

- Who are band theorists and why have we had such a success in last decades?
- How do we deal with the *conventional* (electronphonon) superconductivity?
- How do we predict anything (if at all)?
- How do we deal with an *unconventional* (spin-fluctuation) superconductivity?
- What do we know so far about the pairing state of the new Fe-based superconductors (review of the experiment)?

Who are we and why have we had such a success in last decades?

Post-cuprate Materials	Key concept	Band theorists	Many-body theorists
C ₆₀	High-energy intramolecular modes	+	+
ZrZn ₂	Sample inhomogeneity	+	-
MgCNi ₃	Anharm. phonons suppressed by spin fluctuations	+	-
MgB ₂	Two gaps	+	-
Sr₂RuO₄	p-wave		+?
Hcp Fe under pressure	Unconventional, magnetism- driven	+?	
CaC ₆	C and intercalant phonons	+	-
Fe-based	S _{+/-}	+?	-

- Not that we are smarter (we are not)
- Not that we have much better tools (any tool is as good as the hand that holds it)
- Our secret is that we start from a material, and work out a theory to fit our material, while they start from a theory and work on a material to fit their theory. They have intuition for models we have intuition for materials.

Вредные советы

- 1. Learn many-body first, and numerology second.
- 2. It is easy to run a modern code. It is difficult to run it right, and much more difficult to interpret.
- 3. Equally important information can be gained from successes as from failure (approximations are largely controllable!)

- Who are we and why have we had such a success in last decades?
- How do we deal with the *conventional* (electronphonon) superconductivity?
- How do we predict anything (if at all)?
- How do we deal with an *unconventional* (spin-fluctuation) superconductivity?
- What do we know so far about the new Fe-based superconductors (review of the experiment)?

Superconductivity: First principles calculations

Within the Migdal-Eliashberg theory, all electronic properties are determined by the electron-phonon vertex $g_{kk'}(\omega_v)$, that defines the scattering amplitude of an electron with the momentum **k** into a state with the momentum **k'** (possibly in a different band) by a phonon with the wave vector **k-k'** and energy ω_v , belonging to a phonon branch

v.

$$g_{\mathbf{k},\mathbf{k}+\mathbf{q},\nu} = \mathbf{q}, \mathbf{v} \cdot \mathbf{g}_{\mathbf{k}\mathbf{k}+\mathbf{q}}$$
 k,i
 $g_{\mathbf{k},\mathbf{k}+\mathbf{q},\nu} = \langle \mathbf{k} | \mathrm{d}V/\mathrm{d}Q_{\mathbf{q},\nu} | \mathbf{q} \rangle$

Summation over all possible electron scatterings for a given phonon gives us a probability of the phonon to decay into an electron-hole pair, that is, phonon lifetime: $\tau^{-1} = \gamma_{q,v} = 2\pi\omega_{q,v} \sum_{\substack{|g_{k,k+q,v}|^2}} |g_{k,k+q,v}|^2 \delta(\varepsilon_k - E_F) \delta(\varepsilon_{k+q} - \varepsilon_k - \hbar\omega_{q,v}).$ Electron self energy is defined by the following diagram: q, v k, i g_{kk+q} k, i g_{kk+q} k, i

Superconductivity: First principles calculations

while the pairing amplitude is related to the following graph:

phonons:

All these diagrams can be related to a basic quantity, scattering amplitude of a pair of electrons in the states \mathbf{k} and $-\mathbf{k}$ into two other states, \mathbf{k} ' and $-\mathbf{k}$ ' by all available

Ladder sequence of these diagrams gives the pairing amplitude. Integration over \mathbf{q} gives the electron self-energy.

This basic quantity is called the Eliashberg function, $\alpha^2 F_{kk'}(\omega)$, and is, explicitly

Superconductivity: First principles calculations

This basic quantity is called the Eliashberg function, $\alpha^2 F_{kk'}(\omega)$, and is, explicitly

$$\alpha^{2} F_{\mathbf{k}\mathbf{k}'}(\omega) = N^{-1} \sum_{\nu} |g_{\mathbf{k}\mathbf{k}',\nu}|^{2} \delta(\omega - \omega_{\mathbf{k}\mathbf{k}',\nu}) \xrightarrow{\mathbf{k},i} \underbrace{g_{\mathbf{k}\mathbf{k}'}}_{-\mathbf{k},i} \underbrace{g_{\mathbf{k}\mathbf{k}'}}_{-\mathbf{k},i} \underbrace{g_{\mathbf{k}\mathbf{k}'}}_{-\mathbf{k}',j}$$

while its isotropic average is

$$\alpha^2 F(\omega) = \frac{1}{2} \sum_{\mathbf{q},\nu} \omega_{\mathbf{q},\nu} \lambda_{\mathbf{q},\nu} \delta(\omega - \omega_{\mathbf{q},\nu}) \quad \text{where} \qquad \lambda_{\mathbf{q},\nu} = \gamma_{\mathbf{q},\nu} / \pi N(E_{\mathrm{F}}) \omega_{\mathbf{q},\nu}^2$$

Connecting the right hand legs of this diagram gives electron self energy.

Important note: The full Eliashberg theory can be formulated in real space, so that instead of phonons enter the ionic displacement correlators. A corollary of that fact is the absence of the isotope effect on λ independent of complexity of crystal structure or even periodicity.

So far we have made the following assumptions:

- Migdal theorem (ions are slow compared to electrons similar to Born-Oppenheimer adiabatic approximation)
- 2. Harmonicity (relatively easy to remove)
- 3. Linearity (no two-phonon vertices)

Now we need to find the phonon spectra and the one-electron states

We will do it using the so-called Density Functional Theory

(the following several slides are taken from a Richard Martin lecture, www.ipam.ucla.edu/publications/matut/matut_5904.ppt)

A REAL PROPERTY AND

The Fundamental Hamiltonian

Interacting electrons in an external potential

$$\hat{H} = -\sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$

$$-\sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|}$$

- Only one small term: The kinetic energy of the nuclei
- If we omit this term, the nuclei are a fixed external potential acting on the electrons
- The final term is essential for charge neutrality but is a classical term that is added to the electronic part

The basis of most modern calculations Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

$$V_{ext}(\mathbf{r}) \bigoplus_{\substack{\Downarrow \\ \Downarrow \\ \Psi_i(\{\mathbf{r}\}) \\ \Rightarrow \\ \Psi_0(\{\mathbf{r}\})}} n_0(\mathbf{r})$$

- All properties of the many-body system are determined by the ground state density n₀(r)
- Each property is a functional of the ground state density $n_0(r)$ which is written as f

The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace original many-body problem with an independent electron problem that can be solved!
- The ground state density is required to be the same as the exact density

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

 Only the ground state density and energy are required to be the same as in the original many-body system

The Kohn-Sham Ansatz II

- From Hohenberg-Kohn the ground state energy is a functional of the density E^[n], minimum at n = n⁰
- From Kohn-Sham

$$n_{0}(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_{i}^{\sigma}(\mathbf{r})|^{2},$$

$$E_{KS} = \frac{1}{2} \sum_{\sigma} \sum_{i=1} |\nabla \psi_{i}^{\sigma}|^{2} + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + \underline{E_{xc}[n]}.$$
Equations for independent particles - soluble Exchange-Correlation Functional – Exact theory but unknown functional!

• The new paradigm – find useful, approximate functionals

The Kohn-Sham Equations

$$n_{0}(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_{i}^{\sigma}(\mathbf{r})|^{2},$$

$$E_{KS} = \frac{1}{2} \sum_{\sigma} \sum_{i=1} |\nabla\psi_{i}^{\sigma}|^{2} + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + E_{xc}[n].$$
Constraint – required
Exclusion principle for
independent particles
$$\langle \psi_{i}^{\sigma} | \psi_{j}^{\sigma'} \rangle = \delta_{i,j} \delta_{\sigma,\sigma'}.$$
(1)
Eigenvalues are
approximation
to the energies to
add or subtract
electrons
electron bands
More later
$$V_{KS}^{\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r},\sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r},\sigma)}$$

$$= V_{ext}(\mathbf{r}) + V_{Hartree}(\mathbf{r}) + V_{xc}^{\sigma}(\mathbf{r})(4)$$

Now we have a set of one-particle energies and one-particle wave functions.

Can we use them for one-electron excitation energies?

Compare Kohn-Sham Equations and Dyson Equation:

As long as the Coulomb interaction is well screened (not true in insulators) and/or there is no strong energy dependence in the interaction (not true in strongly correlated materials), KS eigenvalues represent real electrons.

Linear response technique – not your usual linear response

The standard linear response is based on the Rayleigh-Schrodinger perturbation theory: the new wave functions are expanded in terms of the old wave functions. Disadvantage: a very large number of unoccupied states need to be computed. Workaround: Sternheimer perturbation theory. One way to look at this theory:

$$\Psi_{v} = \sum_{i} A_{vi}\phi_{i}; \quad \delta\Psi_{v} = \sum_{i} \delta A_{vi}\phi_{i}; \quad or \quad \delta\Psi_{v} = \sum_{i} A_{vi}\delta\phi_{i}$$

When ions shifts, atomic orbitals also shift and deform.

• Who are we and why have we had such a success in last decades?

• How do we deal with the *conventional* (electronphonon) superconductivity?

• How do we predict anything (if at all)?

• How do we deal with an *unconventional* (spin-fluctuation) superconductivity?

• What do we know so far about the new Fe-based superconductors (review of the experiment)?

Recent applications: superconductivity in doped graphenes

MgB2

Graphite: ABABAB LiC₆: AαAαAαA YbC₆: AαAβAαA

CaC₆: ΑαΑβΑγΑ

MgB₂: A(α + β + γ)A

AX

α β γ

Intercalated graphene: electronic structure

Formation of the electronic structure

• "nearly-free-electron" states

15

10

5

0

G

А

MgB2: σ -band + π -band

Bond-stretching E_{2g} mode: main player

2D Kohn anomaly:

If a phonon interacts primarily with the $p\sigma$ bands, one should expect substantial softening ($\Delta\omega/\omega\sim\lambda$) and broadening ($\gamma/\omega\sim\pi N\omega\lambda\sim0.1\lambda$) for q < qmax

 $q_{\rm max}$

Linear-response calculations of phonons and e-ph coupling (Stuttgart group). Similar results: Amy Liu et al, Heid et al

It seems like the π band plays no positive role in electron-phonon coupling. It was suggested at an early (Pickett) that if it were not there at all, T_c would have been the same or even higher:

However, this very untrue, and I will come back to that after discussing CaC_6 , where it is another band that "takes a lead" in superconductivity.

$$\lambda_{ij} = \begin{bmatrix} 0.95-1.0 \\ 0.16-0.17 \end{bmatrix}$$

$$[0.21-0.23] \quad [0.3-0.45]$$

$$\lambda_{eff} \sim 1-1.05; \ \lambda_{av} = 0.87-0.9$$

3D band: free electrons or intercalant states?

- ζ -band: free electrons or intercalant's electrons?
- Both! (cf. bands in the Ca metal).

CaC6: π -band + ζ -band

Cf. MgB₂ -- σ -band + π -band.

Is it possible to create a material with all three types of carriers? XXX -- σ -band + π -band + ζ -band?

Pseudopotential calculations (Calandra & Mauri, 2005, Giantomassi, Boeri et al, 2006)

CaC6: π -band + ζ -band

Massida, Gross et al

Note that most of the coupling comes the freeelectron like spherical FS (the ζ -band).

CaC₆: π -band + ζ -band MgB₂: σ -band + π -band Li₂B₂: σ -band + ζ -band!

Theoretically predicted by Kolmogorov and Curtarolo in 2005 (metastable at ambient pressure, stabilized by moderate pressure)

Where have all the π -electrons gone??

In terms of the π -band Li₂B₂ is an exact analogue of the *undoped* graphite

Why do we need that π -band, after all???

Superconductor husbandry vs. animal husbandry

strength, good temper

endurance, low maintenance

LACKING: an ordinary, but indispensable common feature of both prototypes:

What you may have thought about cannot be regained.

But the π -band can!

Doping of 0.15 electrons per formula *(e.g.,* Li2B1.85C0.15) raises the Fermi level

...and raises the density of π states up to a value comparable with that of MgB2.

- Who are we and why have we had such a success in last decades?
- How do we deal with the *conventional* (electronphonon) superconductivity?
- How do we predict anything (if at all)?
- How do we deal with an *unconventional* (spin-fluctuation) superconductivity?
- What do we know so far about the new Fe-based superconductors (review of the experiment)?

Superconductivity and spin fluctuations

charge fluctuations (phonons) mediate attraction; spin fluctuations mediate repulsion

2nd electron - spin polarization cloud - 1st electron

If $\Delta_{\alpha k}$ and $\Delta_{k\beta}$ have opposite sign, a negative (repulsive) *V* can still be pairing.

Fermi surface of BSCCO measured by ARPES (http://en.wikipedia.org/wiki/Fermi_surface)

Superexchange interaction is peaked at $Q=(\pi,\pi)$

It is perfectly well matching the fermiology of high-Tc cuprates

There are two ingredients in this recipies (1) are found (2) momentum dependence of spin placita ations negative (repulsive) V can still be pairing.

Cooking an s_± state: ingredient 1 - Fermiology

Ba122 – 10%h

Cooking an s_± state: ingredient 2 – spin fluctuation

$$\operatorname{Re} \chi_{0}(\mathbf{q}, \omega \to 0) = \sum_{\mathbf{k}} \frac{f_{\mathbf{k}+\mathbf{q}} - f_{\mathbf{k}}}{\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}}} \qquad \frac{\operatorname{Im} \chi_{0}(\mathbf{q}, \omega)}{\omega} |_{\omega \to 0} = \sum_{\mathbf{k}} \delta \left(\varepsilon_{\mathbf{k}+\mathbf{q}} - E_{F}\right) \delta \left(\varepsilon_{\mathbf{k}} - E_{F}\right)$$

$$\prod_{\Gamma} \chi_{\Gamma} \Gamma \qquad \Gamma \qquad \chi \qquad \Gamma$$

$$\operatorname{Im} \chi_{0}(\mathbf{q}, \omega) / \omega |_{\omega \to 0} \qquad \operatorname{Re} \chi_{0}(\mathbf{q}, 0)$$

$$fully pairing for the s_{\pm} state (sharp nesting not needed)$$

FOUND EXPERIMENTALLY!

Origin of spin fluctuations: not important!

$$\chi(\mathbf{q},\boldsymbol{\omega}) = \frac{\chi_0(\mathbf{q},\boldsymbol{\omega})}{1 - J(\mathbf{q},\boldsymbol{\omega}) \ \chi_0(\mathbf{q},\boldsymbol{\omega})}$$

For a Mott-Hubbard system, $J(\mathbf{q}, \boldsymbol{\omega})$ is main factor – magnetic interaction is *local in real space*

For LFAO, we expect the structure to come mainly from non-interacting part, interaction is *local in momentum space*

$$\chi_0(\mathbf{q},\boldsymbol{\omega}) = \sum_{\mathbf{k}} \frac{\mathbf{f}(\boldsymbol{\varepsilon}_{\mathbf{k}+\mathbf{q}}) - \mathbf{f}(\boldsymbol{\varepsilon}_{\mathbf{k}})}{(\boldsymbol{\varepsilon}_{\mathbf{k}+\mathbf{q}} - \boldsymbol{\varepsilon}_{\mathbf{k}} - \boldsymbol{\omega} - i\boldsymbol{\delta})}$$

IF it were a Mott-Hubbard system, the nearest neighbor superexchange $(\{0,0\}, J_1)$ would be pair-breaking, and the 2nd neighbors superexchange $(\{\pi,\pi\}, J_2)$ would be pairing.

Some clarification about phonons

these phonons are pairing, positive isotope effect

these phonons are pairbreaking, negative isotope effect. 1. First principles calculations of e-ph coupling give $\lambda_{e-ph} \sim 0.2$. They <u>are</u> <u>reliable</u> for a truly nonmagnetic ground state. <u>Magnetism provides up</u> to ~50% enhancement.

L. Boeri, M. Calandra, IIM, arXiv:1004.1943

- 1. Magnetoelastic coupling in these materials is *spectacularly strong*.
- 1. Isotope effect in systems with variable T_c is notoriously hard to measure (cf. CaC₆, possibly MgNiC₃).

In principle, these phonons can induce nodes

- 1. First principle calculations predict two disjoint sets of the Fermi surfaces separated by a particular wave vector (experiment concurs)
- 2. First principle calculations predict spin fluctuations with the same wave vector (experiment concurs)
- 3. First principle calculations predict weak to moderate eph coupling
- 4. The only state naturally compatible with all the above is \pm

the s state.

- Who are we and why have we had such a success in last decades?
- How do we deal with the *conventional* (electronphonon) superconductivity?
- How do we predict anything (if at all)?
- How do we deal with an *unconventional* (spin-fluctuation) superconductivity?
- What do we know so far about the new Fe-based superconductors (review of the experiment)?

It is singlet.

Remaining options for a tetragonal symmetry: 1. L=0, s-wave 2. L=2, d-wave (x -y , xy, or xz±iyz)

EXPERIMENTAL EVIDENCE: s-wave or d-wave?

It is very unlikely to be d-wave.

- •<u>c-axis Josephson</u>: *formally zero for all L≠*0 symmetries observed (UMD group)
- <u>Paramagnetic Meissner</u> (Wohlleben) effect; *not observed (K.A. Moler et al, JPSJ)*
- •<u>90-junctions</u>: unconfirmed reports (to-do list!)

Are we *closer* to the s_{++} limit (with possible nodes and patches of the "wrong" sign), or to s_{\pm} limit (with possible nodes and patches of the "wrong" sign)?

And the correct question is...

Unique opportunity: microscopic coexistence of SDW and SC at 0.04<x<0.08

Thermal conductivity shows NO NODES there!

±

One can show that it is *only possible* in an s case (this is a <u>qualitative</u> result, D. Parker et al, PRB 80, 100508). One can also argue that the very fact of coexistence is not

compatible with s (R.M. Fernandes et al, arXiv:0911.5183; M. Vavilov

- 1. Recall s-wave: in the high-transparency limit $\sigma(0)=2$, in the low-transparency limit $\sigma(0)=0$
- 2. Recall d-wave: in the high-transparency limit $\sigma(0)=2$, in the low-transparency limit $\sigma(0) \rightarrow \infty$ (ZB bound state), and the result depends on angle.
- 3. In s_± in the high-transparency limit $\sigma(0) < 2$, in the low-transparency limit $\sigma(E) \rightarrow \infty$ (finite-bias bound state), and

There are new effects, but they are very difficult to single out experimentally

- d-wave required by symmetry⇒NO means NO, YES means YES.
 - s : only quantitative effect possible \Rightarrow YES

IBM group, cond-mat arXiv:0905.3571

Half-integer fluxes detected (in a small fraction of loops).

Various interpretations possible, but all of them require sign change of the order parameter

Nodes or no nodes?

- DOS probes (C/T, tunneling, penetration depth) cannot distinguish between nodes and pair-breaking effects (which we do not entirely understand, still!)
- 2. ARPES (and tunneling) only probe the surface
- 3. Thermal conductivity similar to DOS but more accurate and less sensitive to impurities

 κ /T at T→0 probes DOS at E=0. How does it differ from nontransport probes?

- In optimally doped Ba(Fe,Co)₂As₂ (also in Ba_{0.5}K_{0.5}Fe₂As₂, and in FeSe) thermal conductivity is inconsistent with nodes
- Thermal conductivity slope in Ba(Fe,Co)₂As₂ monotonically grows away from optimal doping
- The κ_c behavior is totally inconsistent with κ_{ab} behavior
- 5% of Ni (optimally doped) has the same effect as 4.8% Co (underdoped)
- Role of impurity states?

Angle-resolved probes

 Specific heat of Fe(Se,Te) in rotating magnetic field indicated nodes or deep minima along the (1,1) directions. Thermal conductivity and C(T) show no nodes. Tunneling shows a full gap.

Angle-resolved probes

- Where are nodes?
- Hole surface: unlikely (no model provides those)
- Electron outer: contardicts STM
- Electron inner: consistent with both STM and thermal conductivity.

- Thermal conductivity of BaFe₂(As,P)₂ in rotating magnetic field indicated nodes or deep minima along the (1,1) directions. Thermal conductivity and C(T) show Matsuda et al unpublished
- Their interpretation: Thermal conductivity is controlled by light electrons (corroborated by other experiments), specific heat controlled by heavy holes (>80%; not corroborated). Nodes live on the e-surface.
- *cf.* Sherbrook data: κ_c is controlled by a small spot and $(mxx-myy)\uparrow 2$, threshold 50% accidentally nodes live exactly there. *Too many accidents?*
- Electronic Raman scattering does not see any gap for the B_{1g} polarization – nodal Muschler, Hackl, Devereaux et al, PRB 80, 180510 (2009) ell 105 es.

IIM, Hackl, Devereaux et al, unpublished

Fermi velocity, threshold 60%

Summary of all four experiments:

- BaFe₂(As,P)₂, thermal conductivity in rotating magnetic field – (1,1) directions, and maximal Fermi velocity in the same direction
- 2. $Ba(Fe,Co)_2As_2$, thermal conductivity along c – nodal circles on the FS caps
- 3. $Ba(Fe,Co)_2As_2$, electronic Raman scattering – nodal ellipses around (1,1,0), where the Fermi velocity is maximal.

Pairing symmetry:

- definitely singlet
- nearly definitely not d
- most likely sign-changing

±

Pstesance (in most cases) of subgap quasiparticles, with a complicated DOS – more work needed.

What is the nature of structure of these quasiparticles? Are they nodal? Are they impurity driven? – intuition and knowledge derived from the old good one-band d-wave in cuprates looks like hopelessly out of place...

To be strict is better than to be lax... though this pairing sounds natural enough in some localities.

Rhymes and Meters, A Practical Manual for Versifiers, by Horatio Winslow, 1909

1. Phase-sensitive experiments.

- Any indication of π -shift is a strong argument; absence thereof isn't.
- "Standard" 90 corner junctions still unverified!
- The only *qualitative* test: epitaxial sandwich.

1. More angular dependent experiments

1. STM quasiparticle scattering? – Not Bragg peaks, but real quasiparticles! (no data yet, AFAIK)

Unfolding the Brillouin zone

Coulomb avoidance

(Scalapino, Hirschfeld et al, Chubukov et al, Kuroki et al)

Lawrence Durrell JUSTINE

"It is mentally vulgar to spend one's time being so certain of first principles..."

Unfolding the Brillouin zone

Crystal and electronic structure

Spin fluctuations

BCS (weak coupling)

$$1 = \mathbf{I} \mathbf{Z} \mathbf{X} \mathbf{I} \qquad 1 = \mathbf{I} \mathbf{Z} \mathbf{X} \mathbf{I}$$

It is not that easy to provide a gap ratio of 2!

three (four) band effects are important

other interactions (phonons, intraband spin fluctuations etc) are important

Eliashberg (strong coupling)

$$\begin{cases} \Delta_{1}(1 + \lambda_{12} = \lambda_{12}\Delta_{2} \ln(1.13\omega_{c}/T_{c})) \\ \Delta_{2}(1 + \lambda_{21}) = \lambda_{21}\Delta_{1} \ln(1.13\omega_{c}/T_{c}) \end{cases}$$

$$\frac{\Delta_{1}(T)}{\Delta_{2}(T)} = -\sqrt{\frac{N_{2}}{N_{1}}} \left(1 + \frac{\sqrt{\lambda_{12}\lambda_{21}} \ln(N_{2}/N_{1})}{4} + \frac{\lambda_{21} - \lambda_{12}}{2}\right)$$

NA304012

Lawrence Durrell JUSTINE

"It is mentally vulgar to spend one's time being so certain of first principles..."

