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Bosonization: mapping of electron models 
onto a model describing collective 
excitations (charge, spin excitations, 
diffusion modes, etc).



Origin of the word: 1D electron systems.

A general fermionic Hamiltonian
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Can one reformulate the model in terms of the bosonic variables?

The main idea: writing the electronic operators          as ψ

( )∫∝ dxii ρϕψ exp)exp( Bosonization: for Tomonaga-
Luttinger model (long range 
interaction) (Luttinger, Tomonaga 
(196?))

A simple Hamiltonian H

[ ] i−=ϕρ ,( ) dxNKH ∫ ∇+= ][ 22 ϕρ The most general form 
conjectured by                
K.E. & A. Larkin (1975)ρ -Density fluctuations operator

K-compressibility,  N-average density Microscopic theory 
Haldane (1982)

Importance of long wave length 
excitations! …………………
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Assumptions:

)( pε1. The system is one dimensional. 

2. The spectrum is linear.

Fermion correlation functions are expressed using

( )∫∝ dxii ρϕψ exp)exp(
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Formal replacement of electron Green functions by propagators 
for collective excitations!         

Very often direct expansions 
with electronic Green 
functions are not efficient
(infrared divergences, high 
energy cutoffs respecting 
symmetries).Equivalent representation

Spin excitations

Transformation from electrons to collective excitations: Bosonization
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Why should one bosonize the electronic systems?

A. General interest to description of low temperature behavior. 
Main contribution comes for the collective excitations and 
it may be more convenient to have the corresponding 
bosonic fields.

B. Monte Carlo simulations are difficult for the 
fermions. The computation time grows exponentially 
with the inverse temperature 1/T,  interaction V and the 
size of the system N.
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Difficulties in Monte Carlo simulations for fermionic systems:
negative sign problem             exponential growth of the 
computation time with the size of the system.

Negative Sign Problem
Random choice of  iA
Fermionic sign problem 
arises when one of  0<ip∑
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Exponentially increasing time due to the cancellation problem in sign!
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Can one bosonize in higher dimensions?

Earlier attempts:

A. Luther 1979: Special form of Fermi surface (square, cube, etc.). Almost 1D. 

F.D.M. Haldane 1992: Patching of the Fermi surface, no around corner scattering

Further development of the patching idea:

A. Houghton & Marston 1993; A.H. Castro Neto & E. Fradkin 1994;         
P. Kopietz & Schonhammer 1996; Khveshchenko, R. Hlubina, T.M. Rice 
1994 et al; C. Castellani, Di Castro, W. Metzner 1994……

Main assumption of all these works: long range interaction.
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I.L. Aleiner & K. B. Efetov 2006, Method of quasiclassical Green 
functions supplemented by integration over supervectors

Logarithmic contributions to specific heat and susceptibility 
are found. Good agreement with known results in 1D. No 
restriction on the range of interaction but not a full account of 
effects of the Fermi surface curvature in d>1.

In all the approaches only low energy excitations were considered:     
no chance for using in numerics.

Present work: Exact mapping fermion models onto bosonic ones. 
New possibilities for both analytical and numerical computations.

Warning:
Exact in the continuous time thermodynamic limit!
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Starting Hamiltonian H
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Hubbard-Stratonovich Transformation with a real field )(τφ

)ˆexp(ˆ)ˆexp()(ˆ
0int0int τττ HHHH −=[ ] ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= ∫

β

τ ττβ
0

int0,
ˆexpˆ dHTHTrZ cc

( ) ( )ττ 00 expexp HcHc −= +
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Fermions in an “external field”
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Unpleasant feature of :  non-locality in time][φfZ

Further transformations are desirable!
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Derivation of the model (main steps):
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( )',;', ττσrrG -fermionic Green function in the external field.

Boundary conditions
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Reformulating the theory in terms of 
bosonic fields                           ( )τ',rrA

( ) ( ) ( ) ( )0,0, ',
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( ) ( )βττ += AABosonic periodic boundary conditions:
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(Almost) Final equation for A
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Left hand side of the equation for A: similarity with the 
Boltzmann equation. 

15



The solution in the main approximation.
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Random phase approximation: First order of 
expansion in the interaction between collective modes. 

Chances to construct a field theory for the bosonic 
interacting excitations! 16



Two Directions of Research (next lectures)

1. Analytical.
Construction of (almost) supersymmetric field theory 
for description of interacting collective modes.

2. Numerical. Writing a Monte Carlo program. Hopes to 
overcome the sign problem.
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Analytical calculations:
BRST (Becchi, Rouet, Stora, Tyutin)

-possibility of integration over the auxiliary 
field before doing approximations

How to calculate             if       is the solution of the 
equation              ?  
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( ) 0=AF
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⎠
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⎜
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( )( ) ( )( )∫= dfaifFCaF expδNext step:
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⎠
⎞

⎜
⎝
⎛
∂
∂ ρσσρ ddaF

a
F /expdet

-Grassmann variablesρσ ,
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The main ideas

Grassmann anticommuting variables        :χ

{ } 0, =ji χχ 02 =iχ

Integrals (Berezin 1961):

∫ = 0idχ∫ =1iidχχ

All other integrals are repetitions of these two.
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Any function of the Grassmann 
variables is a polynomial ! 

( ) ηχηχ aa −=− 1expExample:

Vectors

( )nχχχχ ...21=
r

Quadratic forms

kik

n

i
i AA ηχηχ ∑

=

=
1

rr
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Some integrals.

( ) ( )∫ ∫ =−=− addadda ηχηχηχηχ 1exp

( ) AddA
n

i
ii detexp

1

=−∫ ∏
=

ηχηχ
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Not                  as for conventional variables! ( ) 1det −A
An immediate consequence.

If F(A)=0, where F and A are matrices, one 
can write  a function            of the solution         
as  

( )0AB 0A
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ddaFTraXFiTraB
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∂
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∫
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0 The basis of the BRST 
supersymmetric 
representation.

19.07.2010 21



ΨDescription with a supersymmetric action and superfields
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Ψ is anticommuting (!)

The “partition function” as the functional integral over   [ ]φZ Ψ
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Final superfield theory (still exact).

[ ] [ ] [ ] [ ]Ψ+Ψ+Ψ=Ψ IB SSSS 0( ) ΨΨ−= ∫ DSZZ ][exp0

-partition function of the ideal Fermi gas0Z
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is the bare action 
(fully supersymmetric)
[ ]Ψ0S
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The interaction terms.
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The terms           and           are 
invariant under the transformation 
of the fields :  

0S IS

Ψ

( ) ( ) ',
**

',
*

', ,, rrrrrr nκκθκθθθ −++ΨΨ a

*,κκ

(Almost) 
supersymmetry 
transformation.-anticommuting variables

What to calculate?

Logarithmic contributions exist in any dimensions and they 
can be studied by RG. Reduction of the exact model to a 
low energy one is convenient. Variety of phenomena for, 
e.g., cuprates and other strongly correlated systems can be 
attacked in this way. 
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Second order perturbation theory in both 
fermionic and bosonic representations. 

Green functions.
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⎠
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1
kpkpi n εεω

nn πω 2=Fermionic diagram (c) from bosonic b.1, b.2, c.2

Necessity to introduce a bath and exclude some states.
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⎨
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Introducing a small parameter      to exclude the solutions of 
the homogeneous equation (coinciding states in the diagrams).  

γ

The introduced  error is of order 1/N
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The function Y is not universal and depends on a cutoff 
function f.

Final result by RG
(from Aleiner and Efetov (2006))

for  1≤X

f

Polylogarithm 
function

Logarithms found for the first time by the bosonization.
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1d case

Agreement with Lukyanov (1998),

Excellent check of the validity of the method.
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Monte Carlo method for statistical physics.

The main feature: probabilistic method of calculations

Calculation of π

General advantage: a drastic reduction of the computation time!

Example: Ising model.

{ }
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s ji
jiij TssJZ /1,exp

,
ββ Sum over        configurationsN2
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The same for an average.
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How can the Monte Carlo method help?

Replacement of the sum over all configurations by the 
following sum:
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∑ ∑
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sPss
K

,

,

exp

exp
,

β

β The partition function Z does 
not enter the average for K! 
But why is it good?

P{s} is the probability distribution
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Finding P{s} can be much faster than computing Z (the 
number of steps is proportional to         and not to        ).αN N2

Metropolis  algorithm for finding P{s}

Mξξξξ ,...,, 321

( )ξP -is a given probability and        is 
the number of configurations 

ξM
ξ( )ξξ P

M
M

M =∞→lim

Step 1: Pick a configuration nξ

Step 2: Pick trial configuration       and compute the 
probability ratio                . Pick a random number  0<p<1.

tξ

)(
)( t

P
PR
ξ
ξ

=
n

Make             if p<R. Otherwise, make tn ξξ =+1 nn ξξ =+1
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Step 3: Go to 2 replacing       by nξ 1+nξ

Step 3 is repeated M times, where M is a sufficiently large 
number.

The algorithm evolves any arbitrary distribution towards 
the equilibrium distribution where ( )ξξ P

M
M

=

As a result: ( )∑=≈
ξ

ξ ξAM
M

AA 1

However, all           must be positive to proceed 
with the MC method (trivial for the Ising  model 
but generally not so for fermionic 

( )ξP

[ ]φfZ

[ ] ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−∂∂−= ∫ τµτσφετφ
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σ dTrZ rrrf
0

, ')(ˆ/lnexp
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What can one do in this situation? Making a positive weight
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||
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||/sgn
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p
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iii

i
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ppp
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A ===

∑∑
∑∑
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∑

However, one encounters a big problem: the average 
sign vanishes

)exp(
||||

NcsignAsign
pp

β−≈≈ )exp( NcA βδ ∝

The computation time grows exponentially            no advantage 
of using Monte Carlo method.

One can try to convert the fermions into bosons 
hoping that the sign problem disappears for the latter. 
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Another representation for [ ]φfZ

[ ] ( )( ) ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −−−+= ∫

β

τσ τµτσφεφ
0, 'ˆexp1det dTZ rrrf

Basis of auxiliary field Monte Carlo simulations 
(Blankenbecler, Scalapino, Sugar (1981))

Procedure: subdividing the interval                       into time slices 
and calculation for each slice recursively.

βτ ≤≤0

The function             is positive for slowly varying HS field
However,           can in such a procedure be both positive and 
negative if       strongly fluctuates:              sign problem!                               
Not convenient for analytical calculations either.

[ ]φfZ φ
[ ]φfZ
φ
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Good news:         can exactly be obtained from a bosonic model!][φZ

3719.07.2010 37

What is exact and what is not in this derivation?

Examples of exact and approximate transformations.

∫ ∫
∞ ∞

−=
0 0

2 2

2
1cos dxedxax ax ( ) ( )xexax

i i

ax
i

i ∆≠∆∑ ∑
∞

=

∞

=

−

1 1

2 2

2
1cos

Difficulty of a numerical computation depends on 
the analytical representation!



(Almost) Final equation for A

( ) ( )( ) ( ) ( ) ( )( )τφτφτφτφσεε
τ '',',''ˆˆ rrrrrrrrrr unzAu −−=⎟

⎠
⎞

⎜
⎝
⎛ −−−+
∂
∂ },,{ uz στ=

The functions               and              are taken at the same time!)(τφr )(' τφr

Exact for smooth functions             but a big difference 
for typical functions arising in MC procedure!

)(τφr

Typical Hubbard-Stratonovich field

[ ]φφ fb ZZ ≠][

19.07.2010 3838



Partition function

[ ] ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑∫ ∫

σ

β

ττφφ
,

1

0 0
0 exp

r
rrrb dudzAZZ[ ] ( ) φτφφ

β

Dr
V

ZZ b∫ ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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0

2
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,
2
1exp

Boundary conditions

( ) ( ) ( ) ( )βττβτφτφ +=+= ',',, rrrrrr AA

Purely bosonic problem! Linear (almost separable) real equation for A

However: spurious solutions A for 
certain configurations      exist and a 
regularization is necessary! 

φ
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Regularization
Introduction of a bath with non-interacting electrons and 
excluding spurious solutions of the equation for A by 
doubling the size of the matrices A and introducing a 
small parameter  γ

The bosonization is exact in the thermodynamic 
continuous time limit but is approximate for the 
piece-wise function!

Writing a positive real              that differs 
from the original fermionic one.

[ ]φbZ
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Final formula for (suitable for numerics)[ ]φbZ
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The function        is the solution of the equationΓ
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1γ is the regularizer that should be taken as small as 
necessary

[ ]φbZ is real and positive: solution of the sign problem (?)
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Perturbation theory:
expanding in and subsequent integration over this field. ( )τφr

Main order:

( )
( ) ( )
( ) ( ) ( ) ⎥
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⎦
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d

d

d pd
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22/2/

2/2/1ln
22

exp 00

RPA-like formula                                                    
(first order in  the expansion in collective excitations).
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Numerical comparison of            and [ ]φbZ [ ]φfZ

Fermionic and bosonic representations for  two 
sites model for a static HS field (           ). 210−=γ
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Fermionic representation 
(two sites and one site bath, 
three time slices,              
500 random configurations). 
Sign problem!

Bosonic representation    
(the same parameters).    
No sign problem!
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First comparison of the bosonization MC with DMRG for 
the local number of particle n(x)
(Low temperature limit is most difficult for MC but 
DMRG gives results for zero temperature in 1D only)
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The same for a stronger interaction.

A lot of hopes….
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Conclusions.

The model of interacting fermions can be bosonized in any 
dimension for any reasonable interaction. 

Can the bosonization be the key to the ultimate solution of 
the sign problem?                                               
Can one solve non-trivial models (e.g., models for high 
temperature cuprates or for quantum phase transitions) 
using the supersymetric model for collective excitations?  

To be answered
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