
In accord with the consideration of the analogous cutoff in
the integral of (35), which was carried out in Refs. 15 and 17,
we choose a cutoff parameter equal to the Fermi momentum,
so that

E=Dsp ps*. {43)
An alternative is the choice of a cutoff parameter equal to the
reciprocal / 7' of the Born mean free path,'® but near the
mobility threshold we have/ —' — p., so that the two choices
are equivalent. According to Lee’s scaling reasoning,® near
the mobility threshold, when R . (Ez)»/, p7 ', the cutoff
parameter is proportional to R 5" and E ~w}(E )7, This
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choice, however, contradicts the self-consistent localization
theory on which our calculations are based. In fact, use of
cutoff at momenta on the order of p or/ ~' in the basic self-
consistency equation (35) yields the usnal results’>-'? that
agree with the scaling picture of the Anderson transi-
tion.'*'® On the other hand, using in (35) cutoff in the sense
of Ref. 8 does not lead to equations in closed form. It must be
emphasized, however, that in the self-consistent theory we
still have the unsolved problem of determining the ¢ depen-
dence of the parameters w?(Er) and D _or 75 atlarge g,
since Eq. {35) is derived in the limit as ¢ — 0.
The estimate {50} is valid if the following condition

|E—Ex), @ {Er}1ep <E (44)

is satisfied. For the special case d = 2 we obtain in place of
(42)

8N (E)
No(&R)
v wEZEEl g g0 Erry
L}
_n 45)
4nZD (E |
VEEr nmo (EF)TEF, {E — Ep|<Cwo®(Er)1gp

At w2(Ez) =0, i.e., in the metallic phase, Eqs. {42) and {44}
agree with the usual results of Aronov and Al'tshuler.”* It
can be seen that at |E — Ex|»;(Ef )7, the metallic-phase

kink in the density of the states at the Fermi level become
smoothed out and is replaced by a smooth minimum. This
conclusion, as can be easily verified, remains in force regard-
less of the cutoff used in the integral (41]. A diagrammatic
analysis in Ref. 25 has shown that {42} yields the main cor-
rection to the density of states everywhere except in an ex-
ponentially small vicinity of the Fermi surface, where an
additional nonzero logarithmic contribution appears in the
dielectric state.

We present actual relations that are obtained in the self-
consistent localization theory. At 2 «d <4 and Ex S E_ the
solution of Eq. (35) produces in the dielectric phase (we omit
some inessential constants}'’

E (4—d}/2 E —E, 2f{d=1}
R Gl v M B =
(46)
E (4—d)/2 4 =¥ Ee—E, |~
een=p [1-() ) e | P
(47)
tEP dl d(ﬂ02 (EF) {d-2)/2
T 4—d[ SEg? ]
da Ep— E |
g [PrRuc B)Pd b [ =5 0 (48)

where A = (27E 75~ " is the dimensionless constant of per-
turbation theory in scattering by a disorder, and
v = (d — 2)~ ' is the critical exponent of the localization ra-
dius. The mobility threshold in the model of point scatterers
randomly distributed in space at a density p and with a scat-
tering amplitude V (Ref. 17}1s
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,d d 22 {4~—d)
~ - —d/R —_— E'c‘
E. [d—z(?‘“) /F(z )]

E =m0 (g V2 2704 49)

Where E_. is the *“strong-coupling” energy."? At Exr ~E_,
we have A ~1, and perturbation theory no longer holds.
From {40)-(48} at E; S E_. we have

k EF ;\rEF EF_EG v
B Te. ~ . ~ | , (50
o )~ TR B ) 4—d | E (30}
1 1 _ 1 | E,—E. | ¥
Dx,,""an—{PrRm(Er)]z d“";"‘ Z. » (51)
E _Ec d—2}y
EnEplpsRicc(Eg) ¥4 ~Ef FE I (52}

It can be seen that satisfaction of the condition (44) entails no
difficulty. For the correction to the density of states on the
Fermi level (|E — E | €w}(Er )7z} we obtain from {42) and
(50)-{52)as Ep — E,
SN(E:) 4-d
No(E;)  d—2

vom*Ey* " {1~ [ peRioc (Ex) 1%}

E _Ec - iy
"-‘—UnNo(EF) T ’

(53)
The divergence of the correction as £z —E,, which follows
from the last equality in {53} {a similar divergence occurs also
in the metallic phase} indicates that our analysis cannot be
used in the immediate vicinity of the mobility threshold. Our
estimates are meaningful so long as |[6N (E )/N,| €1. The di-
vergence becomes logarithmic if the cutoff in (41} is in accord
with the scheme of Ref. 8, in analogy with the corresponding
result obtained there for the metallic region.

The corrections obtained above to the density of states
can be found from the following qualitative arguments. Con-
sider the interaction between an electron in a state v with
energy E, on the one hand, and an electron in a state with
energy Ep, on the other. The relative correction to its wave
function is then in first-order perturbation theory

8. ¢
2 {dtHad), (54)
% .

where r = 0 is the instant when the interaction is turned on.
After a time ¢ the electron diffuses within the confines of the
volume (D Y. We estimate the matrix element of the in-

teraction for short-range repulsion at v,(Dz 1)~ 472 Then

imox
G[LP“ ~vo [ dtDe, )"~ oDz, {tnen —tos}. (55)
tmfa
It is natural to determine {,;,, here from the condition for the
applicability  of  the  diffusion approximation:
[Dg tuin 2~ pT 0 diey b ~ (D p2) ™' ~E ~'. The time
toax 18 determined by two factors. First, the matrix element
of the interaction vanishes at times ¢ > |E — E¢| because of
the of the temporal oscillations of the wave functions. Sec-
ond, in the region of the localized states the interaction elec-
trons cannot move apart by more than R, (E;}, and the
diffusion  approximation is valid so long as
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tSRE(ER)Dy, ~(w) TEF} ! Therefore  {,,,, ~min

[|E — Eg} ™", {@j7g,)~"}. Then, assuming that SN{E)/
Ny~8p, /¢, , we obtain directly {42). Of course, these esti-
mates are only purely explanatory.

The results provide a simple explanation of the analysis
of Aronov and Al’tshuler?? on the diclectric side of the An-
derson transition. The approximations used do not contain a
Coulomb gap,*”* primarily because of the short-range char-
acter of the interaction, and also perhaps because the model
is crude and is based only on allowance for Hartree-Fock
corrections.

5. POLARIZATION OPERATOR

We consider in this section, from a general viewpoint,
how the localization affects the behavior of the polarization
operator, i.e., actually the question of the character of the
screening of the electric field in a Fermi glass.

Using again the representation of exact eigenfunctions
of the one-electron problem, we have for the Fourier trans-
form of the polarization operator of non-interacting elec-
trons

fu_fv
Mgw)= < Z g.—e,t0tib sign o

X @u(ps) o (P+')‘Pu(P—')(Pu'(lJ—)>

_j dEIdQ f(E)—f(E+Q)

ELIE. ’» o
Q4o tidsignw Brotiagng o E) (osoniods

(56)

in the zero-temperature formalism and

fE)—f(E+Q)

H(qwm)—j dE j’ dQ—5

in the Matsubara technique (@,, = 2amT ). Substituting the
singular part of {14b) in {56), we obtain

e {qu) =0,
and a nonzero contribution comes only from the regular part
of (14b):

II{gw)=II,..(qw)

fE)—f(E+Q)
- .[ aE IdQ Q+u+idsignw

No(E) €psprsoda® (37)

N(E)ps(qR). (58]

The situation in the Matsubara technique is different:
ntnc (q(ﬂm?&o) =01

(59)
L (gon=0) = j a(- 220N vy 4@
=N, (Es) A F(Q) ,
so that
H(qmm)———j dE{(E) [1—[(E) IN.(E}4=(q)
(60)
HE)-H{E+Q) v
+j dEj 4Q = No(B) ps” (992).
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Taking into account the explicit form of the regular part of

the spectral density, which arises in the self-consistent the-

ory (38), we can obtain

D ¢

+ “’Oz{EF) Tgp — i T
(61)

In the metallic phase w3{Ez) =0, and (61) reduces to the

known expression for the polarization operator of a “dirty”

metal.>*’ in the localization region, recognizing that

@5 Er)rg, = Dg R o~ we

L, (q0) =Ny (E#) ¢* [ ¢*+Rie (Ex) . (62)

Analogous calculations yield for the Matsubara polarization
operator

H{qw) =1, (qu) =N, (E¥) De g
F

T (qond = Mo (B) {Ag (@60 &+ —22 O g )

[ ol i Wy DEF (U}m) gg ™

Dgp (— o) ¢
e D e e 6
1, m=0
B(Qm)—{o, me<0’
where the generalized diffusion coefficient is
2Er i @y {E!)
Dl' 'm . Mx m] = - ——
(m ) dm Mx ( m) F(m ) TEP idm
{64)

The difference obtained in the behavior of the polarization
operator at T = 0 and in the Matsubara technique, a differ-
ence that manifests itself only at zero frequency (screening of
the static field), is the consequence of the known difference
between the static adiabatic and static isothermal responses
in systems with non-ergodic behavior.?®?” The latter leads to
the appearance of a 8-function anomaly of the spectral den-
sity at zero frequency, which in our case is a consequence of
the Anderson localization—of a typically non-ergodic phen-
omenon. The Matsubara response *““senses” the nonergodi-
city manifestation,”” whereas the response determined by
the commutator Green’s functions is insensitive to it. The
polarization operator is connected with the electronic com-
pressibility. For the static isothermal compressibility we
have (cf. Ref. 27)

%" (q0) =II{quw.=0), (63)
whereas the adiabatic compressibility is
®*(g0) =IL,ee(qu~0). (66)

We get then from (58) and (59)

®7 (g0) =2 (q0) =No(Er) Ar, (@) =No(Er) [1+ 7 Rioe (Ex) .
(67)

The fact that A { g) determines the difference between the

isothermal and adiabatic compressibilities was first noted in
Refs. 28 and 29. This difference, naturally, appears only in
the static response. From (39)-{62] we obtain for the static
isothermal polarization operator

I (q0) =T gwn=0) = .. (g0} +11,., (g0)
1 g*
1+¢*Re,_(Es) ¢ TR (Ee)

=N.(Es) [ | =& (68)
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Accordingly, for the static adiabatic dielectric constant we
have

4 2
g*(qm+0)=1+%nreg(q0)

_ { i+%0*/g%, g2 Rie(Er),
1+xptR? (Ex), q<R;L(Es),

for

(69)

where x3 = 4me’N,|E ), whereas the static isothermal di-
electric constant is

/ 2 Dz
€ (g0) =1 + —= nf(qo)=1+°‘q2 (70)

qz
It is precisely the latter dielectric constant that agrees with a
real experiment on the screening of a static external field.® It
can be seen from {70) that the Fermi-glass screens a static
field."" This fact was first noted qualitatively in Refs. 30 and
31. Avany arbitraily low temperture the hopping conduction
over the localized states aligns the electrons in an Andersen
dielectric in a way that ensures complete screening. The
characteristic times are obviously determined here by the
frequency w* ~ D, ¢, Where D, is the coefficient of dif-
fusion due to the hopping conduction, and g~ 1/L, where
the length L is determined by the characteristic scale of the
external-field inhomogeneities in the given experiment*®*’
{e.g., by the distance between the capacitor electrodes). It is
precisely in the sense of the condition @ «< @* that one must
understand the static character of the field (and of the re-
sponse) in the formalism described above (in which hopping
conduction is not taken explicitly into account).

The divergence of the dielectric constant, observed in
the approach to the metal-insulator transition in the known
experiments on P-doped Si (Ref. 32 is probably due to the
divergence of the localization radivs R . (Er — E_ ) in (69).
It would be quite interesting to attempt a measurement of
the dielectric constant of this system in a static field.

The authors thank D. I. Khomskii and M. 1. Auslender
for a discussion of a number of processes touched upon in
this paper.

"In the employed formalism it is possible also to demonstrate directly that
the corrections to fT | ggl, which lead to singulacities such as (42} in the
density of states, are mutually cancelled out by the interaction. This agrees
fully with the important circumstance noted in Refs. 8 and 9, viz., the
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screening radiuvs is determined not by the density of state but by the quan-
tity IN /du = IT{g — 0,0}, where N is the total density of the electrons.
This was not taken into account in Ref. 6.
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A system in a state of Anderson localization in its normal state can go
superconducting below the critical temperature T, The Ginzburg-Landaun
coefficients are derived for the superconducting transition in the region of
Anderson localization. The behavior of the upper critical magnetic field H, as a
function of the degree of disorder is studied in the metallic and insulating regions.

The introduction of a sufficient amount of disorder in a metallic system gives rise
to a localization of electronic states near the Fermi level, i.e., to an Anderson transi-
tion."* On the other hand, the attraction of electrons near the Fermi level gives rise to
a superconducting ground state at low temperatures. We might ask about the relation-
ship between these two types of transitions, which lead to fundamentaily different
ground states. This question is also of applied importance in connection with research
on the supercenductivity of highly amphorous metals and compounds bombarded by
fast neutrons.

The effect of localization on superconductivity has recently been the subject of an
extensive discussion in the literature.”> In the present letter we show that a three-
dimensional system in the state of an Anderson insulator in its normal state can go
superconducting below a certain critical superconducting transition temperature T,.

Assuming that there is an effective attraction of electrons at the Fermi surface, we
use the Bardeen-Cooper-Schrieffer theory to calculate the coefficients of the Ginzburg-
Landau functional:

1 3 e 2
F=AIA[’+-BIAI‘+C|————A)A| . (1)

2 o b
The coefficients A, B, and C are determined by the Matsubara two-particle Green’s
function of the system of electrons in the normal state. This function ¢ iqw,, ), which
determines the kinetic properties of the normal state and the transition to localization,
can be found in the self-consistent theory of localization.*® As the degree of disorder
increases (with a decrease in the “seed” electron mean free path /), the mobility thresh-
old E, approaches the Fermi level E, and crosses it. At this point the conductivity
vanishes, and the system goes into the insulating region (£ < E_}. Near the transition
point {Ex =~ E,} we have

NEg)

P (quw,, )= — w,, = 2amT, ()

il | +iDy (1w, 17)! g3
where
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Dy = %UFI, 7=l
According to the BCS model, the coefficients 4 and B, remain independent of the
degree of disorder (the Anderson theorem) as long as there is a sufficiently large
number of states near the Fermi level in an energy laver on the order of T, in the
localization region. We are thus primarily interested in the coefficient C, which de-
scribes the superconducting response of the system. For an ordinary dirty supercon-
ductor, C is proportional to the conductivity of the system, ¢. This conductivity van-
ishes at £, = E_, and the question of the value of C near the Anderson transition and
in the localization region is less trivial. Using the relation

2
C=irT Z @(b(q,k”)l 5 & =(n+1mT (3)

o q*0
we find the following results for the square of the correlation length:

~ 1

T
zﬁn=5u§6—~;>; R, < (5P, E,<Eg.
0 c

- T -1
#(T) = (so:’)‘”(i ) ?) P OR> (W), E,2Ep. “
¢

fo= L18hv,/T,,

where R, =k 7 '|1 - Ez/E,| " is the correlation length of the Anderson transition,
o=0,keR,)"" is the static conductivity of the metal near the transition, o, is the
Drude conductivity of a dirty superconductor, and o, = I *k./7# is the minimal me-
tallic conductivity in the Mott sense [, =250 $/cm with & =~(3 A)~'], which deter-
mines the scale of the conductivity at the metal-insulator transition. In the insulating
region, R, determines the localization radius.

We see that the superconducting response is also preserved in the localization
region. It disappears only upon a violation of the inequality R, > (£, %)'/3, i.e., only for
highly localized states, for which the discrete spacing of the levels in a region on the
order of R, in size is important.

We calculated the behavior of the upper critical magnetic field H, (T), ignoring
the effect of the magnetic field on the Anderson transition. This approximation is
justified near T,. The relationship among o, the derivative (dH , /dt)r, and the state
density at the Fermi surface is

*

>0 (5a)

1; o
U dHy,
k=— = g *
SechN(EF} ar T, . o< o, (5b}

161% [MER)T, '
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FIG. 1.

where 0* zzo, (k€)% is a measure of the effect of localization on the superconduc-
tivity. This quantity is approximately equal to the minimal metallic conductivity. We
see from (5) that relation (5a), which is familiar relation in the theory of dirty supercon-
ductors, is violated as we approach the Anderson transition. Figure 1 shows the com-
plete dependence of the coefficient k& on the parameter

— g g A
a= 1.23;[1 + e {(kréol ] .

Also shown here is the dependence He) = — H,(0)/T.(dH ,/dT )y . As the degree of
disorder increases, this coefficient increases from the value 0.69, characteristic of ordi-
nary dirty superconductors, to 1.24. The positive curvature on the H, {T') curve gives
way to a negative curvature.

We know from the work of Anderson, Muttalib, and Ramakrishnan® that as a
system approaches the localization threshold, the critical temperature T, falls off
becanse of an intensification of the effective Coulomb repulsion of electrons {the at-
tenuation of the diffusion of electrons opposes their dispersal). Our calculations show
that in systems with low values of £ (on the order of 1000 K) and a rather high initial
temperature T, (on the order of 10-15 K in the absence of disorder) the localization
region can be reached while a significant value of T, is retained.

A behavior of o and (dH,, /dT); , which agrees with (5) and Fig. 1, has been
observed in some real systems: the bombarded ternary chalcogenides SnMo.S, (Ref. 9)
and Pb, _, U, Mo,S; (Ref. 10). Measurements® of the coefficient y in the specific heat
show that the state density N (Ep) is essentially independent of the degree of disorder.
We might note that compounds of both types are convenient for arranging the Ander-
son transition, because the values of Er in these compounds lie near a band edge and
because of the comparatively high temperatures, T, =~ 10-15 K. The pronounced dis-
ordering which results from bombardment causes 7T, to decrease to 1 K in these
materials, causes the residual resistance to increase to values » 1077 {2 cm, and leads
to a negative coefficient of the resistance which is significant in magnitude over the
entire temperature range studied. These results strongly indicate that these com-
pounds, when subjected to neutron bombardment, are in fact near an Anderson transi-
tion while retaining superconducting properties.
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The possibility of superconduciivity is considered for a strongly disordered
metal approaching the Anderson transition. A microscopic derivation of the
coefficients of the Ginzburg-Landau expansion is given for a system in the
vicinity of the mobility edge. The localization transition is described within the
Jramework of the self-consistent theory of localization. The superconducting
response persists in the localization region. The appropriate change in the
behavior of the upper critical field H,, is considered for the localization region.
The Coulomb repulsion grows as the Fermi level approaches the mobility edge,
leading to a degradation of the superconducting T.. However, under rather
rigid conditions superconductivity is possible both at the mobility edge and in
a narrow region below the mobility edge, i.e., in an Anderson insulator. Finally,
experimental data for superconducting molybdenum sulfides irradiated by fast
neutrons are discussed.

1. INTRODUCTION

The concept of localization forms the basis of the modern theory of
electrons in strongly disordered systems.'” Sufficiently strong disorder intro-
duced into an ideal metallic system leads to the localization of electronic
states in the vicinity of the Fermi level (Anderson transition).” The electronic
density of states at the Fermi level remains finite, but because of spatial
localization of the electronic wave functions, dc electrical conductivity at
zero temperature is impossible, i.e., the system becomes an insulator. At
the same time if there exists an attraction of electrons in the vicinity of the
Fermi level, the metallic system becomes superconducting at low tem-
peratures.* So the problem arises of the interplay of these two types of
transitions, leading to essentially different ground states of the system
(insulator versus superconductor). This question is also important from an
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experimental point of view due to a strong dependence of the superconduct-
ing properties of some compounds on the degree of the structural disorder,
which can be changed greatly by fast neutron irradiation.

The influence of localization on superconductivity has been dealt with
in a number of recent theoretical papers.>™'* Attention was paid particularly
to the study of localization corrections in two-dimensional superconduc-
tors.>'® However, the possibility of superconductivity in the vicinity of a
real Anderson transition was not studied. In this paper we address the
problem of superconductivity in a three-dimensional metal undergoing an
Anderson transition. From the experimental point of view we consider a
rather exotic situation. In fact in most metals the Anderson transition is
not realized even for the fully amorphous state. This is due to the rather
high values of the typical Fermi energy Ep. Possible candidates are metals
with low values of Ep (semimetals, narrow-band conductors) and also
quasi-one-dimensional and quasi-two-dimensional conductors.

In the first part of the paper we treat the probiem in the framework of
the BCS model,* which assumes the existence of an attractive interaction
between electrons near the Fermi level. For this model a statement can be
proved (Anderson theorem)'* that claims the unimportant influence of
structural disorder on the superconducting transition temperature T. The
arguments used in this proof are, in fact, independent of whether the
electronic states are localized or not.*™!' However a question arises about
the physical meaning of T, in the localization region, as to whether below
this temperature the system still has the Meissner response to an external
magnetic field and can sustain a persistent current. This problem can be
solved by the derivation of the Ginzburg-Landau (GL) equations for the
system in the vicinity of the Anderson transition. We shall demonstrate that
superconductivity persists for T < T, i.e., an Anderson insulator-supercon-
ductor transition is possible. On the basis of the GL equations, we study
the behavior of the upper critical field H,, in the region of the Anderson
transition. :

To justify the applicability of the BCS model we must show that the
electron-phonon mechanism of electron-electron attraction may dominate
over Coulomb repulsion even in the localization region. In a recent paper
Anderson et al.’? demonstrate that the diffusive nature of electron motion
in a disordered system leads to the growth of an effective repulsion of
electrons forming Cooper pairs and to the appropriate suppression of T,
with disorder. We shall show, however, that under rather rigid conditions
the value of T, remains finite both at the mobility edge and in some narrow
region below the mobility edge {Anderson insulator), although it is the
growth of the Coulomb repulsion that leads to the destruction of supercon-
ductivity in the insulator phase at some critical disorder.
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Finally, we discuss some experiments on superconductors irradiated
by fast neutrons, which give some evidence on the possible realization of
our theoretical estimates in real systems.

2. GINZBURG-LANDAU EQUATIONS
2.1. General Relations

Consider the electrons in a disordered system, assuming the existence
of an effective electron-electron attraction g, in an energy region of the
order of 2wp around the Fermi level (wp, is the Debye frequency). To study
the problem of superconductivity in such a system we must not only discuss
the value of T, but also consider the response to an external vector potential
A.

In the general case, the study of response functions for a superconduct-
ing system with localized one-electron states presents a rather difficult
problem. However, near T, the problem simplifies, and in fact we must
only show that the free energy density for our system can be represented
by the standard GL form'*'

2

F=F,+ A!A|2+%B|A|‘*+ C '(E-EEA)A

ar Hhe ()

where F, is the free energy density for the normal state and A is the
superconducting order parameter. Now the problem reduces to the micro-
scopic derivation of the coefficients A, B, and C in (1), taking into account
the possibility of electron localization in the disordered system, thus gen-
eralizing the results of Gorkov'>!® for “dirty” superconductors. In the
following we use the system of units # = I, restoring the value of 4 only in
some final expressions.

Within the BCS model the coefficients A and B in fact do not change
in comparison with the ordinary theory of “dirty” superconductors, even
as we approach the mobility edge, so long as the Anderson theorem can
be applied. Below we shall determine the appropriate conditions. Less trivial
is the behavior of the coefficients C, which in fact determines the supercon-
ducting response. In the limit of ordinary “dirty” superconductors it is
proportional to the diffusion coefficient of electrons, i.e., to the conductivity
at T=10. As we approach the mobility edge this conductivity goes to zero,
However, we shall show that in the region of the Anderson transition C
remains finite even in the region of localized states,

To determine the coefficients of the GL expansion it is sufficient to
study the two-particle Green’s functions for the normal system.'* We intro-
duce two-particle Matsubara Green’s functions for electrons in the normal
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system in the momentum representation’”'*:

] * d3p { dBPr
Yaomen) == | 0ar ) Gy
X{G(ps Pt — £, + 0, ) G(—pL —p.— &, )}

1 " dSP r djp!
$lqone,) = 2qi ) (20Y ) 2w)

(2)

X(G(P-#P:- &€y + wm)G(pr—p— - En}}

where the angular brackets denote averaging over the random configurations
of the disordered system, p.=p#*3q, &, =2n+ 7T, and w,, =27mT
Graphically these functions are represented (for w,, =2¢,) in Fig. 1, where
shaded blocks denote the exact vertex parts in the standard impurity diagram
technique.

Then for the coefficients 4, B, and C we get™'™'*

1
A=E+2m’TZ G(g=0, W, =2¢,) (3)

2

X o
C=iaT} 5:}3 F(qwm =2&,)q=0 4

We see that the superconducting properties are determined by the function
y describing the propagation of two electrons. At the same time the function
¢ describes the kinetic properties of the normal state and the localization
transition. In the case of time-reversal invariance, i.e., in the absence of
external magnetic field and magnetiv impurities, we have'®"

Y(qgw,,) = ¢(quw,) (5)

and our problem reduces to the calculation of ¢(qw,,).

RE BEq Y a
ampze) - OB -

2E Pl 2E:) =

0
©
8

Fig. 1. Diagrammatic representation for ¢ and ¢, Shaded blocks
denote the exact vertexes of the impurity diagram technique. There
is no summation over &, in the loops.
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Fig. 2. Anderson transition showing the density of sates
in the conduction band. States with E < E, are localized.
{a) Metallic phase ( Ec> E.): (b) insulator phase { Eg <t E_).

For a disordered system the electronic states of the conduction band
are localized near the band edge up to an energy E. (the mobility edge).
As the disorder grows, the value of E, moves upward and can pass the
Fermi level Eg (see Fig. 2). Thus we have an Anderson transition. As a
one-electron model of this transition we take Gotze’s self-consistent theory
of localization in the form proposed by Vollhardt and Wolfle."”"*' The main
attraction of this theory is the practical possibility of performing calculations
for the whole range of parameters of the system, from “good” metal to
Anderson insulator. For small q and w,, we have

__ N(Eg)
ol + D w,)

¢(qo,)= (6)
where the generalized diffusion coefficient at the Fermi level ﬁ(w,,,) is
determined by the self-consistency equation'”'®

D, i d*q
= =1- Wy 7
Dlan) | wNZ(EF)j (2my $(90m) 0

Here N{Eg) is the electronic density of states at the Fermi level in a
disordered system, D,=1vi7 is the “bare” diffusion coefficient, = is the
mean free time in the Born approximation, and vp is the Fermi velocity.
For a model of pointlike random scatterers with scattering amplitude V
and spatial density p we have 1/7=2mpV*N(Eg). In the following the
“bare” mean free time 7 and the appropriate mean free path ! = ppr will
characterize the degree of disorder. In the localization region these para-
meters obviously do not have the same simple meaning, which is clear in
the metallic state.

For the three-dimensional case (7) reduces to

ﬁ(wm)___l A ri[ D, 1-]”2

Dy A 2 Al D(em)”

18,21

(8)
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where A =(27wEg7)"! and A, is the value of A for Eg= E.. The solution of
(8) can be written approximately as

- o
D =M _ ®m . 173
(wm) ax [Dwm + 3D(:J§f U]z.—.’ Dl](_mmT) ] (9)
where
D =Dy(keR)™! (10)

is the renormalized diffusion coefficient, while the characteristic frequency
axg iS
5 {%v%R,‘z; Ep< E, (insulator) (an
w —1
* lo; Ep=E. (metal)
Here R, is the correlation length for the Anderson transition.'"'®*® For Eg
near E, we have

bt

L
ke

EF_Ec

R E.

(12)

AlTT 1
1-—— = —
’\c! kF

where » is the critical exponent. In the self-consistent theory, for the
three-dimensional case » = 1; however, experimentally the value may differ.
The frequency «, is in many respects similar to an order parameter in the
usual theory of phase transitions. It becomes nonzero in the localized phase
and determines the insulator nature of the electromagnetic respornse, e.g.,
the dielectric function.'”***' In principle it is a measurable characteristic
of the localized phase and gives information on R, [see (11}] in the insulator
region in the same manner as o defines it in the metal region (see below),

The position of the mobility edge in the conduction band for free
electrons in the model of pointlike scatterers is determined by the estimate”™

9 9 _
Ec=mm3(pV2)z=mEp(Erf) : (13)

Eg=E,

At the mobility edge (Ee = E,.} we have Ex7r=3/27 or kel =3/ w. With the
growth of disorder, i.c., of the value of pV?, r diminishes and R; grows in
the metallic region (Eg> E,), while the renormalized diffusion coefficient
(and conductivity) drops to zero at the transition at Er= E,, where R, =<0,
With further growth of disorder we enter the localization region, where R,
determines the localization length of an electron. Here R; drops as Er moves
deep into the localization region, while w, grows, similarly to the growth
of an order parameter in the condensed phase in the theory of phase
transitions.
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Note that the equations of the self-consistent theory of localization are
derived with the essential use of perturba