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Chapter 18

DISORDERED ELECTRON LIQUID
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Rehovot 76100, Israel
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The metal–insulator transition (MIT) observed in a two-dimensional dilute
electron liquid raises the question about the applicability of the scaling the-
ory of disordered electrons, the approach pioneered by Phil Anderson and
his collaborators,8 for the description of this transition. In this context, we
review here the scaling theory of disordered electrons with electron–electron
interactions. We start with the disordered Fermi liquid, and show how
to adjust the microscopic Fermi-liquid theory to the presence of disorder.
Then we describe the non-linear sigma model (NLSM) with interactions.
This model has a direct relation with the disordered Fermi liquid, but can
be more generally applicable, since it is a minimal model for disordered in-
teracting electrons. The discussion is mostly about the general structure of
the theory emphasizing the connection of the scaling parameters entering
the NLSM with conservation laws. Next, we show that the MIT, as de-
scribed by the NLSM with interactions, is a quantum phase transition and
identify the parameters needed for the description of the kinetics and ther-
modynamics of the interacting liquid in the critical region of the transition.
Finally, we discuss the MIT observed in Si-MOSFETs. We consider it as an
example of the Anderson transition in the presence of the electron interac-
tions. We demonstrate that the two-parameter RG equations, which treat
disorder in the one-loop approximation but incorporate the full dependence
on the interaction amplitudes, describe accurately the experimental data
in Si-MOSFETs including the observed non-monotonic behavior of the re-
sistance and its strong drop at low temperatures. The fact that this drop
can be reproduced theoretically, together with the argument that Anderson
localization should occur at strong disorder, justified the existence of the
MIT within the scaling theory.
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1. Disordered Fermi-Liquid: Dk2, ω, T < 1/τel

The original Fermi-liquid theory has been formulated in terms of quasipar-
ticles labeled with momenta p. The most distinctive feature of the Fermi-
liquid is the jump in the occupation number n(p) at the Fermi-surface. Since
in the presence of disorder the Fermi-surface is smeared, for some people this
means the end of applicability of Fermi-liquid theory. This is, however, not
completely correct. Indeed, the description in terms of plane waves is not
working well for low-lying excitations with energies less than the rate of
collisions with static impurities. Still, some elements of Fermi-liquid the-
ory hold as far as rescattering of electron–hole pairs is considered. The
Fermi-liquid description stops working only when the production of multiple
electron–hole pairs becomes important [N.1].a Elastic impurity scattering
by itself does not generate electron–hole pairs and therefore, some elements
of the Fermi-liquid description should be preserved even in the presence of
disorder.

In this section, we show how to adjust the Fermi-liquid description to
disordered electron systems.1–3 While conventional Fermi-liquid theory has
been constructed starting from single-particle excitations, in the case of a dis-
ordered Fermi-liquid, the focus shifts towards diffusing electron–hole pairs.
In Landau’s original microscopic theory of the clean Fermi-liquid the term
vF nk/(ω−vF nk) is used as the propagator of an electron–hole quasiparticle
pair, see Chapter 2, Sec. 17 in Ref. 4. This expression describes propaga-
tion of the pair along the direction n, when the momentum difference of the
two quasiparticles is k, and the frequency difference is ω. The combination
vF nk originates from the energy difference of the constituents of the pair,
δεk(p) = ε(p+k)−ε(p) ≈ vFnk. The two quasiparticle poles sitting close-by
make the discussed term singular. This in turn makes the two-particle vertex
function Γ(ω,k) singular since it describes, among other processes, multiple
rescattering of electron–hole pairs. The propagator vFnk/(ω − vF nk) may
be rewritten as the sum of a static and a dynamic part: [−1+ω/(ω−vFnk)].
In fact, it is more convenient to keep explicitly only the dynamic part of this
propagator, ω/(ω − vF nk), and to delegate the static part (i.e., −1) to the
amplitude of the electron–electron (e–e) interaction. This amplitude is de-
noted as Γk. Index k in Γk means that in the singular amplitude Γ(k, ω)
one first takes the limit ω = 0 and only afterwards the limit k → 0, i.e.,
Γk = Γ(k → 0, ω = 0). The choice to work with the static amplitude Γk is
motivated by the following reasoning. Generally speaking, Γ(k, ω) includes:

aSee the list of Notes which follows the main text.
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(i) a part irreducible with respect to particle–hole pair propagators (the di-
agram for such an amplitude cannot be separated into disconnected blocks
by cutting two single-particle Green’s functions only), along with contri-
butions from incoherent background, and (ii) the contributions containing
rescattering of quasi-particle pairs that has been already mentioned. The
contributions from the irreducible part and from incoherent background are
determined by short scales. Therefore, they are robust and, apart from small
corrections, not sensitive to modifications of the electron spectrum near the
Fermi-energy εF . On the contrary, the terms describing rescattering of quasi-
particle pairs are fragile, and they require certain care. Remarkably, the am-
plitude Γk is also insensitive to a modification of the low-energy part of the
energy spectrum unless the density of states changes significantly. Indeed, in
the considered order of limits the combination δε/(ω − δε) is equal to −1 for
any energy spectrum of electrons. These arguments led us to conclude1,3 that
the amplitude Γk is not influenced by not too strong disorder, 1/τel � εF .
The robustness of the static amplitude Γk makes it particularly convenient
for the purpose of a microscopic analysis in the presence of disorder.

It is almost evident from the discussion above that disorder reveals it-
self most clearly in dynamics. Diagrammatically, the dynamic part of the
particle–hole propagator can be obtained from a product of two Green’s func-
tions where one is retarded (R), while the other one is advanced (A). We
will refer to such a product as RA-section. After integration over the energy
variable ξ = p2/2m∗−μ, and summation over the fermionic frequency εn, the
RA-section generates just the dynamic part of the electron–hole propagator,
ωn/(ωn + ivF nk). [From now on, we prefer to use Matsubara frequencies
for which ω/(ω − vFnk) =⇒ ωn/(ωn + ivF nk)]. In the presence of disor-
der, the dynamic part of the propagator given by an RA-section changes
its functional form. When the effective collisions of electrons with impu-
rities are frequent enough (in the sense of inequalities given in the section
head) multiple impurity scattering leads to the diffusive propagation of the
quasi-particles for times t � τel; here τel is the elastic mean free time for
scattering from static impurities. Under these circumstances, the propagator
of an electron–hole pair changes in such a way that its denominator acquires
the diffusive form:

ωn

ωn + ivF nk
=⇒ ωn

ωn + Dk2
. (1.1)

Here, D = v2
F τel/d is the diffusion coefficient for the spatial dimension d

[N.2]. With this result at hand, let us consider the two-particle amplitude
Γ(k, ω). The amplitude Γ(k, ω) can be represented as a series in which Γk
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and RA-sections alternate with each other [N.3]. In a sense, in disordered
systems, the process of multiple rescattering is even simpler than in clean
ones. The point is that in the clean Fermi-liquid, because of the angular
dependence contained in nk, the angular harmonics of the interaction am-
plitudes, denoted as Γk

l , come into play. On the other hand, for the slow
propagation of an electron–hole pair in the presence of disorder only the
zeroth harmonic, l = 0, remains singular. Consequently, only the zeroth
harmonic of the interaction amplitude, Γk

l=0, is relevant for the processes of
rescattering of diffusing electron–hole pairs. As a result, the calculation of
Γ(k, ω) reduces to a geometric series.

The two-particle amplitude Γk
l=0 can be split into parts which can be

classified according their spin structure:

νa2Γk
l=0

α1α2
α3 α4

= Γ̃1δα1,α3δα2,α4 − Γ2δα1,α2δα3,α4

=
1
2
[(2Γ̃1 − Γ2)δα1,α3δα2,α4 − Γ2

−→σ α1,α3
−→σ α2,α4 ]. (1.2)

Here, ν is the single-particle density of states per one spin component at
energy εF , and the factor a describes the weight (residue) of the quasi-particle
part in Green’s function G(iε,p) [N.4]; Γ1,2 are dimensionless. The minus
sign in the amplitude Γ2 is due to the anti-commutation of the fermionic
operators. The two-particle propagators can be classified in terms of the
total spin of the particle–hole pairs. The combination Γ̃ρ = 2Γ̃1−Γ2 operates
inside the singlet channel, S = 0, and controls propagation of the particle-
number density ρ(k, ω), while Γσ = −Γ2 controls the spin density, i.e., the
triplet channel, S = 1 [N.5]. To obtain the amplitude Γ(k, ω), one has to
sum, depending on the spin structure, a ladder of either Γ̃ρ or Γσ with RA-
sections in between; see Fig. 18.1. The resulting amplitudes Γ̃ρ(k, ω) and
Γσ(k, ω) acquire the form:

Γα(k, ω) = Γα
Dk2 + ωn

Dk2 + (1 − Γα)ωn
, α = ρ, σ. (1.3)

Fig. 18.1. Disordered Fermi-liquid: geometric series leading to Eq. (1.3). Dashed
lines describe impurity scattering.
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Note the shift of the position of the diffusion poles in Γρ,σ(k, ω) as a result of
summation of the geometric series. Eventually, this shift is the origin of the
renormalization of the diffusion coefficients in the disordered electron liquid.

Now that we know how disorder affects the amplitudes of the e–e interac-
tions, we may study correlation functions. As we shall see, the conservation
of particle-number (i.e., charge) and spin constrains the possible form of
the corresponding correlation functions. We first consider the polarization
operator Π(k, ωn) in the presence of disorder. We discuss here a true elec-
tron liquid, i.e., a quantum liquid with charged current carriers. This is the
reason why we are interested in Π(k, ωn), the density–density correlation
function irreducible with respect to the Coulomb interaction. To obtain this
irreducible part, one has to exclude from Γ̃1 all terms that can be discon-
nected by cutting a single line of the Coulomb interaction. As a result of
this operation, Γ̃1 transforms into Γ1 and correspondingly, Γ̃ρ transforms
into Γρ = 2Γ1 − Γ2. (The part of Γ̃ρ that can be disconnected by cutting
a single line will be denoted as Γ0

ρ, while the amplitude Γρ incorporates the
remaining irreducible part, so that Γ̃ρ = Γ0

ρ + Γρ.) As we shall see, the
dimensionless parameters, Γρ and Γσ, determine the Fermi-liquid renormal-
izations of the disordered charged liquid. The separation of the polarization
operator Π(k, ωn) into static and dynamic parts is performed in the same
way as for Γ(k, ωn): the static part does not contain RA-section, while all
the rest goes to the dynamic part. Consequently, the dynamic part of the
polarization operator contains two “triangle” vertices γρ separated by a lad-
der of the RA-sections, see Fig. 18.2. In other words, both the left and right
vertices γρ are irreducible with respect to RA-sections (i.e., each of them
extends from an external vertex to the first RA-section) [N.6]. Collecting
the static and dynamic parts of the polarization operator, one gets

Π(k, ωn) = Πst − 2ν (γρ)2
[

ωn

Dk2 + (1 − Γρ)ωn

]
(1.4a)

=⇒ Πst
Dk2

Dk2 + (1 − Γρ)ωn
. (1.4b)

The transition between the two lines will be commented upon below.

Fig. 18.2. Disordered Fermi-liquid: dynamic part of the polarization operator
Π(k, ωn).
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In Eq. (1.4b), we have arrived at the canonical form for a correlation
function of the density of any conserved quantity. This form recovers not
only the static limit when ωn = 0 but, most remarkably, it vanishes in the
limit k → 0 when ωn �= 0. Let us explain why such a vanishing necessarily
occurs for any conserved quantity. The general form of a retarded correlation
function is

χ(k, ω) = i

∫ ∞

0
dt eiωt〈[x(t), x(0)]〉k . (1.5)

In the limit k → 0 the densities x(t) and x(0) transform into the quantities,
X(t) and X(0), that are integrated over the space. In the case when X(t)
is conserved in time, it obviously commutes with X(0) at any moment.
Consequently, χ(k → 0, ω) should vanish at any frequency.

It remains to show how the expression (1.4b) follows from Eq. (1.4a). A
specific cancelation between the static and dynamic parts of Π(k, ωn) leading
to the desired form of Eq. (1.4b) takes place only if the following relation is
fulfilled:

Πst = 2ν (γρ)2
1

(1 − Γρ)
. (1.6)

As is well known, the static part of the polarization operator, Πst = Π(k →
0, ωn = 0), reduces to the thermodynamic quantity ∂n/∂μ, which is related
to the compressibility and is also responsible for linear screening in the elec-
tron gas. Under the approximation of a constant density of states [N.7],
∂n/∂μ is not sensitive to the disorder, if 1/τel 	 εF . The point is that,
generally speaking, μ can be measured with respect to an arbitrary energy,
i.e., it can be shifted by an arbitrary value. For some quantity to be sensi-
tive to a variation of μ, the chemical potential should be tied to a certain
physical energy level which can serve as a reference point. In the discussed
problem, the only special energy-level is the bottom of the conduction band.
It is clear, however, that the information about moderate disorder cannot
extend from εF up to the bottom of the band. Therefore, ∂n/∂μ is not
changed by disorder, unless it is very strong. Next, since the vertex γρ is
also connected with the derivative of the Green function with respect to the
chemical potential, ∂G/∂μ [N.8], the arguments concerning insensitivity of
∂n/∂μ to disorder remain valid for this quantity as well. Thus, we may use
for Πst = ∂n/∂μ and γρ their values known from the Fermi-liquid theory in
the clean limit.

The Fermi-liquid theory connects ∂n/∂μ with the Fermi-liquid parameter
F ρ

0 as follows: ∂n/∂μ = 2ν/(1 + F ρ
0 ), see Chapter 2, Sec. 2 in Ref. 4. Then,

the relation connecting F ρ
0 with Γρ yields Πst = 2ν/(1 + F ρ

0 ) = 2ν(1 −
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Γρ). Furthermore, it is known from identities for derivatives of the Green
functions (see Chapter 2, Sec. 19 in Ref. 4 and Refs. 5 and 6) that γρ =
(1 − Γρ). Thus, the necessary relation holds with, one may say, excessive
strength: Πst/2ν = γρ = (1 − Γρ).

One may rewrite the expression given in Eq. (1.4b) in the more conven-
tional form corresponding to diffusion (see also [N.2]):

Π(k, ωn) = Πst
Dρk

2

Dρk2 + ωn
Dρ =

D

1 − Γρ
. (1.7)

Here, Dρ is the diffusion coefficient of the particle-number density ρ. The
next step is to relate Π(k, ωn) through the continuity equation, ∂ρ/∂t+divj =
0, to the current–current correlation function. Then, with the help of the
Kubo formula, one can obtain the Fermi-liquid expression for the electric
conductivity (e is electron charge):

σcharge

e2
= lim

k→0

ωn

k2
Π(k, ωn) =

=
∂n

∂μ
Dρ = 2νD. (1.8)

The above equation is nothing else but the Einstein relation for the elec-
tric conductivity σ; σ ≡ σcharge. It is worth emphasizing that the prod-
uct (∂n/∂μ)Dρ is equal to σ/e2 rather than (∂n/∂μ)D. This point is
very important in view of contemporary experiment in heterostructures
hosting two-dimensional (2d) electron gas. In these systems the electron
gas is often studied under conditions when ∂n/∂μ becomes negative, i.e.,
1/(1 + F ρ

0 ) = (1 − Γρ) < 0. However, as we have observed, in σ the two
negative renormalizations exactly cancel each other, so that conductivity is
unquestionably positive [N.9].

It is worth mentioning that the arguments presented above about the
insensitivity of ∂n/∂μ as well as γρ to disorder are not restricted to the Fermi-
liquid. Under the approximation of a constant density of states, ∂n/∂μ and
γρ are not changed even if one goes beyond the framework of the disordered
Fermi-liquid theory; we will come back to this point later.

The scheme outlined above can be straightforwardly applied for the anal-
ysis of the spin-density correlation function.2,7 We will now rely on the
arguments that lead us to the conclusion that the static amplitude Γk is
not affected by moderately strong disorder. Actually, these arguments carry
over to any static Fermi-liquid parameter. In the discussed case, the external
vertices contain a spin operator σx/2 that corresponds to a probing mag-
netic field directed along x-axis. These vertices are renormalized by the e–e
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Fig. 18.3. Disordered Fermi-liquid: dynamic part of the spin-density correlation
function χs(k, ωn).

interactions, and the corresponding renormalization factor is denoted below
as γσ, see Fig. 18.3. In spite of this modification, all formulas are similar
to those obtained in the case of Π(k, ωn). The only needed change is to
substitute in the above expressions Γρ by Γσ. The spin susceptibility χs de-
termines the static limit of the spin-density correlation function χxx

s (k, ωn),
just like ∂n/∂μ determines the static limit of the polarization operator. The
spin susceptibility χs is modified by the Stoner factor equal to (1− Γσ). As
a result, χs = χxx

s (k → 0, ωn = 0) = χ0
s(1 − Γσ) = (gμB/2)22ν(1 − Γσ).

The vertex γσ is equal to the same renormalization factor, γσ = (1 − Γσ).
As a result, the sum of the static and dynamic parts acquires the structure
already familiar from the calculation of Π(k, ωn):

χxx
s (k, ω) = χ0

s(1 − Γσ)
Dk2

Dk2 + (1 − Γσ) ωn

= χs
Dσk2

ωn + Dσk2
, (1.9)

where Dσ = D/(1−Γσ). Note that Γσ is connected with the standard Fermi-
liquid parameter F σ

0 as follows: Γσ = F σ
0 /(1 + F σ

0 ). Usually F σ
0 is negative.

Then, (1 − Γσ) describes the Stoner enhancement of the spin susceptibility
due to the e–e interaction, as well as the suppression of the spin-diffusion
coefficient Dσ = D/(1 − Γσ).

Since we discuss the case when spin is conserved, we may now derive the
Einstein relation for the spin-density current by following the route outlined
previously for the electric conductivity, see Eq. (1.8):

σspin

(μB/2)2
=

1
(gμB/2)2

lim
k→0

ωn

k2
χxx

s (k, ωn)

= 2ν(1 − Γσ)Dσ = 2νD. (1.10)

Taken together, Eqs. (1.8) and (1.10) reflect the fact that both the charge
and the spin are carried by the same particles.

Conclusion: The theory of the disordered Fermi-liquid focuses on diffusing
electron–hole pairs. In the diffusion regime, i.e., for temperatures (frequen-
cies) less than the elastic scattering rate, T � 1/τel, diffusion modes and
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not quasi-particles are the low lying propagating modes. The conservation
of particle-number (i.e., charge) and the conservation of spin constrains the
possible form of the corresponding correlation functions. Besides ν and D,
the theory contains two dimensionless parameters, Γρ and Γσ, which describe
Fermi-liquid renormalizations in the charge- and spin-density channels, re-
spectively.

2. Beyond Fermi-Liquid Theory: Non-Linear Sigma Model
and Renormalized Fermi-Liquid Theory

Let us explain why the theory of the disordered Fermi-liquid discussed
above is incomplete. Obviously, the expression for the diffusion coefficient,
D = v2

F τel/d, has to be modified by the interference (weak localization) cor-
rections, which in d = 2 are logarithmic.8,9 This, by itself, does not affect
the described above structure of the Fermi-liquid, and could easily be re-
paired. However, there is a number of other effects, which demand certain
care. Up to now, averaging over disorder both in the polarization opera-
tor and the spin-density correlation function has been performed in a very
particular fashion. Namely, in the ladders given in Figs. 18.2 and 18.3, the
interaction amplitudes and disorder-averaged propagators appear in sepa-
rate blocks. In fact, matrix elements determining amplitudes of the e–e
interaction are seriously modified by disorder, especially for states that are
close in energy. Two examples showing how it happens after averaging over
disorder are presented in Fig. 18.4. One can see from these examples that
ladder-diagram propagators describing diffusion of electron–hole pairs play
a special role in modifying (renormalizing) the interaction amplitudes. Such
propagators, see Fig. 18.5, contain a diffusion pole and are, therefore, called
diffusion modes or just “diffusons”. Technically, diffusion modes participat-
ing in the processes similar to those shown in Fig. 18.4 have to be integrated
over their momentum q within the interval determined by 1/τel > Dq2 � T .

� �����������
� �����������
� �����������
� �����������
� �����������
� �����������
� � � � � � �

Γσ

� �����������
� �����������
� �����������
� �����������
� �����������
� �����������
� � � � � � �

Γσ

p+k p+k+q p'+k

p'p-qp

p+k p'+k

p-q

p

p'-q

p'

Fig. 18.4. Examples of the e–e interaction amplitudes modified by disorder.
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Fig. 18.5. Diffuson: disorder-averaged propagator of an electron-hole pair. These
propagators capture the diffusive evolution of the quasiparticles at large times and
length scales.

The scattering rate 1/τel acts as a high-energy cutoff because only states
with energy/frequency less than 1/τel are relevant in the diffusive regime.
On the other hand, temperature always enters as a low-energy cutoff in the
effects related to the e–e interactions, because it determines smearing of
the energy distribution of electrons [N.10]. (We emphasize energy, because
momentum-smearing of single-particle states is already irrelevant when we
use description in terms of diffusons.) As a result of the outlined integra-
tions over the momenta [N.11], amplitudes of the e–e interaction acquire
corrections that are non-analytic in temperature.1,2,7

As is well known,10,11 the electric conductivity and, correspondingly, the
diffusion constant D also acquire corrections (that are non-analytic in tem-
perature) due to the combined action of the e–e interaction and disorder in
the diffusive regime [N.12]. Two diagrams illustrating the origin of the effect
are shown in Fig. 18.6.

In addition, there are corrections to conductivity due to the interference
processes determined by “cooperon” modes. Diagrammatically, cooperons
are described by a disorder-averaged particle–particle propagator with small
total momentum of the scattering particles, see Fig. 18.7. These propagators
also contain a diffusion pole [N.13]. In d = 2, all corrections both to the elec-
tric conductivity and interaction amplitudes are logarithmically divergent in

Γρ Γσ

Fig. 18.6. Diagrams illustrating the origin of corrections to the diffusion constant
D due to combined action of the e–e interactions and disorder.
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Fig. 18.7. Cooperon: disorder-averaged propagator of a particle–particle pair with
small total momentum. The cooperons capture the effects of quantum interference
which lead to the weak-localization corrections.

temperature, i.e., ∝ ln 1/Tτel [N.14]. In higher dimensions, the problem be-
comes logarithmic near the metal–insulator transition, and it still contains
several running parameters. The corrections divergent in temperature signal
the breakdown of perturbation theory, and the need for a resummation of
the divergent terms.

We reached an important point: Diffusing electrons dwell long in each
other’s vicinity, becoming more correlated at low enough energies. As a
result, the e–e scattering amplitudes Γρ and Γσ characterizing the interaction
of diffusion modes acquire corrections, which are the more significant the
stronger disorder is. Conversely, resistivity — which is a measure of the
effective strength of disorder — in its turn also gets corrections which depend
on the value of the interaction amplitudes. We see that one needs a scheme
that can account for both effects in a self-consistent fashion. Such a scheme
is the renormalization group (RG) analysis of the problem. The RG-theory
applied to the dirty Fermi-liquid system is able to capture scale dependences
originating from the interplay of disorder and interactions to all orders in
the interaction amplitudes, making it a highly effective analytical tool for
understanding the physics of the metal–insulator transition in disordered
electron systems. Pedagogical reviews of the RG-theory can be found in
Refs. 3, 12–14. For more recent advances, see Refs. 15 and 16.

The RG-analysis of the disordered electron liquid is best described by the
matrix non-linear sigma model (NLSM).17–20 In matrix terms, the disorder-
averaged N -replica partition function of the interacting electrons reads as
follows1–3:

〈ZN 〉 =
∫

dQ e−S[Q] , (2.1)

S[Q] =
π

8

∫
ddr νTr [D(∇Q̂)2 − 4z(ε̂Q̂)

− π

16

∫
ddr ν{Q̂(Γ̂0

ρ + Γ̂ρ)Q̂ + Q̂Γ̂σQ̂ + Q̂Γ̂cQ̂}. (2.2)
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Here, the functional integration has to be performed over an auxiliary ma-
trix field Q̂ within the manifold limited by the constraints: Q̂2 = 1, Q̂ = Q̂†,
and Tr Q̂ = 0. These constraints make the problem non-linear as well as
very non-trivial. The components of Q̂ are defined as Qij,αβ

n1,n2, where n1,
n2 are the Matsubara fermionic energy indices with εn = (2n + 1)πT ; i, j

are the replica indices, and α, β include the spin and quaternion indices.
The quaternion indices are needed to incorporate both the diffuson and
cooperon modes. The trace is taken over all these variables. Eventually, the
replica limit, N → 0, should be performed [N.15]. The frequency matrix
ε̂ = εnδnmδijδαβ . All the interaction terms are restricted by the energy and
momentum conservation laws. The interaction terms are written symbol-
ically omitting such important details as the Pauli matrices acting in the
spaces of spin and quaternion degrees of freedoms; the description of the
matrix structure can be found in Refs. 2 and 3. Note that the ρ-term is
split into two pieces: The part that can be disconnected by cutting a single
line of the Coulomb interaction is denoted as Γ̂0

ρ, while the term Γ̂ρ incor-
porates the irreducible part; see previous discussion in connection with the
polarization operator. The additional term Γ̂c describes the interaction in
the Cooper channel. The interaction amplitudes Γα=ρ,σ,c are dimensionless,
but elements of the forms (Q̂Γ̂aQ̂) contain a factor of 2πT which appears as
a result of the discrete Fourier transform from the Matsubara time to fre-
quency [N.16]. Last point to be commented is the parameter z introduced in
front of the frequency matrix in the action S[Q]. For free electrons, z = 1;
also in the course of the Fermi-liquid analysis of a disordered electron liquid
we have not met it so far. As we shall see soon, this parameter is abso-
lutely needed to make the RG-procedure compatible with the charge- and
spin-conservation laws. Moreover, since z determines the relative scaling
of the frequency with respect to the length scale,21 it plays a central role
for both kinetic and thermodynamic quantities in the critical region of the
metal–insulator transition.

The equilibrium (i.e., saddle-point) value of the matrix Q̂, usually de-
noted as Λ̂, is fixed by the frequency term (ε̂Q̂) in the above action;
Λij,αβ

n,m = signnδnmδijδαβ . It is clear that for small εn the strength of the
fixation of Q̂ along the equilibrium position is weak and, correspondingly,
fluctuations are strong [N.17]. The fluctuations of the Q-field are nothing else
but diffusons and cooperons. Their propagators, D(k, ωn) = 1/(Dk2 + zωn),
can be obtained by expansion of the first two terms in S[Q] up to quadratic
order in δQ̂ = (Q̂ − Λ̂). These two terms yield a diffusion-like singularity
in the propagators D(k, ωn) [N.18]. Furthermore, with the use of quadratic
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expansion of the Γ̂-terms in δQ̂, one can reproduce the scattering amplitudes
Γρ,σ(k, ω) given by Eq. (1.3) and illustrated in Fig. 18.1; see [N.19].

The functional S[Q] describes disordered interacting electrons with en-
ergies less than 1/τel. The coefficients in the action S[Q] incorporate the
Fermi-liquid renormalizations of the clean liquid as the input parameters.
One may look on this from the RG point of view: “integrating out” the
high-energy states till the energy interval ∼ 1/τel around the Fermi-level
leads to the Fermi-liquid renormalizations. The next step is integrating out
the interval starting from 1/τel down to temperature, which should result in
the “true” RG-descriptions.

One may conclude that the Fermi-liquid description of the disordered
electron liquid is given by the quadratic expansion of the action S[Q] in
deviations of Q̂ from its equilibrium value. As to the renormalization cor-
rections, they are determined by non-quadratic (i.e., anharmonic) terms in
the action. The disorder-averaged interaction amplitudes, the diffusion coef-
ficient D as well as the parameter z, are all scale-dependent at low energies
� 1/τel. Note that splitting into independent channels occurs only on the
level of the quadratic form of the action. During the course of the RG-
procedure different channels mix [N.20].

The parameter z gives the frequency renormalization in the propagators
of the diffusion and cooperon modes. To some extent, z is similar to (1 −
∂Σ/∂ε) in the single-particle Green function G(iε,p). There is an important
difference, however. According to the Migdal theorem, the combination (1−
∂Σ/∂ε)−1 = a is proportional to the jump of the occupation numbers n(p) at
the Fermi-surface; see Chapter 2, Sec. 10 in Ref. 4. This fact constrains (1−
∂Σ/∂ε) to be larger than 1. On the contrary, the frequency renormalization
factor in the two-particle propagators is not constrained, and z may be both
smaller and larger than 1. It is known that z < 1 in systems with magnetic
impurities,21 in a spin-polarized system,15 or in the presence of the spin-
orbit scattering.22 Only in the generic case of a purely potential impurity
scattering when the spin degrees of freedom are not constrained, z > 1.

With the frequency renormalization parameter z being included, the
action S[Q] preserves its form in the course of RG-transformations. We,
thereby, may come back to the discussion of a density-correlation function
of a conserved quantity. The analysis includes a few steps: one has to find
(i) the RG-modified static part of the correlation function, (ii) the renormal-
ized triangle vertex, and then (iii) with the use of the quadratic expansion of
already renormalized action S[Q] to find the dynamic part of the correlation
function. Performing all these steps, one will get the expressions similar to
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those given in Eqs. (1.4b) and (1.9):

χa(k, ω) = χstatic
a

Dk2

Dk2 + (z − Γa) ωn

= χstatic
a

Dak
2

ωn + Dak2
, α = ρ, σ. (2.3)

Here, the coefficients of diffusion Da = D/(z − Γa). For χa(k, ω) to acquire
this form, a relation similar to the discussed above in Eq. (1.6) has to be
fulfilled for the renormalized values of χstatic

a , γa and (z − Γa):

χstatic
a

χ0
a

=
(γa)2

(z − Γa)
. (2.4)

Let us consider how it works for the polarization operator and spin-
density correlation function. As we have already explained, the static limit
of the polarization operator as well as γρ are not changed by disorder. There-
fore, the amplitude Γρ and the parameter z are renormalized in such a way
that

z − Γρ =
1

1 + F0
. (2.5)

This, by the way, implies that the relation σ/e2 = 2νD, see Eq. (1.8), still
holds even in the course of the renormalizations. In the case of the spin-
density correlation function, the RG-calculation yields2,7:

χstatic
σ

χ0
σ

= γσ = z − Γσ. (2.6)

One observes that the condition of Eq. (2.4) is indeed fulfilled, although these
relations carry more information than would be needed for one relation. One
may notice, however, that together these relations make the charge and spin
conductivities equal to each other:

σspin

(μB/2)2
= 2ν(z − Γσ)Dσ = 2νD . (2.7)

As we have already mentioned, this is a manifestation of the fact that charge
and spin are transported by the same carriers.

Finally, let us turn back to the amplitude Γ0
ρ which carries information

about the screened Coulomb interaction. In view of the singular behavior of
the Fourier component VC(k) at small momenta, this part of the interaction
is equal to

Γ0
ρ = 2ν

(γρ)2

Πst
=

1
1 + F0

. (2.8)
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Γρ  =0 + +  ...
γρ γρ γρ γρ

Fig. 18.8. The screened Coulomb interaction. The triangular vertices γρ are at-
tached to the ending points of the interaction line.

Here (γρ)2 originates from attaching triangular vertices γρ to the ending
points of the screened Coulomb interaction, see Fig. 18.8. Now, Eq. (2.5)
can be rewritten as

z = Γ0
ρ + Γρ. (2.9)

Thus, in S[Q] the interaction amplitude in the density-channel can be substi-
tuted by z.1,21 This implies that for unitary class systems where only fluctu-
ations in the density channel are important (e.g., when magnetic scattering
is present or in the case of spin-polarized electrons) the theory, apart from
D, contains only one scaling parameter [N.21]. In other words, the theory of
the electron gas interacting via the Coulomb interaction displays a high de-
gree of universality. Pruisken and his coauthors connected this universality
to a global symmetry of the problem which they called F-invariance23 and
which is intimately related to gauge invariance.

Now that the structure of the theory has been established, it is useful to
regroup its parameters by combining the frequency renormalization parame-
ter z together with ν.2 Then, z acquires the physical meaning of a parameter
renormalizing the density of states of the diffusion modes, while DQ = D/z

can be interpreted as the diffusion coefficient of the diffusion-mode “quasi-
particles”:

ν =⇒ zν, D =⇒ DQ = D/z. (2.10)

It is natural to link zν to the coefficient determining the specific heat cV .24,25

Furthermore, the Einstein relation, the renormalized susceptibilities, as well
as the diffusion coefficients describing the evolution of the charge- and spin-
densities at large scales, all acquire the form of the Fermi-liquid theory albeit
with the renormalized coefficients equal to (1 − Γa/z):

σ/e2 = 2(νz)DQ; (2.11)

Da =
DQ

(1 − Γa/z)
, α = ρ, σ; (2.12)

χstatic
a = zν(1 − Γa/z)(χ0

a/ν), CV /T = zν. (2.13)
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Here, χ0
a/ν are factors that does not depend on the e–e interaction and ν

[N.22]. Finally, notice that as a result of regrouping the interaction ampli-
tudes appear always as Γa/z.2

Conclusion: The effective model that adequately describes the problem
of electrons diffusing in the field of impurities is the NLSM with interactions.
This model provides a compact but comprehensive description for disordered
interacting electrons that is fully compatible with the constraints imposed
by conservation laws. Parameters characterizing various properties of the
disordered electron liquid preserve the structure of the Fermi-liquid theory
although with renormalized coefficients determined by the RG-procedure.

3. Scaling Theory of the Metal–Insulator Transition in
d = 2 + ε; Role of the Parameter z

In this section, we show how the scaling parameters D, Γσ, and z, together
describe the transport and thermodynamic properties of the disordered elec-
tron liquid near the metal–insulator transition (MIT).

Let us start with the key points of the RG-analysis in d = 2 + ε. As we
have already mentioned, diffusion modes participating in the renormaliza-
tion procedure have to be integrated over momenta, see Figs. 18.4 and 18.6
as examples. Each momentum integration involving diffusion propagators
generates a factor 1/DQ which eventually gives rise to the dimensionless
parameter

ρ =
rd(κ)

2π2�/e2
∝ e2

�σ
κd−2. (3.1)

Here, ρ is equal to the resistance rd of a d-dimensional cube of side length
∼ 2π/κ measured in units of 2π2

�/e2 [N.23]; κ is the momentum cutoff which
decreases during the renormalization [N.24].

It follows from the structure of the action S[Q], when written with the
help of Eqs. (2.9) and (2.10), that the RG-procedure can be performed in
terms of the dimensionless resistance ρ and the reduced interaction ampli-
tudes

γ2 = −Γσ/z = Γ2/z, (3.2)

γc = Γc/z. (3.3)

With these variables, the set of the RG equations takes the general form2,3:

d ln ρ/dy = − ε

2
+ ρβρ(ρ; γ2, γc; ε), (3.4a)
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dγ2/dy = ρβγ2(ρ; γ2, γc; ε), (3.4b)

and also

dγc/dy = −γ2
c + ρβγc(ρ; γ2, γc; ε). (3.5)

The parameter z is described by an additional equation:

d ln z/dy = ρβz(ρ; γ2, γc; ε). (3.6)

Observe that βz , as well as βρ and βγ2,γc are all independent of z. In the above
set of RG equations, the logarithmic variable y = ln 1/[max(Dκ2/z, ωn)τel]
has been used. This choice of the logarithmic variable is convenient because
it allows us to take T as a natural lower cutoff; the upper cutoff is 1/τel. The
explicit factor ε in the equation determining ρ originates from κd−2 entering
the definition of the RG-charge ρ.

The β-functions in the above equations are multiplied by a factor ρ to
emphasize that the sought-after corrections appear as a result of disorder
[N.25]. The complete form of the β-functions is unknown. The general
approach, however, is to expand the functions in a power series in ρ as
β(ρ; γ2,c) = β1(γ2, γc) + ρβ2(γ2, γc) + ..., such that for each power of ρ the
full dependence on γ2 and γc is retained. This is possible, in principle,
because the maximal number of allowed interaction amplitudes (extended
by ladders) is limited by the number of momentum integrations involving
the diffusive propagators. Since each integration gives a factor of 1/D ∼ ρ,
for a given order in ρ the number of (extended) interaction vertices is finite
[N.26].

For a repulsive interaction in the Cooper channel, the amplitude γc scales
rapidly to a ρ-dependent fixed point, which is determined by the competition
of two terms in Eq. (3.5). In the following, we replace γc in the β-functions
describing ρ, γ2 and z by its fixed-point value γc(ρ). As a result, the RG-
evolution near the MIT can be described by only Eqs. (3.4a) and (3.4b)
together with Eq. (3.6) for z.

To illustrate the scheme of finding the temperature or frequency behavior
of the conductivity in the critical region of the MIT,21 let us discuss an
electron system in the presence of magnetic impurities. Then, Cooperons and
fluctuations of the electron spin density are not effective because of a strong
spin scattering. In this case, the parameter ρ representing the resistance of
a d-dimensional cubic sample is described by a separate equation:

d ln ρ/dy = − ε

2
+ ρβρ(ρ; ε). (3.7)

In the discussed case, corrections appearing as a result of the interplay of
the e–e interaction and disorder10,11 lead to an increase of the resistance
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as temperature decreases (βρ > 0, thus favoring localization). Therefore,
the geometric factor ε competes with these corrections for d > 2. As a
result, there is an unstable fixed point, ρ = ρc, which determines the critical
behavior of the conductivity in the critical region of the MIT.

Then, as it follows from Eq. (3.1), in the vicinity of the transition,

σ(κ)/e2 ∝ κd−2. (3.8)

In the 3d case, for example, on the metallic side of the transition the critical
behavior develops when κ � σ(T = 0)/e2. At non-zero temperature, in the
critical regime of the MIT the process of renormalization ceases at a scale
when

D(κ)κ2/z(κ) ∼ T =⇒
using Eq. (2.11)

κd/ν ∼ zT. (3.9)

For the electric conductivity measured at external frequency ω � T , the
renormalization is cut off by ω rather than T . The above relations are a
consequence of (i) the form of the diffusion propagator D(k, ωn) = 1/(Dk2 +
zωn), and (ii) the definition of the RG-parameter g which exhibits a fixed
point. In addition, these relations take into account the result discussed in
the previous section that (iii) all the renormalizations in between σ and D

are canceled out: σ/e2 = 2νD.
Thus, in order to find the temperature or frequency behavior of σ at the

MIT, one has to connect the momentum and energy scales in the critical
region, κ ∼ (z max[ω, T ])1/d. However, z itself is a scaling parameter, see
Eq. (3.6). Therefore, one needs to know the critical behavior of the parame-
ter z at the transition, which is determined by the value of ρβz at the critical
point:

σ(ω, T ) ∼ (z max[ω, T ])
d−2

d ∼ (max[ω, T ])
d−2

d
(1+˜ζ), (3.10)

ζ̃ = −(ρβz)critical point . (3.11)

For free electrons z is not renormalized, and at zero temperature σ(ω) ∼
ω1/3 for d = 3.26 The e–e interaction modifies this critical behavior of the
conductivity through the critical exponent ζ̃. If ω � T , the renormalization
procedure is cut off by the temperature

σ(T ) ∼ (zT )
d−2

d ∼ T
d−2

d
(1+˜ζ). (3.12)

The scaling behavior described above suggests that the interplay between
frequency and temperature can be described by a single function

σ(T, ω)critical = T af(�ω/kbT ), (3.13)
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where f(x) → const when x → 0, and f(x) ∝ xa when x → ∞, with
a = d−2

d (1 + ζ̃). This is a typical behavior near a quantum phase transition
for which the MIT is, perhaps, a primary example.

To get an idea about the value of the critical exponent ζ̃, let us find it
in the lowest order in ε. The equation describing resistance in the case of
magnetic impurities in the lowest orders in ρ and ε is

d ln t/dy = − ε

2
+ ρ, ρc =

ε

2
. (3.14)

Furthermore,

d ln z/dy = −1
2
ρ. (3.15)

At d = 3, this estimate yields ζ̃ = 1/4 for the MIT in the presence of spin
scattering and correspondingly, for ε = 1, one gets a = 1

3 (1 + ζ̃) ≈ 0.4.
Although we used for the purpose of illustration the case of magnetic

scattering (a system where only fluctuations in the density channel are im-
portant), the conclusion of the above discussion is quite general: the fre-
quency or temperature behavior of the conductivity in the critical region
is determined by the right-hand side of Eq. (3.6) at the fixed point of the
transition [N27]. Notice that, although the ε-expansion has been applied
to estimate the value of ζ̃, the form of the combination a = d−2

d (1 + ζ̃) is
determined by the general structure of the theory only and does not rely on
the ε-expansion [N28].

Experimentally, the dependence of σ on the temperature in the critical
region can be determined with a limited accuracy only [N29]. In Ref. 27,
it was shown that in a persistent photoconductor where the carrier concen-
tration can be controlled very neatly, σ(T ) ∼ T 1/2 at the transition, i.e.,
a = 1/2; this corresponds to ζ̃ = 1/2. The direct measurements of σ(ω), are
unfortunately, very rare. In Refs. 28 and 29, the temperature and frequency
dependences were studied simultaneously in amorphous niobium-silicon al-
loys (Nb:Si) with compositions near the MIT. The measurements observed
a one-to-one correspondence between the T - and ω-dependent conductivity
thus confirming the above picture of the MIT as a quantum phase transi-
tion. The critical exponent a has also been found to be equal to 1/2 for
this system, i.e., σ(T, ω)critical = T 1/2f(�ω/kbT ), see Eq. (3.13). The same
scaling behavior should hold for the whole universality class which the dis-
cussed system represents. In measurements on the magnetic-field-induced
MIT in GaAs and InSb semiconductors (representing a different universality
class compared to the discussed measurements on Nb:Si) the critical behav-
ior σ(T ) ∼ T 1/3 has been observed.30 It may be worth mentioning that for
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this universality class ζ̃ is indeed equal to zero in the lowest order in the
ε-expansion.31

Finally, let us note another important consequence of the fact that at
the critical point of the MIT (determined by the fixed point of the set of
Eqs. (3.4) and (3.5)) the only scaling parameter which continues to evolve
is z. Since this parameter is directly related to the renormalization of the
effective density of states of the diffusion modes, it follows immediately from
Eq. (2.13) that the critical temperature dependence of thermodynamic quan-
tities at the MIT is also described by the same critical exponent ζ̃; see
Eq. (3.11) for the definition of ζ̃.

The content of this section may look like a simple dimensional analysis.
In fact, it heavily relies on the structure of the theory based on the NLSM
with the interaction terms, which was established in the previous section. As
it was pointed out there, this low-energy field theory adequately describes
the interacting electrons in the diffusive regime. In this context, the pa-
rameter z plays a special role. Since this parameter is responsible for the
frequency renormalization, it is of particular importance in connection with
the conservation laws of the particle-number and spin. Furthermore the law
of number conservation allows to obtain the Einstein relation for the elec-
tron liquid in the appropriate form. Only with the information about the
structure of the theory at hand, the critical behavior near the MIT can be
found by a straightforward dimensional analysis.

Conclusion: The metal–insulator transition in a system of diffusing
electrons is an example of a quantum phase transition32 with a temperature-
frequency scaling controlled by the parameter z. Precisely the same
parameter describes the scaling behavior of both the conductivity and the
thermodynamics in the critical region of the transition. The structure of the
theory is very general and not related to the ε-expansion which can be used
for the calculation of ζ̃.

4. Tunneling Density of States

The tunneling density of states (TDOS) or, as it is also called, the single-
particle density of states, ν(ε), exhibits a rather pronounced critical behavior
at the MIT.33 This quantity can be obtained by measuring the differen-
tial conductance Gj(V ) of a tunneling junction at a finite voltage bias V :
Gj(V ) ∝ ν(ε = V ). In the early semi-phenomenological scaling theory of the
MIT by McMillan,34 the TDOS has been treated as a parameter which en-
ters into the relation connecting the length and energy (or frequency) scales
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and gives rise to a critical exponent which has been replace of ζ̃ in the full
microscopic theory. As we have already discussed, the parameter which con-
nects these scales is z rather than the TDOS, see Eq. (3.9). Moreover, the
TDOS stands actually outside the RG-scheme. Let us explain why. The
TDOS is defined as

ν(ε) = − 1
π

Im
∫

GR(ε,p)
dp

(2π)d
. (4.1)

As such, this quantity is not gauge invariant. It can be changed by a time-
dependent gauge transformation. Thereby, it cannot enter the RG-scheme
which operates only with truly gauge-invariant quantities. In the case of the
TDOS, it is the external electrode with respect to which the measurement
of the tunneling current is performed, that makes the TDOS a physically
meaningful quantity [N30].

The combined effect of Coulomb interaction and disorder leads to a strong
suppression of the TDOS. This observation allowed to explain the so-called
zero-bias anomaly in the tunneling spectra of disordered systems.10,35 Com-
pared to other effects related to the interplay of the e–e interaction and
disorder, corrections to the TDOS are the strongest. In particular, in two-
dimensions the correction obtained in the lowest order in ρ appears to be
log-squared rather than just logarithmic11,36:

ν(ε) = ν[1 − ρ

4
ln(1/|ε|τel) ln(τelω

2
0/|ε|)]. (4.2)

Here ω0 = Dκ2
scr, while κscr is the inverse of Thomas–Fermi screening radius.

To go beyond the perturbative correction, it is useful to apply the Q̂-
matrix technique. With this technique, ν(ε) can be expressed as an averaged
product of two matrices:

ν(ε) = ν
〈
Λ̂Q̂

〉
εε

. (4.3)

Thus, by measuring the TDOS, one may study how an ε-component of the
matrix Q̂ fluctuates around its equilibrium position. Now compare with the
physics of phonons: the quantity which measures the fluctuations of ions
with respect to their equilibrium position is the Debye–Waller factor. It
has been noted already in the early studies,1,31 that the calculation of ν(ε)
is indeed very similar to the calculation of the Debye–Waller factor, and
can be reduced to a Gaussian integration. [By means of the Q̂-technique,
the right-hand-side of Eq. (4.3) can be expressed as ν(ε) = ν 〈exp W 〉εε,
where W is a matrix field that describes diffusion modes in the presence of
the e–e interactions.] In fact, the formal similarity with the Debye–Waller
factor reflects the physical essence of the TDOS. Measurement of a tunneling
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current is a kind of “Mössbauer-type” experiment which determines the effect
of the zero-point fluctuations of the electromagnetic field on the probability
of tunneling.

As it was first pointed out in Refs. 1 and 31, it follows from the structure of
the discussed quantity that the perturbative correction to the TDOS should
be exponentiated [N31]:

ν(ε) = ν exp[−ρ

4
ln(1/|ε|τel) ln(τelω

2
0/|ε|)]. (4.4)

Examples of calculations of the critical exponent of the TDOS at the MIT
using the ε-expansion are given in Ref. 31. The presence of the double-
logarithmic corrections to ν(ε) when d = 2 leads to the fact that the ε-
expansion of the critical exponent of the TDOS starts from a constant. The
reason is that at d = 2+ε in the exponent of Eq. (4.4), the factor 1/ε replaces
one of the two logs and cancels a factor ε coming the charge ρc ∝ ε. It worth
noting that the situation discussed above is specific for the long-range nature
of the Coulomb interaction. In a model description when the dynamically
screened Coulomb interaction VC(k, ωn) is replaced by a constant, double-
logarithmic corrections do not arise.

Interestingly, the log-squared corrections cancel out when calculating
any other physical quantities, except the TDOS. This occurs for the fol-
lowing reason. The discussed corrections accumulate from the momen-
tum integration over the region of momenta that are much smaller than
those typical for diffusion, k 	 (ωn/D)1/2. Therefore, this integration
does not involve the diffusion propagators but only the Coulomb interac-
tion VC(k, ωn) [N32]. As a result of such an integration, the dynamically
screened Coulomb interaction starts to depend effectively only on the fre-
quency. However, as it was pointed out in Refs. 37, 3 and 38, any interaction
of this kind, i.e., a purely time-dependent e–e interaction, can be completely
eliminated by means of a time-dependent gauge transformation which can
be performed exactly. [By a standard procedure, the four-fermion term
ψ†(τ)ψ(τ)Vee(τ − τ ′)ψ†(τ ′)ψ(τ ′) can be decoupled by a time-dependent po-
tential acting on the fermions, ϕ(τ)ψ†(τ)ψ(τ), which subsequently can be
integrated out.] This is the reason why the corrections originating from the
unscreened singularity of the Coulomb interaction at very small momenta
cannot manifest themselves in transport or thermodynamic quantities: They
cannot appear in gauge-invariant quantities. In fact, the physics of this ob-
servation is very close to the arguments presented in Sec. 1 about the in-
sensitivity of the corrections induced by disorder and the e–e interactions to
the variation of the chemical potential because of the absence of a reference
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point. The only difference is that now the variation of the potential is time-
dependent.

Conclusion: The Coulomb interaction, VC(k, ωn), with a momentum
transfer much smaller than those typical for diffusion, can contribute only
to a quantity for which the condition of measurement makes it possible to
detect the effect of the long-range time-dependent fluctuations of the elec-
tric potential. An example of such a quantity is the TDOS. By fabricating
a counter-electrode of the tunneling junction, one creates a reference point
which allows to study the effects of time-dependent long-range fluctuations
of the electric potential which do not contribute to other physical quantities
[N33].

5. The Anderson Transition in the Presence of Interactions
in a Two-Dimensional System

Here we will apply the two-parameter scaling theory, in which ρ and γ2

are the flowing parameters, for the discussion of the 2d-MIT. We use the
data obtained in Si-MOSFETs for comparison with the theory. The MIT
in a 2d electron gas, which does not occur for free electrons,8 has been
observed experimentally in dilute electron systems.39,40 Obviously, this fact
indicates that the e–e interactions are of crucial importance. The unexpected
discovery of the 2d-MIT generated renewed interest in disordered electron
systems with interactions (see the review articles41–43 and references therein).

In Fig. 18.9, the data of Pudalov et al.44 is presented which demon-
strates clearly the existence of the MIT in 2d; different curves here corre-
spond to different electron densities. In the metallic phase the resistance
ρ(T ) drops noticeably as the temperature is lowered. [This drop is sup-
pressed when a relatively weak in-plane magnetic field is applied.45 The
sensitivity to an in-plane magnetic field highlights the importance of the
spin degrees of freedom for the MIT. Therefore, the spin related modes
should be one of the ingredients of the theory of the transition.] A highly
non-trivial feature revealed by the data shown in Fig. 18.9, is the non-
monotonicity of ρ(T ) on the metallic side of the transition. This non-
monotonic behavior is of the principle importance, because it points towards
a competition between different mechanisms determining resistance [N34].
In the theory of the MIT developed by the author together with Alex
Punnoose,16,46 there is a competition between the charge-density diffusion
modes and cooperons, on the one hand, and the fluctuations of the spin-
(and valley-) degrees of freedom, on the other hand. The former favor
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Fig. 18.9. Resistivity of a high mobility Si-MOSFET sample for various densities
as a function of temperature (adapted from Ref. 44). The data clearly demonstrates
the existence of the metal-insulator transition. The electron densities are defined
in units of 1011 cm−2. Note that resistance is measured in units of 2π2

�/e2. The
three non-monotonous curves below the transition (shown in red color and denoted
as C*) are fitted in Fig. 18.10. Reprinted (Fig. 1) with permission from Phys. Rev.
Lett. 88, 016802 (2002). c© American Physical Society.

localization, while the latter act against it, thus stabilizing the metallic
state.

The critical resistance at which the transition occurs in high-mobility Si-
MOSFETs has been shown experimentally to be universal,42 suggesting the
applicability of the RG-description of the MIT of the kind discussed above
in Sec. 3 [N35]. But can we use the disordered Fermi-liquid (or at least the
NLSM with interactions) as a starting platform in a system with rs of the
order of 10? Measurements of the Shubnikov-de Haas oscillations and the
Hall coefficient in Si-MOSFETS observe no anomalies in the properties char-
acterizing the electron liquid on the metallic side of the MIT (at least, when
applied magnetic fields are not too high). The Fermi-liquid renormalizations
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extracted as a result of these measurements were significant but not giant
[N36]. We, therefore, have all reasons to apply the approach based on the
RG-analysis of the NLSM discussed above for the analysis of the MIT in
this material. Generally speaking, we believe that the NLSM description
can be applicable even without the prerequisites of the Fermi-liquid. This is
because the diffusion modes are more robust than the single-particle excita-
tions and, hence, the NLSM with interactions, as a minimal model, can be
valid even in the absence of the Fermi-liquid background.

For the discussion of Si-MOSFETs, the only necessary modification is due
to the fact that Si-MOSFET is a multi-valley system. The conduction band
of an n-(001) silicon inversion layer has two almost degenerate valleys. In
the following we consider the number of equivalent valleys to be equal to nv.
Because inter-valley scattering requires a large change of the momentum,
we assume that the interactions couple electrons in different valleys but do
not mix them. This implies that inter-valley scattering processes, including
those due to the disorder, are neglected. This assumption is appropriate for
samples with high-mobility [N37]. In this limit, the RG equations describing
the evolution of the resistance and the scattering amplitude γ2 in 2d have
the form46:

d ln ρ

dy
= ρ

[
nv + 1 − (4n2

v − 1)Φ(γ2)
]
, (5.1a)

dγ2

dy
= ρ

(1 + γ2)2

2
. (5.1b)

The equations above are obtained in the lowest order in ρ (the one-loop or-
der), but they incorporate the full dependence on the e–e amplitudes. Here,
the amplitude γ2 acts inside spin-valley “triplet channels.” (The definition
of γ2 is given in Eq. (3.2); note that for repulsive interactions γ2 > 0.) In
the first equation, Φ(γ2) = 1+γ2

γ2
ln(1 + γ2) − 1; the factor (4n2

v − 1) cor-
responds to the number of spin-valley “triplet” channels, while the factor
nv corresponds to the weak-localization (cooperon) corrections. The fac-
tor of one entering the square brackets in Eq. (5.1a) is the contribution of
the long-ranged Coulomb singlet-amplitude (after dynamic screening) and
is, therefore, universal. Furthermore, it should be emphasized that the fac-
tor of one appearing in Eq. (5.1b) for γ2 also originates from the Coulomb
singlet-amplitude combined with scattering induced by disorder, see [N20].
Consequently, setting the initial value of γ2 to zero does not imply the ab-
sence of interactions.

The following salient features should be noted: While the amplitude γ2

increases monotonically as the temperature is reduced, the resistance, as a
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result, has a characteristic non-monotonic form changing from insulating be-
havior (dρ/dT < 0) at high temperatures to metallic behavior (dρ/dT > 0)
at low temperatures. The change in slope occurs at a maximum value ρmax

at a temperature T = Tmax, neither of them is universal. The correspond-
ing value of the amplitude γ2 is, however, universal at the one-loop order,
depending only on nv; for nv = 1, it is 2.08, whereas for nv = 2, it has the
considerably lower value 0.45. Next, it follows from the general form of
Eqs. (5.1a) and (5.1b), that ρ(T )/ρmax and γ2(T ) can be presented as the uni-
versal functions R(ηT ) and γ̃2(ηT ) when the argument ηT is introduced1–3,46:

R(ηT ) ≡ ρ(T )/ρmax γ̃2(ηT ) ≡ γ2(T ),
(5.2)

ηT = ρmax ln(T/Tmax).

The non-monotonic function R(η) together with the fit of the resistance
curves obtained for two samples of different origin are presented in Fig. 18.10.
After re-scaling, the data at various densities is described by a single curve.
The drop of ρ(T ) by a factor of five and the subsequent flattening of the
curve at low T are captured in the correct temperature interval. The full

Fig. 18.10. RG-fitting of the resistivity for two different Si-MOSFETs. Main
panel46: the data corresponding to n = (0.83, 0.88, 0.94)× 1011 cm−2 in Fig. 18.9
are scaled according to Eq. (5.2). The solid line (in red) is the solution of the
RG equations (5.1a) and (5.1b) with nv = 2; no adjustable parameters have been
used in the fit of the data. Inset49: the same for a sample from a different wafer.
Main figure reprinted (Fig. 2) with permission from Phys. Rev. Lett. 88, 016802
(2002). c© American Physical Society. Inset reprinted (Fig. 4a) with permission
from Nature Phys. 707 (2007). c© Macmillan Publishers Ltd.
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temperature dependence of the resistance is completely controlled by its
value ρmax at the maximum; there are no other free (or fitting) parameters.

We can draw an important conclusion: We proved theoretically the ex-
istence of the MIT in 2d. Since (i) the one-loop approximation gives a drop
of the resistance at low temperatures for a moderate strength of disorder
(i.e., in the region of the applicability of this approximation), and (ii) the
Anderson localization at strong disorder is indisputable; it is therefore logi-
cally unavoidable that the MIT should exist in-between. Owing to the drop
in the resistance, the reliability of the obtained RG equations is improved.
Therefore, the conclusion about the existence of the MIT can be justified
even within the one-loop approximation. Thus, the anti-localization effect
of the e–e interactions fundamentally alters the common point of view that
electrons in 2d are “eventually” (i.e., at T = 0) localized.

Let us turn now to the interaction amplitude γ2(T ). Since this ampli-
tude is related to the spin degrees of freedom, the information about the
dependence of this amplitude on the temperature can be extracted from the
in-plane magnetoconductance. This is because the fluctuations of the spin-
density lead — with participation of γ2 — to finite temperature corrections
to the resistivity.47 The spin-splitting induced by the in-plane magnetic field
reduces spin-density fluctuations and leads, in this way, to a temperature de-
pendent magnetoconductance. Hence, the magnetoconductance contains in-
formation about the value of the amplitude γ2 and its evolution with temper-
ature. In order to extract the value of γ2, it is important, however, to perform
measurements in weak magnetic fields, such that gμB(1 + γ2)B/kBT 	 1.
Weak magnetic field is needed in order not to drive the electron liquid, which
at large rs is very “fragile”, into some other state. As long as electrons are in
the diffusive regime, kBT < h/τel, i.e., the temperature is less than the scat-
tering rate on the static impurities, the expression for magnetoconductivity
in the limit b = gμBB/kBT 	 1 is given47–49 as:

Δσ = −(e2/πh)KvCee(γ2, ρ) b2, (5.3)

where in a system with nv degenerate valleys, Kv = n2
v. In the case when

the resistance ρ is not too high, the coefficient determining the magne-
toconductance, Cee, is explicitly related to the amplitude γ2 as follows:
Cee = 0.091γ2 (γ2 + 1). The experimental details and the results of the
comparison with theory can be found in Refs. 49 and 50 where, for the first
time, the scaling of the interaction amplitude was established. Not too close
to the MIT, the extracted values of γ2 are close to those predicted by the
theory. Remarkably, the parameter γ2 at T = Tmax was found to correspond
to 0.45 as predicted by theory for nv = 2.
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In spite of this success, Eqs. (5.1a) and (5.1b) have a limited applicability.
Obviously, the single-curve solution R(η) cannot provide the description of
the MIT. To approach the critical region of the MIT, the disorder has to be
treated beyond the lowest order in ρ, while adequately retaining the effects
of the interaction.

An internally consistent theory of the MIT [38] which goes beyond the
one-loop calculations was developed in Ref. 16 using the number of identical
valleys as a large parameter, nv → ∞. The valley degrees of freedom are
akin to flavors in standard field-theoretic models. Generally, closed loops
play a special role in the diagrammatic RG-analysis in the limit when the
number of flavors N is taken to be very large.51 This is because each closed
loop involves a sum over all the flavors, generating a large factor N per loop.
It is then typical to send a coupling constant λ to zero in the limit N → ∞
keeping λN finite. For interacting spin-1/2 electrons in the presence of nv

valleys (N = 2nv), the screening makes the bare values of the interaction
amplitude γ2 to scale as 1/(2nv). Furthermore, the increase in the number
of conducting channels results in the resistance ρ to scale as 1/nv. It is,
therefore, natural to introduce the amplitudes Θ = 2nvγ2 together with
the resistance parameter t = nvρ; the parameter t is thus the resistance
per valley, t = 1/[(2π)2νD]. Both quantities Θ and t remain finite in the
large-nv limit.

Following the large-nv approximation scheme outlined above, the RG
equations at order t2 (i.e., in the two-loop approximation) have been de-
rived. The obtained equations describe the competition between the e–e
interactions and disorder in 2d. The resulting resistance-interaction (t-Θ)
flow diagram is plotted in Fig. 18.11. The arrows indicate the direction of
the flow as the temperature is lowered. The quantum critical point, which
corresponds to the fixed point of the equations describing the evolution of t

and Θ, is marked by the circle. This quantum critical point separates the
metallic phase, which is stabilized by electronic interactions, from the in-
sulating phase where disorder prevails over the electronic interactions. The
attractive (“horizontal”) separatrix separate the metallic phase from the in-
sulating phase. Crossing the separatrix by changing the initial values of t

and Θ (e.g., by changing the carrier density) leads to the MIT.
In Ref. 49, the two-parameter scaling theory has been verified experi-

mentally. In Fig. 18.12, the experimentally obtained flow diagram is pre-
sented. In this plot, the coefficient Cee effectively represents the interaction
amplitude in the spin-density channel. The authors used the fact that the co-
efficient Cee reflects the strength of spin-related interactions of the diffusion
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1+
t)
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(3)
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Fig. 18.11. The resistance-interaction (t-Θ) flow diagram obtained in the two-loop
calculations.16 The arrows indicate the direction of the flow as the temperature is
lowered. The quantum critical point is marked by the circle. Area (1) is the metallic
phase, which is stabilized by the interaction. Area (2) is the insulating phase where
disorder prevails. Area (3) is the region of strong spin correlations. The attractive
separatrices separate the metallic phase from the insulating phase.

modes at any value of the resistance. Therefore, one may get much broader
insight into the MIT by studying the temperature dependence of the coeffi-
cient Cee even without knowing exact relation connecting Cee with γ2. This
procedure has been applied for the first time in Ref. 49, where the coefficient
Cee has been determined by fitting the Δσ(B,T ) traces to Eq. (5.3). Because
the traces are taken at different temperatures, one obtains the RG-evolution
of Cee as a function of temperature.

We see that the flow diagram presented in Fig. 18.12 confirms all the
qualitative features of the theoretical predictions, including the quantum
critical point and the non-monotonic behavior of the resistance as a function
of T on the metallic side of the transition. At not too high resistance, but
still within the diffusive region, the data presented in this flow diagram can
be accurately described by the RG theory without any fitting parameters,
see the inset in Fig. 18.10. Most important, however, is that the possibility of
presenting the data as a flow diagram gives a very strong argument in favor
of the applicability of the two-parameter scaling theory in Si-MOSFETs.

So far, we described scaling in terms of two parameters, leaving aside the
parameter z. Being related to the frequency renormalization of the diffusion
modes, this parameter determines the transport and thermodynamic quan-
tities in the critical region of the MIT. In the limit N → ∞, the equation
for z reads as follows: d ln z/dy = βz(t,Θ) = tΘ. Consequently, in the
case discussed in this section, and unlike in the case of magnetic impurities
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Fig. 18.12. The disorder–interaction flow diagram of the 2d electrons in Si-
MOSFET.49 The circle indicates the location of the quantum critical point from
which the three separatrices emanate. The arrows shown on the separatrices indi-
cate the direction of the flow as the temperature is lowered. The electron densities
are indicated in units of 1010 cm−2. The interaction amplitude in the spin-density
channel is represented by the coefficient Cee which was extracted from the magne-
toresistance. Reprinted (Fig. 3) with permission from Nature Phys. 3, 707 (2007).
c© Macmillan Publishers Ltd.

discussed in Sec. 3, z diverges in the vicinity of the MIT: z ∼ T
˜ζ where

ζ̃ = −(tΘ)critical point < 0. As we already mentioned, z can be interpreted
as the parameter renormalizing the density of states of the diffusion modes
and as such it controls the thermodynamic quantities. Hence, in the critical
regime of the 2d-MIT, the specific heat CV /T diverges (owing to the soften-
ing of the diffusion modes induced by z). Furthermore, a similar divergence
is also expected in the Pauli spin susceptibility16:

CV /T = νz(T ) ∝ T ς , χspin/χ0
a = z(T )(1 + γ2) ∝ T ς . (5.4)

Since the interaction parameter Θ is finite at the critical point, the divergence
in the Pauli spin susceptibility is not related to any Stoner-like magnetic
instability.

Before we conclude this section, let us touch upon a delicate point: How
general is the discussed theory of the 2d-MIT? It is applicable only within
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the diffusive regime at low enough temperatures when kBT 	 �/τel � εF .
Under these conditions, the charge and spin perturbations of the degenerate
electron gas propagate diffusively. The boundary of the diffusive regime can
be determined from the measurements of the magnetoconductivity described
above. [The point is that the relation Δσ ∝ b2, where b = gμBB/kBT 	 1,
holds only inside the diffusive regime, kBT 	 �/τel, while in the ballistic
regime Δσ ∝ (Tτel)b2.] In Si-MOSFETs, the diffusive regime extends up to
a few Kelvin in a density range around the critical density of the MIT. The
corresponding Fermi-temperature is of the order of 10 K and, therefore, at
temperatures convenient for measurements electrons are already degenerate.
In addition, the 2d electron gas in Si-MOSFETs (which in fact is a moderately
high-mobility system) is unique in the sense that the scattering is mostly
short-range in character, so that the MIT occurs in the diffusive regime.
On the contrary, in true high-mobility systems like GaAs/AlGaAs or n-SiGe
heterostructures the single particle scattering rate typically differs by a factor
of ten compared to the transport scattering rate. Therefore, it is difficult
to access the diffusive regime, because the smoothness of the disorder drives
the system directly from the ballistic to the insulating phase. Furthermore,
the presence of two equivalent valleys strongly enhances the anti-localization
effect of the e–e interaction and disorder making MOSFETs ideal systems
to study the MIT in 2d [N39].

We may thereby conclude that Si-MOSFETs provide an ideal playground
to study the properties of a 2d disordered electron liquid and, in particular,
the Anderson localization in the presence of the e–e interactions. Within
the region of its applicability, the RG-theory gives not only a qualitative but
also a quantitative description of the experimental data in these systems,
see Figs. 18.10–18.12.

Still, a question arises — How can the one-loop theory work so well up to
very high resistances [N40], in spite of the fact that the system is placed under
such extreme conditions that rs is as large as 10? In our opinion, it is maybe
not in spite but because of these extreme conditions. The point is that at
large rs an electron is mostly trapped inside a temporary potential minimum
created by other electrons as a result of Wigner-crystal like short range order.
Naturally, the kinetic energy of the electrons temporarily trapped by the
strong Coulomb interaction is larger than that of free electrons at the same
density. Therefore disorder is actually small compared to both the kinetic
and the interaction energies, even though the resistance is not small.

Summary: We demonstrated that the two-parameter RG-theory of the
disordered electron liquid reviewed here captures both quantitatively (for
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moderate disorder) and qualitatively (for larger disorder) the physics of the
disordered liquid in the diffusive regime. The possibility of presenting the
data as a flow diagram is a strong argument in favor of the applicability of
the two-parameter scaling theory in Si-MOSFETs. Finally, we showed that
the existence of the MIT in 2d in Si-MOSFETs can be justified theoretically
by combining the RG-analysis in the one-loop approximation with the fact
of the existence of Anderson localization at strong disorder: The one-loop
approximation gives a noticeable drop of the resistance at low temperatures
for a moderate strength of disorder. Since, on the other hand, at very strong
disorder the Anderson localization is unavoidable, it follows that in between
the MIT should exist.

6. Notes

N.1 For example, when the rate of inelastic e–e collisions exceeds charac-
teristic excitation energies, which are of the order of the temperature
T or frequency ε.

N.2 In the diffusion coefficient D, both vF and τel incorporate the Fermi-
liquid renormalizations.

N.3 While the static part of the amplitude Γ(k, ω) is equal to Γk, the
dynamic part contains at least one RA-section. The amplitude Γk can
be formally defined as the part of the two-particle amplitude Γ(k, ω)
which does not contain any RA-sections.

N.4 With the use of the effective mass m∗ in the quasiparticle spectrum εp

and redefining the interaction amplitudes, the explicit dependence on
the residue a drops out from Fermi-liquid theory. This is the reason
for attaching a2 to the matrix Γk

l=0 in Eq. (1.2).
N.5 In the textbook notations, 2Γ̃1 − Γ2 = Bl=0 and Γ2 = −Cl=0; see

Eqs. (18.7) and (18.9) of Chapter 2, Sec. 18 in Ref. 4.
N.6 Also, for obvious reasons, γρ does not contain any terms that can be

disconnected by cutting a line of the Coulomb interaction.
N.7 Constant density of states is a usual approximation for Fermi-liquid

theory, and it is in particular valid for a two-dimensional electron gas.
N.8 This is a standard Ward identity; see Chapter 2, Sec. 19 in Ref. 4.
N.9 Since we have touched a rather confusing question about negativity

of ∂n/∂μ, it is worth mentioning that the stability of a liquid with
charged carriers is determined by the combination [VC(k) + ∂μ/∂n] >

0, rather than ∂μ/∂n alone; VC(k), which is the Fourier component of
the Coulomb interaction, stabilizes such a liquid.
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N.10 In the Matsubara technique, temperature enters as the low-energy
cutoff because of the discreteness of the fermionic frequencies, εn =
(2n + 1)πT .

N.11 On the contrary, in the process of rescattering discussed in Sec. 1,
see Figs. 18.1–18.3, there are no integrations over the momenta of the
diffusion propagators.

N.12 In the ballistic region, T > 1/τel, non-analytic temperature corrections
due to the interplay of interaction and disorder also exist; they are
linear in T . For studies of electric conductivity in the ballistic regime
see Refs. 52–54. In our opinion, the effects in the ballistic and diffusive
regions have little in common.

N.13 The term “cooperon” reflects relevance of these modes to the same
channel in which the Cooper instability develops.

N.14 For our purposes, the difference between the temperature and the rate
of de-coherence, 1/τϕ, can be ignored.

N.15 An alternative to the replica description of the effects of the e–e inter-
action of disordered electrons exists; namely, the Keldysh formalism;
see Refs. 55 and 56.

N.16 The factor 2πT which appears in Γ̂ as a result of the Fourier trans-
form from the Matsubara time to frequency has the same origin as
1/Length appearing in the transitions from spatial coordinates to the
wave vectors.

N.17 To get some intuition, one may look on the NLSM as a sort of the
Heisenberg functional used in the theory of magnetism. Then, the
frequency term in S[Q] is equivalent to interaction with the exter-
nal magnetic field which determines the direction of the spontaneous
magnetization. Furthermore, the fluctuations of the magnetization,
i.e., magnons, are the counterparts of the diffusons and cooperons in
the discussed problems.

N.18 Magnetic impurities, external magnetic field, or spin-orbit scatter-
ing induce additional terms in the action S[Q], see e.g., Ref. 20.
These terms make some of the diffusion modes gapped. Then a
possible strategy is to preserve the general form of S[Q] as given
by Eq. (2.2), but to reduce the auxiliary matrix field Q̂ to such
a manifold that only singular diffusion modes remain, while all
gapped modes will be excluded. Systems with different sets of sin-
gular fluctuation propagators (i.e., when the Q̂-fields are elements of
different manifolds) belong to different universality classes. When
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only the fluctuations of density are important, such a system belongs
to the so-called unitary class. The richest case is the orthogonal class
in which fluctuations of the charge- and spin- densities as well as dif-
ferent kind of cooperons are relevant. A system where spin-orbit in-
teraction reduces singular fluctuations to the charge-density mode and
the singlet cooperon belongs to the symplectic class.

N.19 In Fig. 18.1, which illustrates Eq. (1.3), the intermediate sections are
equal to ωn

ωn+Dk2 . Here, the denominator is determined by the diffusion
propagator D(k, ωn), while ωn in the numerator appears as a result of
summation over a fermionic frequency within the interval available for
this propagator.

N.20 For example, in the diagram presented on the left side of Fig. 18.4, the
amplitude Γ0

ρ is converted into Γσ as a result of scattering induced by
disorder.

N.21 Naturally, the number of the e–e interaction terms involved in the
action S[Q] is different for different classes. The most general form of
the e–e interaction presented in Eq. (2.2) is needed for the orthogonal
class systems, while for the unitary class only the ρ-term remains.

N.22 For the polarization operator, Π0
st/ν = 2. Similarly, in the case of the

spin susceptibility, χ0
σ/ν = 2(gLμB/2)2.

N.23 Compared to the standard definition of the quantum resistance, this
unit contains an additional factor π.

N.24 Decreasing κ corresponds to enlarging blocks in the real-space renor-
malization procedure.

N.25 The right hand side of Eq. (3.5) starts from the γ2
c -term which de-

scribes the rescattering in the Cooper channel. This is the only term
in the RG equations that does not contain ρ. In the case of attraction,
γc < 0, this term is responsible for the superconducting instability at
low temperatures. Then, there is a competition between the two terms,
and βγc describes the suppression of the temperature of the supercon-
ducting transition by disorder. In amorphous films superconductivity
can be totally suppressed by a moderate amount of disorder.57

N.26 The statement about the maximal number of the (extended) interac-
tion vertices at a given number of momentum integrations demands
a certain clarification. As it has been explained above, the rescatter-
ing of the electron–hole pairs described by the ladder diagrams (see
Figs. 18.1–18.3) is not accompanied by integrations over momenta of
the diffusion propagators. Therefore, extending vertices by ladders, as



May 24, 2010 14:26 World Scientific Review Volume - 9.75in x 6.5in 18˙chapter18

Disordered Electron Liquid with Interactions 35

described in Eq. (1.3), does not generate any additional factors ρ.
Owing to this fact, in the given order of ρ, the full dependences on the
interaction amplitudes can be obtained by means of ladder extensions.

N.27 Connection of the frequency dependent conductivity in the critical
region of the MIT with the dielectric constant on the insulating side
of the transition was discussed in Refs. 31 and 3.

N.28 In our previous works, the combination a = d−2
d (1 + ζ̃) was written as

d−2
d−ς .

N.29 For the analysis of the critical behavior, the data should be taken
outside the region of perturbation corrections, σ(T ) − σ(T = 0) �
σ(T = 0) but, on the other hand, one should remain within the quan-
tum transport region, σ(T ) < σmin. (The Mott minimal conductivity
σmin is a conditional boundary separating regions where transport is
dominated by classical or quantum mechanisms.) In practice, these in-
equalities leave a limited window of σ(T ) appropriate for the analysis.

N.30 In short, the tunneling conductance is determined by the Fourier trans-
form of a product of two Green functions of electrons located on the
opposite sides of the tunneling junction. Each of them is not gauge
invariant by itself, while the product is. Therefore, it is the presence
of the counter-electrode, with respect to which the measurement is
performed, that makes the TDOS a physically meaningful quantity.

N.31 This result was re-derived by many authors and in a different ways,
see e.g., Refs. 58, 59 and 56.

N.32 In this region of momenta, the dynamically screened Coulomb inter-
action VC(k, ωn) is proportional to (Dk2 + ωn)/Dk2 i.e., it is singular
despite of screening. This singularity is the origin of the log-squared
corrections to the TDOS.

N.33 The other quantity that is sensitive to this kind of fluctuations is the
thermal conductivity. The coordinate-dependent temperature invali-
dates the arguments about the absence of the energy reference level
discussed in the main text.60

N.34 Therefore, any “universal” theory of the MIT in dilute electron sys-
tems that emphasizes only one aspect of the discussed systems —
most often it is a very large rs — cannot describe the observed non-
monotonic ρ(T ). An electron liquid characterized by a very strong
Coulomb interaction alone is, in a sense, as featureless (and universal)
as the free electron gas. Such a featureless description cannot provide
a non-monotonic ρ(T ).
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N.35 The universality has been confirmed by comparing the data obtained
in samples from different wafers, see Fig. 3 in Ref. 42. Although the
critical density at the MIT is sample dependent, the critical resistance
has been found to be the same.

N.36 The gL-factor is about 1.5 times larger than for free-electrons, i.e.,
gL/g0

L = 1
1+F σ

0
= 1 − Γσ ≈ 1.5. The effective mass is about 3 times

larger than the band mass, m∗/mb ≈ 3.
N.37 This is, actually, a crucial point. That is where the high mobility

becomes important in the case of the Si-MOSFET. It was shown in
Ref. 61 that in this device the ratio τv/τel monotonically increases as
the electron density decreases; here τv is the time of the inter-valley
scattering. High mobility allows to reach low densities such that for
the temperature interval we are interested in the inter-valley scattering
is negligible (i.e., the two distinct valleys are well defined).

N.38 The problematic feature of the scaling given by Eqs. (5.1a) and (5.1b)
is that the amplitude γ2 diverges at a finite temperature T ∗ and
thereafter the RG-theory becomes uncontrolled.2,7 Fortunately, the
scale T ∗ decreases very rapidly with nv; it was found in Ref. 46 that
ln ln(1/τelT

∗) ∼ (2nv)2. This observation makes the problem of the
divergence of γ2 irrelevant for all practical purposes, even for nv = 2
which corresponds to Si-MOSFETs. At nv → ∞, the theory becomes
internally consistent: T ∗ → 0. Still, a delicate issue is the nature of
the ground state of a system with finite nv. For discussions of this
question, see e.g., Refs. 62, 63, 3, 25, 13, and 64.

N.39 The measurements in Ref. 61 confirm our original idea46 that the dif-
ference between high- and low-mobility MOSFET samples is in the
strength of the inter-valley scattering rather than in rs, which anyway
is not too large even in the best Si-MOSFET samples.

N.40 For nv = 2, R(η) describes quantitatively the temperature dependence
of the resistance of high-mobility Si-MOSFETs in the region of ρ up
to ρ ∼ 0.5,46 which is not so far from the critical region.
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Personal Note

I am pleased to contribute this article to the volume celebrating 50 years of
Anderson localization. Anderson’s contributions to Science influenced my
scientific work, especially in the beginning of my career as a many-body
physicist. I would like to mention in particular his papers on the Kondo
problem. These papers gave a very impressive example of mapping one
problem onto another, an approach that in a general sense has also been
applied here.
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