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Previous Lectures:Previous Lectures:
1. Anderson Localization as Metal-Insulator Transition

Anderson model.  
Localized and extended states. Mobility edges.

2. Spectral Statistics and Localization.                   
Poisson versus Wigner-Dyson. 
Anderson transition as a transition between different 
types of spectra. 
Thouless conductance                        

3 Quantum Chaos and Integrability and Localization.
Integrable         Poisson; Chaotic          Wigner-Dyson

4. Anderson transition beyond real space
Localization in the space of quantum numbers.
KAM         Localized;    Chaotic          Extended



5. Anderson Model and Localization on the Cayley tree
Ergodic and Nonergodic extended states
Wigner – Dyson statistics requires ergodicity!

4. Anderson Localization and Many-Body Spectrum in 
finite systems. BA, Gefen, Kamenev & Levitov. PRL 1996
Q: Why nuclear spectra are statistically the same as   

RM spectra – Wigner-Dyson? 
A: Delocalization in the Fock space.
Q: What is relation of exact Many Body states and 

quasiparticles? 
A: Quasiparticles are “wave packets”

Previous Lectures:Previous Lectures:

6. Phononless conductivity



Definition: We will call a quantum state      
ergodic if it occupies the number of 
sites     on the Anderson lattice, 
which is proportional to the total 
number of sites : 

µ

µN

N

0⎯⎯ →⎯ ∞→NN
Nµ 0>⎯⎯ →⎯ ∞→ const

N
N

N
µ

ergodicnonergodic



Such a state occupies infinitely 
many sites of the Anderson 

model but still negligible fraction 
of the total number of sites

nonergodic states

Example of nonergodicity: Anderson ModelAnderson Model Cayley treeCayley tree:

transition
– branching number

KK
WIc ln

=

K

ergodicity

lnN Nµ ∝ WIerg ~ crossover



( )lnI W K K<
Resonance is typically far N constµ = localized

( )lnW K I W K K> >
Resonance is typically far ~ lnN Nµ nonergodic

KWIW >>
Typically there is a 
resonance at every step nonergodic~ lnN Nµ

WI >
Typically each pair of nearest 
neighbors is at  resonance

~N Nµ ergodic



Lecture 3. Lecture 3. 
1. 1. ManyMany--Body localizationBody localization



PhononPhonon--assisted hoppingassisted hopping

α

β

Variable Range 
Hopping
N.F. Mott (1968)

βα εεω −=h
ωh

is mean localization energy spacing –
typical energy separation between two 
localized states, which strongly overlapζδ

Any bath with a continuous spectrum of delocalized 
excitations down to ω = 0 will give the same exponential



In disordered metals phonons limit the 
conductivity, but at low temperatures one 
can evaluate ohmic conductivity without 
phonons, i.e. without appealing to any bath 
(Drude formula)! 
A bath is needed only to stabilize the 
temperature of electrons.

Q1: Is the existence of a bath crucial 
even for ohmic conductivity? 
Can a system of electrons left 
alone relax to the thermal 
equilibrium without any bath? 

?
?Q2:



`̀Main postulate of the Gibbs Statistical Main postulate of the Gibbs Statistical 
Mechanics Mechanics –– equipartition (microcanonical equipartition (microcanonical 
distribution): distribution): 
In the equilibrium all states with the same In the equilibrium all states with the same 
energy are realized with the same energy are realized with the same 
probability.probability.
Without interaction between particles the Without interaction between particles the 
equilibrium would never be reached equilibrium would never be reached –– each each 
oneone--particle energy is conserved.particle energy is conserved.
Common believe: Even weak interaction Common believe: Even weak interaction 
should drive the system to the equilibrium. should drive the system to the equilibrium. 
Is it always true?Is it always true?
No external bath!No external bath!



ManyMany--Body Localization:Body Localization:
1.1.It is not localization in a real space!It is not localization in a real space!
2.There is 2.There is no relaxation no relaxation in the localized in the localized 
state in the same way as wave packets of state in the same way as wave packets of 
localized wave functions do not spread.localized wave functions do not spread.



Fermi Pasta Ulam 1955

Q:Will a nonlinear system (system 
of interacting particles) 
completely isolated from the 
outside world evolve to a 
microcanonical distribution 
(reach equipartition).

?

Anderson 1958

Q:Will a density fluctuation (a wave 
packet) in a system of quantum 
particles in the presence of disorder 
dissolve in the diffusive way.

?



Can hopping conductivity Can hopping conductivity 
exist exist without phononswithout phonons

Common 
belief:

Anderson 
Insulator 
weak e-e 
interactions

Phonon assisted
hopping transport

1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Given:

Find: DC conductivity σ(T,ω=0)
(zero or finite?)



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Q: Can eCan e--h pairs lead to h pairs lead to phononphonon--lessless variable range variable range 
hoppinghopping in the same way as phonons doin the same way as phonons do ??

A#1:   Sure

is contributed by 
rare resonances

δ
α

βγ

R ∞→

⇒∞→R
matrix 
element 
vanishes

0

Except maybe Coulomb interaction in 3D

×



insulator

Drude

metal
Interaction 
strength
Localization
spacing( ) 1−

≡ dνζδζ

Many body 
localization!

Many body  wave 
functions are localized in 

functional space

Finite temperatureFinite temperature MetalMetal--Insulator TransitionInsulator Transition

σ = 0
Localization lengthς

D.M. Basko, I.L. Aleiner & BA, Annals of Phys. 321, 1126 (2006) 



`̀Main postulate of the Gibbs Statistical Mechanics Main postulate of the Gibbs Statistical Mechanics ––
equipartition (microcanonical distribution): equipartition (microcanonical distribution): 
In the equilibrium all states with the same energy are 
realized with the same probability.
Without interaction between particles the equilibrium 
would never be reached – each one-particle energy is 
conserved.
Common believe: Even weak interaction should drive the 
system to the equilibrium. 
Is it always true?

ManyMany--Body Localization:Body Localization:
1.1.It is not localization in a real space!It is not localization in a real space!
2.There is 2.There is no relaxation no relaxation in the localized in the localized 
state in the same way as wave packets of state in the same way as wave packets of 
localized wave functions do not spread.localized wave functions do not spread.



Good 
(Drude) 
metal

Bad metal

Finite temperatureFinite temperature MetalMetal--Insulator TransitionInsulator Transition

Includes, 1d 
case, although is 
not limited by it.



There can be no phase transitions 
at a finite temperature in 1D
Van Howe,  Landau

DogmaDogma

Thermal fluctuation destroy any 
long range correlations in 1DReasonReason

T=0T=0 Normal fluid Normal fluid –– Insulator Phase Transition:Insulator Phase Transition:

True phase 
transition: 
singularities in 
transport (rather 
than thermodynamic) 
properties 

Neither normal 
fluids (metals) nor 
glasses (insulators) 
exhibit long range 
correlations  

still



Conventional Anderson Model

Basis: ,i i

∑=
i

i iiH ε0
ˆ ∑

=

=
..,

ˆ
nnji

jiIV

Hamiltonian: 0
ˆ ˆ ˆH H V= +

•one particle,
•one level per site, 
•onsite disorder
•nearest neighbor hoping

labels 
sites



0Ĥ Eµ
µ

µ µ= ∑

BasisBasis: µ
0,1nα =

HamiltonianHamiltonian:
0

ˆ ˆH H V= +
)

{ }nαµ =
occupation 
numbers

labels 
levelsα

( )
( )

,
V̂ I

µ η µ

µ ν µ= ∑

0d system with interactions
εα

εβ

εγ

εδ

( ) .., 1,.., 1,.., 1,.., 1,..n n n nα β γ δν µ = − − + +



Many body  AndersonMany body  Anderson--like Modellike Model



• many particles,
• several levels 

per site,   
spacing  

• onsite disorder
• Local interaction

0Ĥ Eµ
µ

µ µ= ∑

Many body  AndersonMany body  Anderson--like Modellike Model
BasisBasis: µ

0,1inα =HamiltonianHamiltonian:
0 1 2

ˆ ˆ ˆH H V V= + +
)

{ }inαµ =
labels 
sites

occupation 
numbers

i labels 
levelsα

I
( ) .., 1,.., 1,.. , , . .i jn n i j n nα βν µ = − + =

( )
( )1

,
V̂ I

µ ν µ

µ ν µ= ∑
1̂V

U
( )

( )2
,

V̂ U
µ η µ

µ η µ= ∑
( ) .., 1,.., 1,.., 1,.., 1,..i i i in n n nα β γ δη µ = − − + +

2̂V

ςδ



Conventional Conventional 
Anderson Anderson 

ModelModel

Many body  AndersonMany body  Anderson--
like Modellike Model

Basis:Basis: i
labels 
sites

, . .

ˆ
i

i

i j n n

H i i

I i j

ε

=

= +∑

∑ ( )
( )

( )
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,
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Ĥ E
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U

µ
µ

µ ν µ

µ η µ

µ µ

µ ν µ

µ η µ

= +

+

∑

∑

∑

BasisBasis: ,µ
0,1inα =

{ }inαµ =

labels 
sites occupation 

numbers
i labels 

levelsαi
N

sites

M 
one-particle 

levels per site

Two types of 
“nearest 
neighbors”:

( ) .., 1,.., 1,.. , , . .i jn n i j n nα βν µ = − + =

( ) .., 1,.., 1,.., 1,.., 1,..i i i in n n nα β γ δη µ = − − + +



1 2

4
0)2

)1
→

∞→
s
N

limits

insulator

metal

1. take discrete spectrum Eµ of H0
2. Add an infinitesimal Im part is to Eµ

3. Evaluate ImΣ µ

Anderson’s recipe:

4. take limit but only after ∞→N
5. “What we really need to know is the    

probability distribution of  ImΣ, not 
its average…” !

0s →



Probability Distribution of Probability Distribution of ΓΓ=Im =Im ΣΣ

metal

insulator

Look for:

V

η is an infinitesimal width (Im
part of the self-energy due to 
a coupling with a bath) of 
one-electron eigenstates



Stability of the insulating phase:Stability of the insulating phase:
NONO spontaneous generation of broadeningspontaneous generation of broadening

0)( =Γ εα
is always a solution

ηεε i+→
linear stability analysis

222 )(
)(

)( α
α

α ξε
ξεπδ

ξε −
Γ

+−→
Γ+−

Γ

After n iterations of 
the equations of the 
Self Consistent  
Born Approximation

n

n
TconstP ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
∝Γ

λδ
λη

ζ

1ln)( 23

first (…) < 1 – insulator is stable !then



Stability of the metallic phase:
Finite broadening is self-consistent

•

as long as

(levels well resolved)•
quantum kinetic equation for transitions between
localized states

•

(model-dependent)



( )
2 216

elT T
d

ζδ
π λ

=>> good metal

( )

6
inelT T T ζδ

πλ
> => >> bad metal



insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζ
Many body 

localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

?Q: Does “localization length” have any 
meaning for  the  Many-Body Localization



Physics of the transition: cascadescascades

α

β

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 
number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

Size of the cascade nc “localization length”



Physics of the transition: cascadescascades

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 
number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

At some temperature 

This is the critical temperature    . 
Above    one phonon creates infinitely many pairs, i.e., the 
charge transport is sustainable without phonons.

( ) .∞→= TnTT cc

cT
cT



Many-body mobility edge

transition ! mobility 
edge



Metallic States

Large E (high T): extended states

good metal

bad metal

transition ! mobility 
edge

ergodic states

nonergodic states

Such a state occupies 
infinitely many sites of 
the Anderson model but 
still negligible fraction of 
the total number of sites



Large E (high T): extended states

good metal

bad metal

transition ! mobility 
edge

ergodic states

nonergodic states

No relaxation to 
microcanonical 
distribution 

– no equipartition

crossover

?



Large E (high T): extended states

good metal

bad metal

transition ! mobility 
edge

ergodic states

nonergodic states

Why no 
activation?



Temperature is just a 
measure of the total 
energy of the system

bad metal

transition ! mobility 
edge

good metal

No activation:
2

2

c
c d

d

TE

T
m

E
volu eζ

ζ

δ ζ

δ ζ

∝

×
∝

, c vE eE olum∝
( )

exp 0volume
cE T E

T → ∞

⎛ ⎞−
⎯⎯⎯⎯→⎜ ⎟

⎝ ⎠



Lecture 3. Lecture 3. 
3. 3. ExperimentExperiment



What about experiment?What about experiment?
1. Problem: there are no solids without phonons

With 
phonons

2. Cold gases look like ideal systems for studying  
this phenomenon. 



F. Ladieu, M. Sanquer, and J. P. 
Bouchaud, Phys. Rev.B 53, 973 (1996)

G. Sambandamurthy, L. Engel, A. 
Johansson, E. Peled & D. Shahar, Phys. 
Rev. Lett. 94, 017003 (2005).

M. Ovadia, B. Sacepe, and D. Shahar, 
PRL (2009).

V. M. Vinokur, T. I. Baturina, M. V. Fistul, 
A. Y.Mironov, M. R. Baklanov, & C. 
Strunk, Nature 452, 613 (2008)

S. Lee, A. Fursina, J.T. Mayo, C. T. 
Yavuz, V. L. Colvin, R. G. S. Sofin, I. V. 
Shvetz and D. Natelson, Nature 
Materials v 7 (2008)
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0expdcI T
V T

∂ ⎛ ⎞∝ −⎜ ⎟∂ ⎝ ⎠
Arrhenius law

Kravtsov, Lerner, Aleiner & BA:

Switches Bistability Electrons are overheated:
Low resistance => high Joule heat => high el. temperature
High resistance => low Joule heat =>  low el. temperature

}M. Ovadia, B. Sacepe, and D. Shahar
PRL, 2009



Electron temperature 
versus 

bath temperature

Phonon 
temperature

Electron temperature

HR

LR

unstable

Tph

cr

Arrhenius gap T0~1K, which is 
measured independently is the 
only “free parameter”

Experimental bistability diagram 
(Ovadia, Sasepe, Shahar, 2008)



Kravtsov, Lerner, Aleiner & BA:
Switches Bistability Electrons are overheated:

Common wisdom:
no heating in the 
insulating state
no heating for 
phonon-assisted 
hopping

Heating appears 
only together with 
cascades

Low resistance => high Joule heat => high el. temperature
High resistance => low Joule heat =>  low el. temperature



M. E. Gershenson,Yu. B. Khavin, D. Reuter, P. Schafmeister, 
and A. D. Wieck Phys. Rev. Lett. 85, 1718 (2000).

Si δ – doped 
GaAs structure

0.7
* exp oTR R

T
⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

�

33 KΩ 2.6 ºK

25 KΩ 1.6 ºK

0T*R
0B =

2B T=

[ ]( )9 4.5 4.53.7 10 eP W T T−= × −Power:



PhononPhonon--assisted variable range hoppingassisted variable range hopping

ph

e



Low temperature anomalies

Voltage dependence of 
the conductance in the 
High Resistance phase 

Theory : G(VHL)/G(V      0) < e

Experiment: this ratio can 
exceed 30

→

Many-Body Localization ?



Low temperature anomalies
1. Low T deviation 

from the 
Ahrenius law

•D. Shahar and Z. Ovadyahu, Phys. Rev. B (1992).
•V. F. Gantmakher, M.V. Golubkov, J.G. S. Lok, 
A.K.     Geim,. JETP (1996)].
•G. Sambandamurthy, L.W. Engel, A. Johansson, 

and D.Shahar, Phys. Rev. Lett. (2004).

“Hyperactivated resistance in 
TiN films on the insulating 
side of the disorder-driven 
superconductor-insulator  
transition”
T. I. Baturina, A.Yu. Mironov, V.M. 
Vinokur, M.R. Baklanov, and C. Strunk, 
2009Also:



Lectute 3. Lectute 3. 

4. 4. ManyMany--Body LocalizationBody Localization

1D bosons + disorder1D bosons + disorder



1D Localization1D Localization

Gertsenshtein & Vasil'ev, 
1959

Exactly solved: 
all states are localized

Conjectured: Mott & Twose, 1961

correct for 
bosons as well 
as for fermions

1-particle problem



Bosons without disorderBosons without disorder

•Bose - Einstein condensation

•Bose–condensate even at weak enough repulsion

•Even in 1D case at T=0 – “algebraic superfluid”

•Finite temperature – Normal fluid

TNormal fluid



Billy  et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature  453, 
891- 894 (2008).

Localization of cold atomsLocalization of cold atoms

87Rb

Roati et al. “Anderson localization of a non-interacting 
Bose-Einstein condensate“. Nature 453, 895-898 (2008).

No interaction No interaction !!



Thermodynamics of ideal 
Bose-gas  in the presence 
of disorder is a pathological 
problem: all particles will 
occupy the localized state 
with the lowest energy

Need 
repulsion



Weakly interacting bosonsWeakly interacting bosons

•Bose - Einstein condensation

•Bose–condensate even at weak enough repulsion

•Even in 1D case at T=0 – “algebraic superfluid”

TNormal fluid

2. No disorder1. No interaction
disorder

gl
as

s 
(in

su
la

to
r)

For any 
energy at 

finite 
disorder

1D 
localization

3. Weak repulsion
disorder

in
su

la
to

r
su

pe
rf

lu
id

Superfluid-
insulator 
transition Superfluid-

insulator 
transition



T=0T=0 Superfluid Superfluid –– Insulator Quantum Phase TransitionInsulator Quantum Phase Transition

disorder

in
su

la
to

r
su

pe
rf

lu
id

BKT-
transition 
in 1+1 
dim. 

E. Altman, Y. Kafri, A. Polkovnikov & G. Refael, 
Phys. Rev. Lett., 100, 170402 (2008).

G.M. Falco, T. Nattermann, & V.L. Pokrovsky, 
Phys. Rev., B80, 104515 (2009).



disorder

T
Normal fluid

in
su

la
to

r
su

pe
rf

lu
id

Is it a normal fluid at any temperature?



What is insulator?What is insulator?
Perfect Perfect 
InsulatorInsulator

Zero DC conductivity at 
finite temperatures

Possible if the system is decoupled from any outside bath

Normal Normal 
metal metal 
(fluid)(fluid)

Finite (even if very small) 
DC conductivity at finite 
temperatures



bosons = fermions ?1D Luttinger liquid:
Bosons with infinitely 
strong repulsion ≈ Free fermions

Free bosons ≈ Fermions with infinitely 
strong attraction

≈ Fermions with strong 
attraction

Weakly interacting
bosons

U

x

b

x

f

f

f

U

b
b

As soon as the occupation numbers become large 
the analogy with fermions is not too useful 



All one-particle states are localized in 1D 
– perfect insulator without interaction
This is correct for both fermions and bosons

Fermi-systems remain perfect insulators at 
low enough temperatures even in the 
presence of the interaction Basko, Aleiner & BA, 2005

What about bose-systems ?
Difference: many bosons can occupy a given 
one-particle state. Interaction matrix 
elements increase with occupation numbers 



1D Weakly Interacting Bosons + Disorder

disorder

K-T
transition

“A
lg
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su
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id

”
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(in
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3. T=0

T
Normal fluid

2. No disorder

1. No interaction
disorder

gl
as

s 
(in

su
la

to
r)

For any 
temperature 

and any 
finite 

disorder
1D 

localization
disorder

T

?

Aleiner, BA & Shlyapnikov, 2010, Nature Physics, to be published
cond-mat 0910.4534



Density of States ν(ε)ν(ε) in one dimension 

ν(ε)

ε

No disorder

Quadratic spectrum
2

2
1 p
m

=ε

( )
επ

εν 222 h

m
=

- singularity



Density of States ν(ε)ν(ε) in one dimension 

ν(ε) ν(ε)

ε ε

No disorder

Quadratic spectrum

In the presence 
of disorder the 
singularity is 
smeared

( )
επ

εν 222 h

m
=



( )
επ

εν 222 h

m
=

Density of States ν(ε)ν(ε) in one dimension 

ν(ε)

ε

Lifshitz tail: 
exponentially 
small Density 

of States



Weak disorder – random potential U(x)

ν(ε)

ε

Random potential U(x):
Amplitude U0
Correlation length σ

Short range disorder:
2

2

0 σm
U h

<<

Localization length ζ>>σ



∗E

Characteristic scales:

ν(ε)

ε

Energy

Length

1 34 2
0

2E U mσ
∗

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠h

1 34

2
0U m

σς
σ∗

⎛ ⎞
≡ >>⎜ ⎟

⎝ ⎠

h( ) 1−
∗∗Eς

All states are localizedAll states are localized
Localization length:Localization length:

( )
~

~
E

E
E

ς ε
ς ε ες ε

∗ ∗

∗ ∗
∗

>>
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Finite density Bose-gas with repulsion
nDensity

Temperature of quantum degeneracy

Two more energy scales

Interaction  energy per particle 
m
nTd

22h
≡

ng
Two 
dimensionless 
parameters

E ngκ ∗≡ Characterizes the 
strength of disorderdisorder

dng Tγ ≡ Characterizes the 
interactioninteraction strength

Strong disorder 1>>κ
Weak interaction 1<<γ



ngTt =Dimensionless temperature

( )γκκ ,tcc =
cT ( )γκ ,cc tt =Critical temperature

Critical disorder

Phase transition line on the t,κ -
plane



1 γ1 γ1

( )1 32
c tκ γ=

1 3
c tκ =( )c tκ

t T ng≡

E ngκ ∗≡

~1cκ

Finite temperature 
phase transition in 1D 1γ <<



Transition temperature: ( )c cT t ng≡

i

j

lk
, ,i j k l⇒

transition



Transition temperature: ( )c cT t ng≡

i

j

lk
, ,i j k l⇒

transition

,ij kl i j k lε ε ε ε∆ ≡ + − −

,ij klM Decay of a state 

energy 
mismatch

matrix element i

∆ typical mismatch

1N typical # of channels
Transition: M

( ) ( ) ( )
( ) ( )

1

1

T N T
M T

T N T
>>
<<

∆
∆

typical matrix element

extended
localized

W
I

W
>>
<<

analog of 



High temperatures: dT T>>

Bose-gas is not degenerated; 
occupation numbers either 0 or 1

( ) 1
31

>>∝ γκ tttcNumber of 
channels

( ) ( ) ( )~ ~M g T gE Tς ε ς∗ ∗=

( ) ( ) ( ) 11 2 2 2~n n T Eνς ς ν ς
−−

∗ ∗

Localization 
spacing

ςδ

Matrix element of the transition 

should be compared with the minimal energy 
mismatch 

1t γ −>>

~M g ς



*,ng Eµ >>

Intermediate temperatures:

dTT <<

1 2 1tγ γ− −<< <<

1.

2. Bose-gas is degenerated; occupation numbers  
either >>1.

3. Typical energies |µ|=T2/Td , µ is the chemical  
potential. Correct as long as

4. Characteristic energies  

1tγ <<

1t γ >>

*

~
,

T
ng E

ε µ
<<

>>
We are still dealing 
with the high energy 

states

multiple 
occupation ( ) ~ TN ε

ε



Intermediate temperatures:

dTT <<*
2 , EngTT d >>=µ

1 2 1tγ γ− −<< <<

Bose-gas is degenerated; typical energies ~ 
|µ|>>T occupation numbers >>1      matrix 
elements are enhanced

( )1 ~ g TMN
ς ε ε

( ) 13132 <<<<∝ γγγκ tttc



Low temperatures: 1 2t γ −<<

Eµ ∗<<
iε µ<

Suppose 1E ngκ ∗≡ >>
Bosons occupy only 
small fraction of low 
energy states



Low temperatures: 1 2t γ −<<

Eµ ∗<<

ς∗

iε µ<

( )i gµ ε ς∗−

( ) ( ) 1Eν ε ς −
∗ ∗=

Occupation #:

DoS:

2

2
n

gE
µ

∗

= Eµ κ∗=

Suppose 1E ngκ ∗≡ >>

Localization length     

x

ς∗( )l κ ( )l κ ς κ ς∗ ∗= >>
Occupation

( ) 1 2 1nl κ ς γ −
∗ = >>

Bosons occupy only 
small fraction of low 
energy states



x

( )l κ
( )l κ ς κ ς∗ ∗= >>

Occupation
( ) 1 2 1nl κ ς γ −

∗ = >>

ς∗

Low temperatures: 1 2t γ −<<

1E ngκ ∗≡ >> “lakes”

( )l κ ς∗>> Strong 
insulator

Distance

( )
c

l
κ κ

κ ς∗

→

<<
Insulator – Superfluid transition in 
a chain of “Josephson junctions”



Low temperatures: 1 2t γ −<<

1E ngκ ∗≡ >> Strong 
insulator

~ 1cκ0T = transition
~ 1cκ for 1 2t γ −<<





Disordered interacting bosons in two dimensionsDisordered interacting bosons in two dimensions



Justification:
1. At T=0 normal state is unstable with respect to either 

insulator or superfluid.
2. At finite temperature in the vicinity of the critical 

disorder the insulator  can be thought of as a collection 
of “lakes”, which are disconnected from each other. 
The typical size of such a “lake” diverges. This means 
that the excitations in the insulator  state are localized 
but the localization length can be arbitrary large. 
Accordingly the many –body delocalization is unavoidable 
at an arbitrary low but finite T.

Disordered interacting bosons in two dimensionsDisordered interacting bosons in two dimensions



Lecture 3. Lecture 3. 
4. 4. SpeculationsSpeculations



insulator metal

interaction 
strength

localization 
spacing( ) 1−

≡ dνζδζ
Many body 

localization!

σ = 0

Bad metal

Co
nd

uc
tiv

ity
 σ

temperature T
Drude metal

σ > 0

Q: ?What happens in the classical limit 0→h
Speculations: 1.No transition

2.Bad metal still exists 
0cT →

Reason: Arnold diffusion



Arnold diffusion

1I

2I

0ˆ ≠V

1I

2I

Finite motion?Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

2d = All classical trajectories 
correspond to a finite motion 

2d > Most of the trajectories 
correspond to a finite motion 

However small fraction of the 
trajectories goes infinitely far



Arnold diffusion

space # of dimensions
real space d
phase space 2d
energy shell 2d-1

tori d

1. Most of the tori survive – KAM

2. Classical trajectories do not cross each 
other

.2 1en shell torid d d= ⇒ − = .2 1en shell torid d d= ⇒ − =

inside

Each torus 
has “inside”
and “outside”

A torus does not have 
“inside” and “outside” as 
a ring in >2 dimensions



Speculations:
1. Arnold diffusion         Nonergodic (bad) 

metal

2. Appearance of the transition (finite Tc ) –
quantum localization of the Arnold diffusion



Conclusions
Anderson Localization provides a relevant language 
for description of a wide class of physical 
phenomena – far beyond conventional Metal to 
Insulator transitions.
Transition between integrability and chaos in 
quantum systems
Interacting quantum particles + strong disorder.
Three types of behavior: 

ordinary ergodicergodic metal
“bad” nonergodicnonergodic metal
“true” insulator

A closed system without a bath can relaxation to a 
microcanonical distribution only if it is an ergodic 
metal



Thank  youThank  you


