MHoroyacTtunyHas Jlokanusauums

AHOepcoHa

bopuc AnbTwynep
Konymbunckun YHusepcuteT

JlemHsiss wkona ®oHoa mumpusi SumuHa “QuHacmus’”
"AKmyarsibHbie rnpobsieMbl meopuu KOHOEHCUpPOB8aHHO20
cocmosiHus1”

4 — 14 urons 2010e.

AMHACTHS


http://www.dynastyfdn.com/

Lecturel.
1.Introduction



>50 years of Anderson Localization

PHYSICAL REVIEW VOLUME 100, NUMBER 5 MARCH 1. 1958

Absence of Diffusion in Certain Random Lattices

P, W, ANDERSON
Eell Taephone Labortories, Muwrray Hill, New Sersey

{Received October 10, 1957)

This paper presents a simple model for such processes as spin difuwsion of conduction In the "“Timpurity
band. ™ These processes invalve transpaort in a lattice which 15 in some sense random, and In them diffusion
s expected to take place via quantum jumps between localzed sites, In this simple mode] the essential
randompess is introdeced by requiring the snergy to vary mndemly from site to site. I is shown that at low
enpugh densities no diffusion at all can take place, and the crterin for transport Lo ootur are gaver.
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Einstein (1905): <r2>= Dt

Random walk
u Eliffusion constant

always diffusion

as long as the system
has no memory

Anderson(1958): It might be that

For quantum (r?)——=—>const
particles m—
u =
not always!

Quantum interference =) memory



Einstein Relation (1905)

J

[ Conductivity




Einstein Relation (1905)

[ Conductivity Density of states j

Diffusion Constant j

No diffusion - no conductivity

Localized states - insulator
Extended states - metal

Metal - insulator transition



Einstein (1905): <r2>= Dt

Random walk
u Eliffusion constant

always diffusion  [conductivity oc D

as long as the system . , .
has no memory Einstein relation

Anderson(1958): It might be that

For quantum (r?)——=—>const
particles m—
. 11
not always!

Quantum interference =) memory Anderson insulator



Localization of single-electron wave-functions:
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Nobel Lecture

1 F: hi | ip W. An de rSD n Mobe! Lecture, December 8, 1377

g The Nobel Prize in Physics 1977

Local Moments and Localized States

| was cited for work both. in the field of magnetism and in that of
disordered systems, and | would like to describe here one development
in each held which was specifically mentioned in that citation. The two
theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its
timeliness and its relative simplicity. What mathematical difficulty it
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and

even fewer saw its importance; among those who failed to fully

understand it at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to resort to the indignity

of numerical simulations to settle even the simplest questions about it .



Spin Diffusion

Feher, G., Phys. Rev. 114, 1219 (1959); Feher, G. & Gere, E. A., Phys. Rev. 114, 1245 (1959).

Light
Wiersma, D.S., Bartolini, P., Lagendijk, A. & Righini R. “Localization of light in a disordered
medium”, Nature 390, 671-673 (1997).

Scheffold, F., Lenke, R., Tweer, R. & Maret, G. “Localization or classical diffusion of light”,
Nature 398,206-270 (1999).

Schwartz, T., Bartal, G., Fishman, S. & Segev, M. “Transport and Anderson localization in
disordered two dimensional photonic lattices”. Nature 446, 52-55 (2007).

C.M. Aegerter, M.Storzer, S.Fiebig, W. Buhrer, and G. Maret : JOSA A, 24, #10, A23, (2007)

Microwave
Dalichaouch, R., Armstrong, J.P., Schultz, S.,Platzman, P.M. & McCall, S.L. “Microwave
localization by 2-dimensional random scattering”. Nature 354, 53, (1991).

Chabanov, A.A,, Stoytchev, M. & Genack, A.Z. Statistical signatures of photon localization.
Nature 404, 850, (2000).

Pradhan, P., Sridar, S, “Correlations due to localization in quantum eigenfunctions od
disordered microwave cavities”, PRL 85, (2000)

Sound
Weaver, R.L. Anderson localization of ultrasound. Wave Motion 12, 129-142 (1990).



VoLumE 835, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEpTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar

Department of Plivsics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

f=3.04 GHz f=7.33 GHz

(b)

(a)

Localized State Extended State
Anderson Insulator Anderson Metal



Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453,
891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting
Bose-Einstein condensate®. Nature 453, 895-898 (2008).

Q: What about electrons ?

A': VYes,.. but electrons interact with each other



@t Scattering centers,
e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson  Lattice - tight binding model
M Odel e Onsite energies &; - random

 Hopping matrix elements 1 ij

I l and ! are nearest
ors

W<g<W I neigh
l
uniformly distributed 0 otherwise

Anderson| Transition RISEE(R]

I<lI, I>1
Insulator Metal

All eigenstates are localized There appear states extended
Localization length g all over the whole system



Why arbitrary ®®
weak hopping 1 is ? ®®
_not sufficient for : :
the existence of ™ ® ®i
the diffusion S

Einstein (1905): Marcovian (no memory)
process —> diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation =

Why 7
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von Neumann & Wigner “noncrossing rule”
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LY
Level repulsion -

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?
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What about the
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eigenfunctions ?
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Off-resonance
Eigenfunctions are
close to the original on-
site wave functions

@
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Resonance
In both eigenstates the
probability is equally
shared between the sites
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Anderson insulator
Few isolated resonances
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Anderson metal
There are many resonances
and they overlap



Anderson’s recipe:

1. take discrete spectrum E , of H, ? ! insulator
2. Add an infinitesimal Im partinto E, %
imaginary part of the E
3. Evaluate Imzu renc?rmangd energy — ‘ \ \
:ﬂ:*- -l i =:‘ L - Ll
e s A @ 1) N - oo
- £ E llmltsz) N,

4. take limit 7 —0 but only after N —go!e
5. “What we really need to know is the réz

probability distribution of Im2, not »

its average...” P.W. Anderson Nobel Lecture



Probability Distribution of /=Im >

7 is an infinitesimal width (/m
part of the self-energy due to
metal a coupling with a bath) of
one-electron eigenstates

x 1/n

Look for:
> 0; metal
lim lim P(I' >0) = {

=+ 0V—00 0; insulator



Anderson Transition

o I<I
) C
localized and
1€ extended nevers
| : coexistl € |\
F2 » all states are
- NN C \ ocalized
extenaeo 1 k
_ -
.
. DoS
5 >

[+ - mobility edges (one particle)



I>Ic I<Ic

extended localized

L =f(d)xW  f(1)=f(2)=0

Strong disorder localized 1)
Weak disorder extended



Avo(z) extended
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Q. Does anything interesting
" happen with the spectrum =



Density of States Density of States




Density of States is not singular
at the Anderson transition

This applies only to the I
average Density of States !

Fluctuations ?
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RANDOM MATRIX THEORY

ensemble of Hermitian matrices

N xN with random matrix element N — ©
E, - spectrum (set of eigenvalues)
0, = <Ea+1 - Ea> - mean level spacing
< ...... > - ensemble averaging
g = E..—E, - spacing between nearest
- 5, neighbors
P(S) - distribution function of nearest

neighbors spacing between

ST TGN [[e[1AA P(s=0)=0

BAERET S P(s<<l)ocs”  p=12,4



1
Gaussian
Orthogonal
0.8 Ensemble
0.6 F Orthogonal
p=1
04} 5
Simplectic
0.2} ) P

0

N F

0 0.5 1 1.5

P(s)

(@] (@] (@] (@]

S
Poisson - comple‘l'e|¥
uncorrelated
Ievels 0 OI.5 i 1?5 2 2.5 3

(@] [N] i (o) [60] = 3] i
T T T T T T




RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble £  realization

real orthogonal 1  T-inv potential

2 x 2 matrices simplectic 4  T-inv, but with spin-
orbital coupling



i

Reasonfor P (S) — 0 when S—0:

1.

(H.. H..)
S BB (Ha )

(Hi Ha) small small small

The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

If Hy, is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hyo- Hy1) and Hy,)
should be small and thus P(S) oC S IB =1



(Hy Hy,»
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Il

\HikZ H22)

P(E,—E,)=[[d(Hy—H, dH125( El—\/(HZZ—H11)2+\H12\2)x

(Hll_ sz) p(le)

Distribution function
of the off-diagonal
matrix elements

Distribution function
of the diagonal
matrix elements

Distribution
fUﬂC"'iOﬂ Of thﬁD(S)

spacing



Reasonfor P (S) — 0 when S—0:

i
I

(H.. H..)
DU BB (Ha )

Hiz Ha) small small small

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If Hy, is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hyo- Hy1) and Hy,)
should be small and thus P(S) oC S IB =1

3. Complex Hy, (unitary ensemble) == both Re(H;,) and

Im(H,,) are statistically independent == three mdependen‘r
random variables should be small == P(S) oC S :B 2



Anderson  Lattice - tight binding model
M Odel e Onsite energies &; - random

 Hopping matrix elements 1 ij

uniformly distributed

Is there much in common between Random Matrices
and Hamiltonians with random potential ?

" What are the spectral statistics ?
= of afinite size Anderson model



Anderson Transition

Strong disorder
I1<I
c

Insulator
All eigenstates are localized

Localization length g

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

Weak disorder
I1>1
C
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

J

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

20

—L
o

Energy/Spacing
o

~
O

N
e




Energy scales in the localization problem.

(Thouless, 1972)

1. Mean level spacing O, =/« L*

i

it
| 5 - 45 IS
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[r g 7 bt o4 sl s Mg
43, resr e e
i

é l ) L is the system size;
o

L — 1

D d is the number of

dimensions

This scale exists in the Random Matrix theory



Energy scales in the localization problem.

(Thouless, 1972)

1. Mean level spacing O, =/« L*

l ) L is the system size;
1

d is the number of
dimensions

energy

This energy scale exists in the Random Matrix theory.

This is the only energy scale in the RM theory



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
B Insulator Metal ﬁ
- ] \
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1.
Is it sharp?



volume=8x8x 8

[S—
=

IEnE:rgy / Spacing
th © ta

Energy / Spacing

=

Conductance g

The bigger the system the sharper the transition



Anderson transition in terms of

pure level statistics

metal, W=5
critical, 16.5
insulator, 100

Wigner

Var S

Scaling of level spacing variance

0.7 Linear size of 3D cube

0.2

12 14 16 18 2D
disorder W



Lecturel.
3. Quantum Chaos,
Integrability and
Localization




Finite size quantum physical systems

Nuclei
Atoms
Molecules

Quantum
Dots



Main goal is to classify the eigenstates in
ATOMS 'rer'msgof the quan‘rumynumber'g

- For the nuclear excitations this program does

NUCLE| sgwen

Study spectral statistics of a particular ('
quantum system - a given nucleus ‘




Main goal is to classify the eigenstates in

ATOMS terms of the quantum numbers
For the nuclear excitations this program does
NUCLEI not work

v
a ‘.r-. 2
N
J.
}‘*’ |

: W Study spectral statistics of a particular 3
ngner e quantum system - a given nucleus :

Spectra: {E }

Random Matrices Atomic Nuclel

* Ensemble *Spectral averaging (over )

e Ensemble averaging *Particular quantum system

NPV TSI Statistics of the nuclear spectra

are almost exactly the same as the
Random Matrix Statistics




N. Bohr, Nature
137 (1936) 344.

. P(s)

Poisson

/

TN

166Er
108 spacings

GOE

(3)

0

Particular
nucleus

166 Iy

S Spectra of

0.5

L)

Poisson

T

NDE
1726 spacings

GOE

(a)__

-

3

several
nuclei

| combined
1 (after

| spacing)

rescaling

1 by the
1 mean level



" theory (RMT) works so well

Q Why the random matrix

" for nuclear spectra

Original
answer:

T
N

nese are systems with a large
Umber of degrees of freedom, and

th

erefore the “complexity” is high



" theory (RMT) works so well

Q Why the random matrix
" for nuclear spectra

. . These are systems with a

Original large numbez of degrees of

answer: freedom, and therefore
the “complexity” is high

Later it there exist very “simple”
systems with as many as 2

became dﬁgr‘ﬁej of freedom lgcl\l,ag),
which demonstrate =

clear that like spectral statistics

?




Classical Dynamical Systems with degrees of freedom

The variables can be I
Integrable separated and the problem l=> d mtegrals
Systems reduces to  one- of motion

dimensional problems




h=0 d

The variables can be I
Integrable separated and the problem l=> d lntegrals
Systems reduces to ¢/ one- of motion

dimensional problems

Examples

1. A ball inside rectangular billiard; d=2

* Vertical motion can be * Vertical and horizontal
separated from the components of the
horizontal one momentum, are both

integrals of motion



h=0 d

The variables can be I
Integrable separated and the problem l=> d lntegrals
Systems reduces to ¢/ one- of motion

dimensional problems

Examples

1. A ball inside rectangular billiard; d=2

* Vertical motion can be * Vertical and horizontal
separated from the components of the
horizontal one momentum, are both

integrals of motion

2. Circular billiard; d=2

* Radial motion can be * Angular momentum

separated from the and energy are the
angular one integrals of motion



Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion
Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .




Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion
Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy




Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion
Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples

Stadium



Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion
Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples

Sinai billiard Stadium



Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = d integrals of motion

Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .

Chaotic The variables can not be separated = there is only one
Systems integral of motion - energy

Examples T B

Kepler problem
in magnetic field

Sinai billiard Stadium



. *Nonlinearities
Classical Chaos *Exponential dependence on

- the original conditions (Lyapunov
exponents)

*Ergodicity

i

l“- -
LY

Quantum description of any System
with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

Q: What does it mean Quantum Chaos ?




Bohigas — Giannoni — Schmit conjecture

VoLuMmE 52 2 JANUARY 1984 Numbir 1 -
Chaotic
Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws c I ass I ca I a n a I og

O. Bohigas, M, J. Giannoni, and C. Schmit
Division de Physique Théorvique, Institul de Physique Nucleaive, F-91406 Orsay Cedex, France
(Received 2 August 1983)

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or dis- -
prove the following conjecture: Spectra of time- ngner' Dys O.n
reversal-invariant systems whose classical an- Spectral statistics

OFs are SYysiems sninow e same LL
EmErties as Erediﬂted by GOE ﬂ I

],DA1 LB | |S:'! I.lbllll ldl T 1.0 \\' e T T T T TTY | LA B LR RNL AL SR A
plos)[ ‘\ o T plos) \ |
A9 2 \\ stadium i ( D
GOE ‘
\ 5 N\ I STADIUM N o a t
el | quantum

+ AN 1 o oo numbers except
L e, I R energy

—— —a




Classical Quantum

f?
Integrable <—= Poisson

P :
: Wigner-
Chaotic < Dyson

0 0.5 1 1.5 2 2.5 3



Integrable Chaotic
All chaotic LA

systems %
, resemble bSIilf‘a'd '
. lilar
billiard each other.

All integrable
systems are

integrable in Ty
‘I'heir' own Wway extended

Disordered
localized
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beyond real space



VOLUME 49 23 AUGUST 1982 NUMBER 8

Chaos, Quantum Recurrences, and Anderson Localization

Shmuel Fishman, D. R. Grempel, and R. E. Prange
Department of Physics and Centevr for Theovelical Physics, University of Maryland, College Park, Maryland 20742

(Received 6 April 1982)

A periodically kicked quantum rotator is related to the Anderson problem of conduction
in a one-dimensional digordered lattice, Classically the second model is always chaotie,
while the first is chaotic for some values of the parameters. With use of the Anderson-

model result that all states are localized, it is concluded that the local quasienergy spec-
trum of the rotator problem is discrete and that its wave function is almost periodic in

time. This allows one to understand on physical grounds some numerical results recent-
ly obtained in the context of the rotator problem,

Localization in the angular momentum space




Kolmogorov — Arnold — Moser (KAM) theory
A.N. Kolmogorov,
Dokl. Akad. Nauk —
SSSR, 1954. h O
Proc. 1954 Int.
Congress of

Mathematics, North-
Holland, 1957

Integrable classical HamiltonianH,, d>1:

Separation of variables: d sets of
action-angle variables

., 6, =2zxat;...,1,,6,=21mt;..

Quasiperiodic motion:

set of the frequencies,o,®,,..,o, which are
in general incommensurate. Actions |, are
integrals of motiondl, /ot =0

e @e..

tori



Integrable dynamics:

Each classical trajectory is quasiperiodic
and confined to a particular torus, which
is determined by a set of the integrals of
motion

space Number of dimensions
real space d
phase space: (x,p) 2d
energy shell 2d-1
tori d

Each torus has measure zero on the energy shell |



Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Integrable classical HamiltonianH,, d>1:

Dokl. Akad. Nauk
sgSR, 13;'4_ 2t Separation of variables: d sets of action-angle

Proc. 1954 Int. variables | @ =2zayt;..,1,,0, = 2noLt;..

Congress of ST S .
Mathematics, North- Quasiperiodic motion: set of the frequencies,

Holland. 1957 w,®,,...,0, Which are in general incommensurate
i Dy Actions | are integrals of motion Ol /@t =0

t\ﬁl &NHZ
@ ® @ ®. ot :>
. Will an arbitrary weak perturbation f)
Q _ Vof the integrable Hamiltonian H
destroy the tori and make the motion =

ergodic (when each J:oim' at the energy
shell will be reached sooner or later)

Most of the tori survive BNV
weak and smooth enough [igyises
perturbations

Viadimir. : m

Arnold



Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Will an arbitrary weak perturbation
Dokl. Akad. Nauk " V of the integrable HamiltonianH,
SSSR, 1954. " destroy the tori and make the
E?:-,Lgs";“g;‘t- motion ergodic (i.e. each point at
Matr?ematics North- the energy shell would be reached?
Holland, 1957 sooner or later) :

Most of the tori survive EVINY
weak and smooth enough [ripuEses
perturbations

< )d’ - ¢
4 y A [ |
- 1 1N l
( f w0 % IF
: -
S ¢
F :
' N (e -
T NS 1 | o
i\ 5
’ 2
»




KAM Most of the tori survive weak and
10122 8l smooth enough perturbations

A ~

L] X V =0 @

Each point in the space of the Finite motion.

integrals of motion corresponds Localization in the space ?

to a torus and vice versa of the integrals of motion



KAM Most of the tori survive weak and
10122 8l smooth enough perturbations

>|1
NN /E0,

00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO
00000000000 0OD0ODO0OO




KAM Most of the tori survive weak and
g s il smooth enough perturbations




A\

\
U Q@ V
Matrix element of g & @ @ @
the perturbation

-

| -

5 & o
Jdoco0 00000
sodooOoOOOO0OQ0

>:“@» e0e0O0O0O0QO -

| (,u)} One can speak about localization

provided that the perturbation
Is somewhat local in the space
of quantum numbers of the
original Hamiltonian

AL hops are local - one can distinguish “near” and “far”
KAM perturbation is smooth enough



Consider an integrable system.
Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of
?uanfum numbers. The whole set of the states
orms a lattice in this space.

A perturbation that violates the integrability

Er'ovides matrix elements of the hopping
etween different sites (Anderson model 1?)

Weak enough hopping:
Localization - Poisson
Strong hopping:
transition to Wigner-Dyson



Sinai

y

Disordered
billiard localized
Disordered
Localized extended Localized
momentum space extended real space
! Poisson % T wor. ! PoISSOn
02t . 0. 02t
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5 1 15 2 25 3



Strong disorder ocalizec
Weak disorde extended
Strong disorder localized

Moderate disorder extended
No disorder chaotic extended
No disorder integrable localized

Too weak disorder int. localized



