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Bosonization: mapping of electron models
onto a model describing collective
excitations (charge, spin excitations,
diffusion modes, etc).




Origin of the word: 1D electron systems.

A general fermionic Hamiltonian

1 + \% + +
H = ngl//pwp +?O ZWpl,al//pz,ﬂwpz—q,ﬁl//pﬁq,a
p

P, P2, PR3, B

Fermionic anticommutation realtions.

{W;’WP'}: Op.p {Wp’%”p-}={%”§,w§-}=0

However, there are also bosonic variables.

P =2 WV e w oc explie)




Can one reformulate the model in terms of the bosonic variables?

The main idea: writing the electronic operators s as

o explio) expli pdx)‘

A simple Hamiltonian H

H = [[Kp* + N(Vo)lix| [p,@]=-i

Yo, -Density fluctuations operator

K-compressibility, N-average density

Importance of long wave length
excitations!
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Bosonization: for Tomonaga-
Luttinger model (long range
Interaction) (Luttinger, Tomonaga
(196?))

The most general form
conjectured by
K.E. & A. Larkin (1975)

Microscopic theory
Haldane (1982)



Assumptions:

1. The system is one dimensional. g( p)

2. The spectrum is linear.

Fermion correlation functions are expressed using

o exp(io) expli pdx)‘




Formal replacement of electron Green functions by propagators
for collective excitations!

Very often direct expansions
with electronic Green
functions are not efficient
(infrared divergences, high

energy cutoffs respecting
Equivalent representation symmetries).

o Spin excitations

Transformation from electrons to collective excitations: Bosonization
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Why should one bosonize the electronic systems?

A. General interest to description of low temperature behavior.
Main contribution comes for the collective excitations and
It may be more convenient to have the corresponding
bosonic fields.

B. Monte Carlo simulations are difficult for the
fermions. The computation time grows exponentially
with the inverse temperature 1/T, interaction V and the
size of the system N.




Difficulties in Monte Carlo simulations for fermionic systems:
negative sign problem =) exponential growth of the
computation time with the size of the system.

Negative Sign Problem

oy _TrlAeRC ) 2R

Tr(-pH) 2.h

Random choice of A

Fermionic sign problem
arises when one of p, <0

Standard MC procedure

Z'Aﬁpi Z(Aisgnpi)(pi‘/2|pi| <Asign>

Pl

(A) !

s Zpi ~ > (son pi)\pi\/ZI T

<sign>IIOI

Exponentially increasing time due to the cancellation problem in sign!

<Asign>IIDI ~ <sign>|IO| ~ exp(—CcHN)
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Can one bosonize in higher dimensions?

Earlier attempts:

A. Luther 1979: Special form of Fermi surface (square, cube, etc.). Almost 1D.

F.D.M. Haldane 1992: Patching of the Fermi surface, no around corner scattering

Further development of the patching idea:

A. Houghton & Marston 1993; A.H. Castro Neto & E. Fradkin 1994,
P. Kopietz & Schonhammer 1996; Khveshchenko, R. Hlubina, T.M. Rice
1994 et al; C. Castellani, Di Castro, W. Metzner 1994

Main assumption of all these works: long range interaction.
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|.L. Aleiner & K. B. Efetov 2006, Method of quasiclassical Green
functions supplemented by integration over supervectors

Logarithmic contributions to specific heat and susceptibility
are found. Good agreement with known results in 1D. No
restriction on the range of interaction but not a full account of
effects of the Fermi surface curvature in d>1.

In all the approaches only low enerqy excitations were considered:
no chance for using in numerics.

Present work: Exact mapping fermion models onto bosonic ones.
New possibilities for both analytical and numerical computations.

Warning:
Exact in the continuous time thermodynamic limit!
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Starting Hamiltonian H

N

H

— I_IO + Hint

Ztrr ro ra_luzcra ro

r,ro

r,ro

_ZV

rraa

C C..C..C

r,r'’ror'c'r'c'Yro

Z =Trexp(-H /T)

The interaction, tunneling and
dimensionality are arbitrary!

Small simplification of the formulas

V

r,r'

= 5r,r

V,,

V,>0
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0 _ + z
Hlnt _ Z( r+ r+_Cr,—Cr,—)

u'—>u-V/2
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Hubbard-Stratonovich Transformation with a real field #(7)

H, (7) = exp(Ho7)H,, exp(=H,7)

int

z=Tr, [ﬂH]TeXP( iz )drj

O'—-oh

¢ =exp(H,z)c" exp(—H,7)

Decoupling of the quartic interaction

nexp[-fﬁime)dr} 100 S ot lek.. ek, )dfjexp[—z [ rwr}w

0 0r0

#2)=¢(z+p), p=1T
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Fermions in an “external field”

B ~
2 - 2. blen| - S [0 e po. Bf= T

Z [¢ eXpD‘Tr 8/8r £ +09 (T)+,u)17}

Another representation for 7. [4]

Z|¢]=det, [1+TT exp(— joﬂ (&, — o8, (r)- ') rﬂ

4

Unpleasant feature of Z.[@]: non-locality in time

Further transformations are desirable!
12



Derivation of the model (main steps):

2 [4]=2, exp{g [ o4 (06, (e +0) -G, e, + O)]dzdu}

GO rio(r,7')= [Gr’r.;g(r,r')](»_o is the Green function of the ideal Fermi gas

(_ 9 _ £, +oug,(r)+ ﬂ')Gr,r-;a (r,7)=6,,6(-1)

or

6o (17 i 8 oug ()4 | = 8, 06 - )
T

G, .. (r, z") -fermionic Green function in the external field.

Boundary conditions

G(Z’,T')Z —G(r+,6’,r')= —G(r,f'+,b’)

19.07.2010
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Reformulating the theory In terms of
bosonic fields A .(z)

Ar,r'(z-) = Gr(?r'(r’ T+ O)_ Gr,r'(T’ T+ O)
Bosonic periodic boundary conditions: A(r) = A(r + ,B)

Then, the “partition function” Z|g] is

z={r,o,u}

Z,[p]=2,exp| - ﬁﬂ z)dudz

n . = Gr(?r), (— 0) -Fourier transform of the Fermi distribution n(p)

19.07.2010
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(Almost) Final equation for A
(% + é\r o é\r' o O-u(¢r (T)_ ¢r(T))jArr(Z) — _unr,r'(¢r (T)_ ¢r(7))

2 ={r,o0,uU}

First check assuming that ¢, () is small

lor+ip(r—r' +I r+r d d k
X

(—iw+e(p+k/2)—e(p—k/2)A (k@) =-udk,o)n(p+k/2)-n(p—k/2))

Left hand side of the equation for A: similarity with the
Boltzmann equation.
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The solution In the main approximation.

7 _ Zjexp{—2j¢ka) (Vl-l_j n(p—k/2)-n(p+k/2) dd;)dj(ddkd}w

io+e(p-ki/2)-e(p+k/2)(2z) )(2x)

]

] T dK k/2)-n(p+k/2) d°
Z‘Z°exp{‘5§f T T TR i ﬂ

Random phase approximation: First order of
expansion in the interaction between collective modes.

!

Chances to construct a field theory for the bosonic

Interacting excitations! ”




Two Directions of Research (next lectures)

1. Analytical.

Construction of (almost) supersymmetric field theory
for description of interacting collective modes.

2. Numerical. Writing a Monte Carlo program. Hopes to
overcome the sign problem.
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Analytical calculations:
BRST (Becchi, Rouet, Stora, Tyutin)
-possibility of integration over the auxiliary
field before doing approximations

How to calculate B[A,] if A is the solution of the
equation F(A)=0?

A well known trick: [B[A,]= j ){det(al:j

oa

da

Next step: | 6(F(a))=C [ exp(ifF (a))df

det(a j J‘exp[p (6F / 6a)o Jdodp

o, p -Grassmann variables

19.07.2010



The main ideas

Grassmann anticommuting variables ¥

{ZHZj}:O Ziz:O

Integrals (Berezin 1961):

Ilidli =1 dei =0

All other integrals are repetitions of these two.

19.08.2000
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Any function of the Grassmann
variables is a polynomial !

Example: exp(—;(an)zl—;(an

\Vectors

7=n 2 - 1)

Quadratic forms

JAn = ZZiAikUk
i=1

20



Some integrals.

[ exp(= zan)dydn = [ (L- yan)ddn =a
[exp(- ZA7)[ [ dzdn, = det A

Not (det A)‘1 as for conventional variables!

An immediate consequence.

If F(A)=0, where F and A are matrices, one
can write a functl%%) of the solutiéy

oF

oa

as
B(Ab):jB(a)5(F(a))Det da The basis of the BRST
supersymmetric

— j B(a)expliTr(XF(a))|exp[-Try(6F /6a)y|dxdn representation.

19.07.2010 21



Description with a supersymmetric action and superfields WV

Introducing new Grassmann variables 4,6

qu,r'(R): a‘r,r'(z)(9+ 1’.rT,r'(Z)g* +77r,r'(z)+77r+,r'(z)‘9 (9

*

and Y superfields

R=ir,0,u,6,6

Y isanticommuting (1)

The “partition function” Z[¢] as the functional integral over ¥

19.07.2010

Z|g|=Z, exp(S[¥]-S,[¥ )
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Sss[‘P]=i§ZI ‘Pr.,,(%ﬁr,r-j‘Pr,r-dR h, . =& —&.—ou(g,(z)-¢.(c))

Se[P]=-> ja¢ N 9dR+|Zjan 7)-¢,.(c))¥, .udR

Why had one to try to represent the function z[¢]
In such a form?

Gaussian averaging over ¢ can immediately be performed!

Z=[7,p exp{—jcé M

19.07.2010 23



Final superfie

Ild theory (still exact).

Z=2, j exp(— S[¥] DY

S[W]=8,[¥]+Ss[¥]+S,[¥]

Z, -partition function of the id

eal Fermi gas

zj{ (—+g y

j‘lf}dR

So[¥] is the bare action
(fully supersymmetric)

19.07.2010
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The Interaction terms.

S, [¥]= —V?O [6(-2)¥, (R (¥, (R)g +2il, (R, )loo,dRdR,
Vo Zj 7 —7, )1, (R)IT,.(R, Joo,dRdR,
( ): UZ[(\Pr ( _nr,r'QX\Pr,r'(R)_nr,r‘e)]

19.07.2010
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The terms SO and S, are
Invariant under the transformation

of the fields : b g
v (0.6 )%, (0+Kx6 +x)-xn, | | (Almost)
supersymmetry
transformation.

K, K -anticommuting variables

What to calculate?

Logarithmic contributions exist in any dimensions and they
can be studied by RG. Reduction of the exact model to a
low energy one Is convenient. Variety of phenomena for,
e.g., cuprates and other strongly correlated systems can be
attacked in this way.

19.07.2010

26




Second order perturbation theory in both

fermionic and bosonic representations.

@ @ @ O

w

(a) < 1
!

Green functions.

1
: y & = 272'[ﬂ+
£, _g(p)_l_:u
n=0,+1,+£2,£3...

1

—lw +g(p+kj—g(p—kj
" 2 2

Fermionic diagram (c) from bosonic b.1, b.2, c.2 ®, = 27mM

Necessity to introduce a bath and exclude some states.

19.07.2010
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Introducing the bath ol _ Vo <R
N 0, r>R

Translational

- Vtotal ’ -\ ‘e—iqo(r+r')/2—iq(r—r') ) ] .
Fourier transform (q qo) ; rr ‘ Invariance is broken!

Introducing a small parameter » to exclude the solutions of

the homogeneous equation (coinciding states in the diagrams).
y £ —&.+010t

(é —&,.—0l0t —y

r

jrr,r';rl,rl'(f’ Tl) = 5r,r15r',r1'5(T o 2'1)

The introduced error is of order 1/N

19.07.2010 28



The function Y Is not universal and depends on a cutoff

function f.

Final result by RG
(from Aleiner and Efetov (2006))

X(0) = —paye(0) In [max {6, T /o }]

2 372 {In[1+ X(T)]}?
5Cd:2:_ ( JQ [Fgr]l_l_ .b{n[’ é :l]} ‘
TES 2 [X(T)]
(7.37a)
37t /T oo
Mgy = — ﬁ (; LEQ(I) - Zk:l ka'/kg
S 3, XD
X {[’1{]2111 =+ £ ] dj [Liz (— J]g}; f
/ Polylogarithm
(7.37b) functi
unction

Logarithms found for the first time by the bosonization.

19/07/2010
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1d case

712

2 I

e T

|

1+ 27y In3F

T

Agreement with Lukyanov (1998),

Excellent check of the validity of the method.

19.07.2010

30



Monte Carlo method for statistical physics.

The main feature: probabilistic method of calculations

1
* e .
r » ™ . s
L 3
05 - . * -
@ -
o .
-
]

. .
. ¢ -
L * L
-0.5 ¢ ¢« e
.‘.
™
- * -
=1
-1 -0.5 (1} 05 1

General advantage: a drastic reduction of the computation time!

¢ *

Calculation of 7

Example: Ising model.

Z=Z€Xp|:—,323ij8i8j:|, B=1T Sum over 2" configurations
is} B
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The same for an average.

{s}
Kkl —

Again, the number of
configurations in the sum is 2"

How can the Monte Carlo method help?

Replacement of the sum over all configurations by the
following sum:

ZSKSIP{S}
K = ol

> Pis)

ts)

The partition function Z does

not enter the average for K!

gexp{—ﬂ?usﬁj} But why is it good?

P{s} Is the probability distribution

32



Finding P{s} can be much faster than computing Z (the
number of steps is proportional to N* and notto 2").

Metropolis algorithm for finding P{s}

The algorithm is designed to generate a set of M
configurations of the system ¢&,%,,&;,...5, such that

P(£) -is a given probability and M, is
the number of configurations &

Step 1: Pick a configuration &,

Step 2: Pick trial configuration & and compute the
probability ratio R:% . Pick a random number 0<p<1.

Make £ = & if p<R. Otherwise, make Sn.1 =&,

33



Step 3: Go to 2 replacing &, by &, .,

Step 3 Is repeated M times, where M is a sufficiently large
number.

The algorithm evolves any arbitrary distribution towards
N o M
the equilibrium distribution where sz P(¢)

— 1
Asaresult: (A)~ A= MZ M. A(¢)
4

However, all P(£) must be positive to proceed
with the MC method (trivial for the Ising model
but generally not so for fermionic Z,[¢]

Z [¢ = exp jTr (’9/(’97 £ +09Q (T)+,u)jr

19.07.2010
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What can one do in this situation? Making a positive weight

2 AP 2 (Asonp)pl/ 2 1Pl (asign)
<A> i i i . [Pl

- Z P 2 Z(Sgn pi)(pi‘/zill P | <Sign>|P|

However, one encounters a big problem: the average
sign vanishes

(Asign) ~(sign) ~exp(-cAN)| mmmh [5A o exp(cAN)

The computation time grows exponentially E 8 no advantage
of using Monte Carlo method.

One can try to convert the fermions into bosons
hoping that the sign problem disappears for the latter.
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Another representation for Z. [¢]

Z, [¢] = detr,a[l+TT exp(— joﬁ (gr — 09, (T)_ ,U')d rﬂ
]

Basis of auxiliary field Monte Carlo simulations
(Blankenbecler, Scalapino, Sugar (1981))

Procedure: subdividing the interval 0<z < g into time slices
and calculation for each slice recursively.

The function Z.[#] is positive for slowly varying HS field @
However,Z . ¢ can in such a procedure be both positive and
negative if @ strongly fluctuates: mmmml) sign problem!

Not convenient for analytical calculations either.

19.07.2010
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Good news: Z[¢#] can exactly be obtained from a bosonic model!

What iIs exact and what is not in this derivation?

Examples of exact and approximate transformations.

% _[ e dx Zcos ax’(Ax) # Ze
0

j cos ax’dx =

Difficulty of a numerical computation depends on
the analytical representation!

19.07.2010
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(Almost) Final equation for A

bl ==l (040D A (2) =, 6,0)- . 0) (2=

The functions ¢.(r) and ¢.(r) are taken at the same time!

!

Exact for smooth functions ¢,(z) but a big difference
for typical functions arising in MC procedure!

Typical Hubbard-Stratonovich field

ér(‘r) [\

Jya ) Z,[4]=Z, 4]
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Partition function

Z=z, ¢]exp{—j¢2 M Z,[¢]= Zexp{ ¢, (r)A, (2)dud <

O'—,H
O D

r,o

Boundary conditions
.(2)=¢.(c+5),  A.(2)=A (c+p)
]

Purely bosonic problem! Linear (almost separable) real equation for A

However: spurious solutions A for
certain configurations ¢ existand a
regularization Is necessary!

19.07.2010 39




Reqularization

Introduction of a bath with non-interacting electrons and
excluding spurious solutions of the equation for A by
doubling the size of the matrices A and introducing a

small parameter y

The bosonization is exact in the thermodynamic
continuous time limit but is approximate for the

piece-wise function!

i

Writing a positive real Z,[¢] that differs
from the original fermionic one.
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Final formula for 7, [¢] (suitable for numerics)

Z,|¢]l=2 exp{—— > Hdzdr1¢ 1,rl.Tr[(F(I)Al)‘lln( (TOA,) )Krrr}{rl rl.}}

r,n,n oo

The function I' is the solution of the equation

/4
E — &,

é—ér.+6/87r (c.0)=6,.5. (c—1.)
8/87 _7/ rrin,n T,Tl rnorihn 4 z-1

()=

4(z)-4.(z) N
y Is the regularizer that should be taken as small as i1 o0
necessary

Z,[#] is real and positive: solution of the sign problem (?)
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Perturbation theory:
expanding in ¢, () and subsequent integration over this field.

Main order:

d
Z=ZOexp{—% {1” n(p—k/2)-n(p+k/2) d

iw+e(p—k/2)- (p+k/2)(27z;)dﬂ

RPA-like formula
(first order in the expansion in collective excitations).
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Numerical comparison of 7, [¢] and Z, 4]

lk.d} - log(Z/Zo)
| u.mng .

| u.lssé
n.nsni
0.1455

0.140 |

0,

1 lf[ N{Eotai

000 002 004 006 008 000 012 014
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Fermionic and bosonic representations for two
sites model for a static HS field ( =107).
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sites=3, Nt=3, Npoints=500, t=1, u=1, f=4, [I< 1 Fermionic representation
30f ™ NN mmm E (two sites and one site bath,
251 three time slices,
20} 500 random configurations).
:Z Sign problem!
05¢F
m Re Log( Z/Z(

sites=3, Nt=3, Npoints=500, t=1, =1, f=4, |p|< 1 Bosonic representation
Im Log{ Zb/Z0)
Ly 10-12 o cev . (the same parameters).
o Peb 0 o No sign problem!
-13 L4 o000
5.x 10713}
+ Re Log( Zb/Z(
—5.x 107+ :
[
° .' oo
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n(x)

0.75

07

0.65

0.6

0.55

0.5

0.45

04

0.35

0.3

0.25

interacting sites 3 and 4, V=1.0, t=1.0, y=0.01, N;=2, open bc

IGuillaume I+ l !
Simon f=16.0 —*%—
L I 7
/
L | / _
\"f I
L L\ o ]
) i
\ I
| \Y I \
- \\-ﬁ- ‘f:|l."I '.I -
o # \
/ )

f
/ v;‘l. _
f 1 I I 1 I 1 \*
0 1 2 3 4 5 4] 7

X

First comparison of the bosonization MC with DMRG for
the local number of particle n(x)

(Low temperature limit is most difficult for MC but
DMRG gives results for zero temperature in 1D only)
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nix)

interacting sites 3 and 4, V=2.0, t=1.0, v=0.01, Ni=2, open bc

0.9 T T T I T T
Guillaume V=20 —+—
Simon B=4.0 —&8—
Simon B=8.0
08 | Simon B=16.0 —%— il

02 1 1 1 1 1 1

The same for a stronger interaction.

A lot of hopes....

19.07.2010
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Conclusions.

The model of interacting fermions can be bosonized in any
dimension for any reasonable interaction.

Can the bosonization be the key to the ultimate solution of
the sign problem?

Can one solve non-trivial models (e.g., models for high
temperature cuprates or for quantum phase transitions)
using the supersymetric model for collective excitations?

To be answered

19.07.2010
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